update llvm-wrapper include to silence deprecation warning
Includes of `include/llvm/Support/Host.h` now emit a deprecated warning: `warning: This header is deprecated, please use llvm/TargetParser/Host.h`.
I don't believe we are using this include.
I don't believe we need to bump the `download-ci-llvm` stamp since these warnings are emitted while building the `llvm-wrapper`.
r? ```@nikic```
CFI: Fix error compiling core with LLVM CFI enabled
Fix#90546 by filtering out global value function pointer types from the type tests, and adding the LowerTypeTests pass to the rustc LTO optimization pipelines.
add aarch64-unknown-teeos target
TEEOS is a mini os run in TrustZone, for trusted/security apps. The libc of TEEOS is a part of musl. The kernel of TEEOS is micro kernel.
This MR is to add a target for teeos.
MRs for libc and rust-std are in progress.
Compiler team MCP: [MCP](https://github.com/rust-lang/compiler-team/issues/652)
Add hotness data to LLVM remarks
Slight improvement of https://github.com/rust-lang/rust/pull/113040. This makes sure that if PGO is used, remarks generated using `-Zremark-dir` will include the `Hotness` attribute.
r? `@tmiasko`
Make module inner and function run_analysis_to_runtime_passes in
rustc_mir_transform public to allow re-implementing the query from the
rust compiler interface.
Map RPIT duplicated lifetimes back to fn captured lifetimes
Use the [`lifetime_mapping`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping) to map an RPIT's captured lifetimes back to the early- or late-bound lifetimes from its parent function. We may be going thru several layers of mapping, since opaques can be nested, so we introduce `TyCtxt::map_rpit_lifetime_to_fn_lifetime` to loop through several opaques worth of mapping, and handle turning it into a `ty::Region` as well.
We can then use this instead of the identity substs for RPITs in `check_opaque_meets_bounds` to address #114285.
We can then also use `map_rpit_lifetime_to_fn_lifetime` to properly install bidirectional-outlives predicates for both RPITs and RPITITs. This addresses #114601.
I based this on #114574, but I don't actually know how much of that PR we still need, so some code may be redundant now... 🤷
---
Fixes#114597Fixes#114579Fixes#114285
Also fixes#114601, since it turns out we had other bugs with RPITITs and their duplicated lifetime params 😅.
Supersedes #114574
r? `@oli-obk`
[rustc_data_structures][base_n][perf] Remove unnecessary utf8 check.
Since all output characters taken from `BASE_64` are valid UTF8 chars there is no need to waste cycles on validation.
Even though it's obviously a perf win, I've also used a [benchmark](https://gist.github.com/ttsugriy/e1e63c07927d8f31e71695a9c617bbf3) on M1 MacBook Air with following results:
```
Running benches/base_n_benchmark.rs (target/release/deps/base_n_benchmark-825fe5895b5c2693)
push_str/old time: [14.670 µs 14.852 µs 15.074 µs]
Found 11 outliers among 100 measurements (11.00%)
4 (4.00%) high mild
7 (7.00%) high severe
push_str/new time: [12.573 µs 12.674 µs 12.801 µs]
Found 11 outliers among 100 measurements (11.00%)
7 (7.00%) high mild
4 (4.00%) high severe
```
rustc_interface: Dismantle `register_plugins` query
It did three independent things:
- Constructed `LintStore`
- Prepared incremental directories and dep graph
- Initialized some fields in `Session`
The `LintStore` construction (now `passes::create_lint_store`) is more or less left in place.
The incremental stuff is now moved into `fn dep_graph_future`.
This helps us to start loading the dep graph a bit earlier.
The `Session` field initialization is moved to tcx construction point.
Now that tcx is constructed early these fields don't even need to live in `Session`, they can live in tcx instead and be initialized at its creation (see the FIXME).
Three previously existing `rustc_interface` queries are de-querified (`register_plugins`, `dep_graph_future`, `dep_graph`) because they are only used locally in `fn global_ctxt` and their results don't need to be saved elsewhere.
On the other hand, `crate_types` and `stable_crate_id` are querified.
They are used from different places and their use is very similar to the existing `crate_name` query in this regard.
Structurally normalize weak and inherent in new solver
It seems pretty obvious to me that we should be normalizing weak and inherent aliases too, since they can always be normalized. This PR still leaves open the question of what to do with opaques, though 💀
**Also**, we need to structurally resolve the target of a coercion, for the UI test to work.
r? `@lcnr`
Store the laziness of type aliases in their `DefKind`
Previously, we would treat paths referring to type aliases as *lazy* type aliases if the current crate had lazy type aliases enabled independently of whether the crate which the alias was defined in had the feature enabled or not.
With this PR, the laziness of a type alias depends on the crate it is defined in. This generally makes more sense to me especially if / once lazy type aliases become the default in a new edition and we need to think about *edition interoperability*:
Consider the hypothetical case where the dependency crate has an older edition (and thus eager type aliases), it exports a type alias with bounds & a where-clause (which are void but technically valid), the dependent crate has the latest edition (and thus lazy type aliases) and it uses that type alias. Arguably, the bounds should *not* be checked since at any time, the dependency crate should be allowed to change the bounds at will with a *non*-major version bump & without negatively affecting downstream crates.
As for the reverse case (dependency: lazy type aliases, dependent: eager type aliases), I guess it rules out anything from slight confusion to mild annoyance from upstream crate authors that would be caused by the compiler ignoring the bounds of their type aliases in downstream crates with older editions.
---
This fixes#114468 since before, my assumption that the type alias associated with a given weak projection was lazy (and therefore had its variances computed) did not necessarily hold in cross-crate scenarios (which [I kinda had a hunch about](https://github.com/rust-lang/rust/pull/114253#discussion_r1278608099)) as outlined above. Now it does hold.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Remove arm crypto target feature
Follow-up to https://github.com/rust-lang/stdarch/pull/1407.
LLVM has moved away from a combined `crypto` feature on both aarch64 and arm, and we did the same on aarch64, but were deferred from doing the same on arm due to compatibility with older LLVM.
As the minimum LLVM version has increased, we can now remove this (unstable) target feature on arm.
r? `@Amanieu`
Warn when #[macro_export] is applied on decl macros
The existing code checks if `#[macro_export]` is being applied to an item other than a macro, and warns in that case, but fails to take into account macros 2.0/decl macros, despite the attribute having no effect on these macros.
This PR adds a special case for decl macros with the aforementioned attribute, so that the warning is a bit more precise. Instead of just saying "this attribute has no effect", hint towards the fact that decl macros get exported and resolved like regular items.
It also removes a `#[macro_export]` attribute which was applied on one of `core`'s decl macros.
- core: Remove #[macro_export] from `debug_assert_matches`
- check_attrs: Warn when #[macro_export] is used on macros 2.0
Avoid exporting __rust_alloc_error_handler_should_panic more than once.
Exporting `__rust_alloc_error_handler_should_panic` multiple times causes `ld.gold` to balk with: `error: version script assignment of to symbol __rust_alloc_error_handler_should_panic failed: symbol not defined`
Specifically this breaks builds of 1.70.0 and newer on DragonFly and YoctoProject with `ld.gold`. Builds with `ld.bfd` and `lld` should be unaffected.
http://errors.yoctoproject.org/Errors/Details/708194/
On native builds `llvm-config` picks up `zlib` and this gets pased into
the rust build tools, but on cross builds `llvm-config` is explicitly
ignored as it contains information for the host system and cannot be
trusted to be accurate for the target system.
Both DragonFly and Solaris contain `zlib` in the base system, so this is
both a safe assumption and required for a successful cross build unless
`zlib` support is disabled in LLVM.
This is more or less in the same vein as #75713 and #75655.
Fix#90546 by filtering out global value function pointer types from the
type tests, and adding the LowerTypeTests pass to the rustc LTO
optimization pipelines.
The compiler should emit a more specific error when the `#[macro_export]`
attribute is present on a decl macro, instead of silently ignoring it.
This commit adds the required error message in rustc_passes/messages.ftl,
as well as a note. A new variant is added to the `errors::MacroExport`
enum, specifically for the case where the attribute is added to a macro
2.0.
Rollup of 9 pull requests
Successful merges:
- #113568 (Fix spurious test failure with `panic=abort`)
- #114196 (Bubble up nested goals from equation in `predicates_for_object_candidate`)
- #114485 (Add trait decls to SMIR)
- #114495 (Set max_atomic_width for AVR to 16)
- #114496 (Set max_atomic_width for sparc-unknown-linux-gnu to 32)
- #114510 (llvm-wrapper: adapt for LLVM API changes)
- #114562 (stabilize abi_thiscall)
- #114570 ([miri][typo] Fix a typo in a vector_block comment.)
- #114573 (CI: do not hide error logs in a group)
r? `@ghost`
`@rustbot` modify labels: rollup
Bubble up nested goals from equation in `predicates_for_object_candidate`
This used to be needed for https://github.com/rust-lang/rust/pull/114036#discussion_r1273987510, but since it's no longer, I'm opening this as a separate PR. This also fixes one ICEing UI test: (`tests/ui/unboxed-closures/issue-53448.rs`)
r? `@lcnr`
Make `unconditional_recursion` warning detect recursive drops
Closes#55388
Also closes#50049 unless we want to keep it for the second example which this PR does not solve, but I think it is better to track that work in #57965.
r? `@oli-obk` since you are the mentor for #55388
Unresolved questions:
- [x] There are two false positives that must be fixed before merging (see diff). I suspect the best way to solve them is to perform analysis after drop elaboration instead of before, as now, but I have not explored that any further yet. Could that be an option? **Answer:** Yes, that solved the problem.
`@rustbot` label +T-compiler +C-enhancement +A-lint
Add a new `compare_bytes` intrinsic instead of calling `memcmp` directly
As discussed in #113435, this lets the backends be the place that can have the "don't call the function if n == 0" logic, if it's needed for the target. (I didn't actually *add* those checks, though, since as I understood it we didn't actually need them on known targets?)
Doing this also let me make it `const` (unstable), which I don't think `extern "C" fn memcmp` can be.
cc `@RalfJung` `@Amanieu`
Rollup of 6 pull requests
Successful merges:
- #114535 (bump schannel, miow to drop windows-sys 0.42)
- #114542 (interpret: use ConstPropNonsense for more const-prop induced issues)
- #114543 (add tests for some fixed ConstProp ICEs)
- #114550 (Generate better function argument names in global_allocator expansion)
- #114556 (Issue numbers are enforced on active features; remove FIXME)
- #114558 (Remove FIXME about NLL diagnostic that is already improved)
Failed merges:
- #114485 (Add trait decls to SMIR)
r? `@ghost`
`@rustbot` modify labels: rollup
Issue numbers are enforced on active features; remove FIXME
Since https://github.com/rust-lang/rust/pull/51090 tidy enforces that active features have an issue number, so remove the FIXME.
This PR is part of #44366 which is E-help-wanted.
Steal MIR for CTFE when possible.
Some bodies, like constants, have CTFE MIR but no optimized MIR.
In that case, have `mir_for_ctfe` steal the MIR instead of cloning it.
Add documentation to has_deref
Documentation of `has_deref` needed some polish to be more clear about where it should be used and what's it's purpose.
cc https://github.com/rust-lang/rust/issues/114401
r? `@RalfJung`
Consolidate opaque ty and async fn lowering code
The codepaths for lowering "regular" opaques and async fn were almost identical, modulo some bookkeeping that seemed pretty easy to consolidate.
r? `@cjgillot`
Also ICE when goals go from Ok to Err in new solver
We were just using `?` here, silently downgrading the goal's response from (presumably) maybe to error -- that seems concerning, since this whole check is for detecting goal instability 😅
r? `@lcnr` or `@BoxyUwU`
Avoid invalid NaN lint machine-applicable suggestion in const context
This PR removes the machine-applicable suggestion in const context for the `invalid_nan_comparision` lint ~~and replace it with a simple help~~.
Fixes https://github.com/rust-lang/rust/issues/114471
Fix missing dependency file with `-Zunpretty`
This PR force the `output_filenames` to be run ~~in every early exits like~~ when using `-Zunpretty`, so to respect the `dep-info` flag.
Fixes https://github.com/rust-lang/rust/issues/112898
r? `@oli-obk`
Resolve visibility paths as modules not as types.
Asking for a resolution with `opt_ns = Some(TypeNS)` allows path resolution to look for type-relative paths, leaving unresolved segments behind. However, for visibility paths we really need to look for a module, so we need to pass `opt_ns = None`.
Fixes https://github.com/rust-lang/rust/issues/109146
r? `@petrochenkov`
Do not run ConstProp on mir_for_ctfe.
This pass does not seem to be useful any more. The const-prop lints are now run by `tcx.mir_drops_elaborated_and_const_checked`, and the const-prop opt should never emit any diagnostic.
Convert builtin "global" late lints to run per module
The compiler currently has 4 non-incremental lints:
1. `clashing_extern_declarations`;
2. `missing_debug_implementations`;
3. ~`unnameable_test_items`;~ changed by https://github.com/rust-lang/rust/pull/114414
4. `missing_docs`.
Non-incremental lints get reexecuted for each compilation, which is slow. Moreover, those lints are allow-by-default, so run for nothing most of the time. This PR attempts to make them more incremental-friendly.
`clashing_extern_declarations` is moved to a standalone query.
`missing_debug_implementation` can use `non_blanket_impls_for_ty` instead of recomputing it.
`missing_docs` is harder as it needs to track if there is a `doc(hidden)` module surrounding. I hack around this using the lint level engine. That's easy to implement and allows to re-enable the lint for a re-exported module, while a more proper solution would reuse the same device as `unnameable_test_items`.
Rollup of 5 pull requests
Successful merges:
- #114287 (update overflow handling in the new trait solver)
- #114475 (Migrate GUI colors test to original CSS color format)
- #114482 (Fix ui-fulldeps missing the `internal_features` lint on stage 0)
- #114490 (Fix a typo in the error reporting for sealed traits.)
- #114491 (Rename issue #114423 test files to include context)
r? `@ghost`
`@rustbot` modify labels: rollup
update overflow handling in the new trait solver
implements https://hackmd.io/QY0dfEOgSNWwU4oiGnVRLw?view. I want to clean up this doc and add it to the rustc-dev-guide, but I think this PR is ready for merge as is, even without the dev-guide entry.
r? `@compiler-errors`
Re-enable atomic loads and stores for all RISC-V targets
This roughly reverts PR https://github.com/rust-lang/rust/pull/66548
Atomic "CAS" are still disabled for targets without the *“A” Standard Extension for Atomic Instructions*. However this extension only adds instructions for operations more complex than simple loads and stores, which are always atomic when aligned.
In the [Unprivileged Spec v. 20191213](https://riscv.org/technical/specifications/) section 2.6 *Load and Store Instructions* of chapter 2 *RV32I Base Integer Instruction Set* (emphasis mine):
> Even when misaligned loads and stores complete successfully, these accesses might run extremely slowly depending on the implementation (e.g., when implemented via an invisible trap). Further-more, whereas **naturally aligned loads and stores are guaranteed to execute atomically**, misaligned loads and stores might not, and hence require additional synchronization to ensure atomicity.
Unfortunately PR https://github.com/rust-lang/rust/pull/66548 did not provide much details on the bug that motivated it, but https://github.com/rust-lang/rust/issues/66240 and https://github.com/rust-lang/rust/issues/85736 appear related and happen with targets that do have the A extension.
Add separate feature gate for async fn track caller
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Improve spans for indexing expressions
fixes#114388
Indexing is similar to method calls in having an arbitrary left-hand-side and then something on the right, which is the main part of the expression. Method calls already have a span for that right part, but indexing does not. This means that long method chains that use indexing have really bad spans, especially when the indexing panics and that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an extra span which is then put into the `fn_span` field in THIR.
r? compiler-errors
[rustc_span][perf] Remove unnecessary string joins and allocs.
Comparing vectors of string parts yields the same result but avoids unnecessary `join` and potential allocation for resulting `String`. This code is cold so it's unlikely to have any measurable impact, but considering but since it's also simpler, why not? :)
Lots of tiny incremental simplifications of `EmitterWriter` internals
ignore the first commit, it's https://github.com/rust-lang/rust/pull/114088 squashed and rebased, but it's needed to use to use `derive_setters`, as they need a newer `syn` version.
Then this PR starts out with removing many arguments that are almost always defaulted to `None` or `false` and replace them with builder methods that can set these fields in the few cases that want to set them.
After that it's one commit after the other that removes or merges things until everything becomes some very simple trait objects
```
error[E0599]: no method named `x` found for struct `Pin<&S>` in the current scope
--> $DIR/arbitrary_self_type_mut_difference.rs:11:18
|
LL | Pin::new(&S).x();
| ^ help: there is a method with a similar name: `y`
|
note: method is available for `Pin<&mut S>`
--> $DIR/arbitrary_self_type_mut_difference.rs:6:5
|
LL | fn x(self: Pin<&mut Self>) {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Related to #57994, as one of the presented cases can lead to code like
this.
This deduplicates some logic and makes it easier to follow what wrappers
are produced. In the future it may allow moving the code to determine
which wrappers to create to cg_ssa.
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
Rework upcasting confirmation to support upcasting to fewer projections in target bounds
This PR implements a modified trait upcasting algorithm that is resilient to changes in the number of associated types in the bounds of the source and target trait objects.
It does this by equating each bound of the target trait ref individually against the bounds of the source trait ref, rather than doing them all together by constructing a new trait object.
#### The new way we do trait upcasting confirmation
1. Equate the target trait object's principal trait ref with one of the supertraits of the source trait object's principal.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2509-L2525)
2. Make sure that every auto trait in the *target* trait object is present in the source trait ref's bounds.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2559-L2562)
3. For each projection in the *target* trait object, make sure there is exactly one projection that equates with it in the source trait ref's bound. If there is more than one, bail with ambiguity.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2526-L2557)
* Since there may be more than one that applies, we probe first to check that there is exactly one, then we equate it outside of a probe once we know that it's unique.
4. Make sure the lifetime of the source trait object outlives the lifetime of the target.
<details>
<summary>Meanwhile, this is how we used to do upcasting:</summary>
1. For each supertrait of the source trait object, take that supertrait, append the source object's projection bounds, and the *target* trait object's auto trait bounds, and make this into a new object type:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L915-L929)
2. Then equate it with the target trait object:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L936)
This will be a type mismatch if the target trait object has fewer projection bounds, since we compare the bounds structurally in relate:
d12c6e947c/compiler/rustc_middle/src/ty/relate.rs (L696-L698)
</details>
Fixes#114035
Also fixes#114113, because I added a normalize call in the old solver.
r? types
resolve before canonicalization in new solver, ICE if unresolved
Fold the values with a resolver before canonicalization instead of making it happen within canonicalization.
This allows us to filter trivial region constraints from the external constraints.
r? ``@lcnr``
Perform OpaqueCast field projection on HIR, too.
fixes#105819
This is necessary for closure captures in 2021 edition, as they capture individual fields, not the full mentioned variables. So it may try to capture a field of an opaque (because the hidden type is known to be something with a field).
See https://github.com/rust-lang/rust/pull/99806 for when and why we added OpaqueCast to MIR.
cg_llvm: stop identifying ADTs in LLVM IR
This is an extension of https://github.com/rust-lang/rust/pull/94107. It may be a minor perf win.
Fixes#96242.
Now that we use opaque pointers, ADTs can no longer be recursive, so we
do not need to name them. Previously, this would be necessary if you had
a struct like
```rs
struct Foo(Box<Foo>, u64, u64);
```
which would be represented with something like
```ll
%Foo = type { %Foo*, i64, i64 }
```
which is now just
```ll
{ ptr, i64, i64 }
```
r? `@tmiasko`
Enable tests on rustc_codegen_ssa
This enables unittests in rustc_codegen_ssa. There are some tests, primarily in [`back/rpath/tests.rs`](https://github.com/rust-lang/rust/blob/HEAD/compiler/rustc_codegen_ssa/src/back/rpath/tests.rs) that haven't ever been running since the unittests are disabled. From what I can tell, this was just a consequence of how things evolved. When testing was initially added in https://github.com/rust-lang/rust/pull/33282, `librustc_trans` had test=false because it didn't have any tests. `rustc_codegen_ssa` eventually split off from that (https://github.com/rust-lang/rust/pull/55627), and the rpath module eventually got merged in too (from `librustc_back` where it used to live). That migration didn't enable the tests.
This also includes some fluent diagnostic tests, though I'm not sure what exactly they are testing.
Forbid old-style `simd_shuffleN` intrinsics
Don't merge before https://github.com/rust-lang/packed_simd/pull/350 has made its way to crates.io
We used to support specifying the lane length of simd_shuffle ops by attaching the lane length to the name of the intrinsic (like `simd_shuffle16`). After this PR, you cannot do that anymore, and need to instead either rely on inference of the `idx` argument type or specify it as `simd_shuffle::<_, [u32; 16], _>`.
r? `@workingjubilee`
Only unpack tupled args in inliner if we expect args to be unpacked
`"rust-call"` is a strange function abi. sometimes, it expects the arguments to be unpacked by the caller and passed as individual args (closure bodies), and sometimes it does not (user functions annotated with the `"rust-call"` abi).
make sure the mir inliner respects this difference when checking that arguments are compatible, and doesn't try to ICE when we call a `extern "rust-call"` function in a generic context.
fixes#110829
Add `internal_features` lint
Implements https://github.com/rust-lang/compiler-team/issues/596
Also requires some more test blessing for codegen tests etc
`@jyn514` had the idea of just `allow`ing the lint by default in the test suite. I'm not sure whether this is a good idea, but it's definitely one worth considering. Additional input encouraged.
const validation: point at where we found a pointer but expected an integer
Instead of validation just printing "unable to turn pointer into bytes", make this a regular validation error that says where in the value the bad pointer was found. Also distinguish "expected integer, got pointer" from "expected pointer, got partial pointer or mix of pointers".
To avoid duplicating things too much I refactored the diagnostics for validity a bit, so that "got uninit, expected X" and "got pointer, expected X" can share the "X" part. Also all the errors emitted for validation are now grouped under `const_eval_validation` so that they are in a single group in the ftl file.
r? `@oli-obk`
parser: more friendly hints for handling `async move` in the 2015 edition
Fixes#114219
An error is emitted when encountering an async move block in the 2015 edition.
Another appropriate location to raise an error is after executing [let path = this.parse_path(PathStyle::Expr)?](https://github.com/rust-lang/rust/blob/master/compiler/rustc_parse/src/parser/stmt.rs#L152), but it seems somewhat premature to invoke `create_err` at that stage.
Expand, rename and improve `incorrect_fn_null_checks` lint
This PR,
- firstly, expand the lint by now linting on references
- secondly, it renames the lint `incorrect_fn_null_checks` -> `useless_ptr_null_checks`
- and thirdly it improves the lint by catching `ptr::from_mut`, `ptr::from_ref`, as well as `<*mut _>::cast` and `<*const _>::cast_mut`
Fixes https://github.com/rust-lang/rust/issues/113601
cc ```@est31```
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
Infer type in irrefutable slice patterns with fixed length as array
Fixes https://github.com/rust-lang/rust/issues/76342
In irrefutable slice patterns with a fixed length, we can infer the type as an array type. We now choose to prefer some implementations over others, e.g. in:
```
struct Zeroes;
const ARR: [usize; 2] = [0; 2];
const ARR2: [usize; 2] = [2; 2];
impl Into<&'static [usize; 2]> for Zeroes {
fn into(self) -> &'static [usize; 2] {
&ARR
}
}
impl Into<&'static [usize]> for Zeroes {
fn into(self) -> &'static [usize] {
&ARR2
}
}
fn main() {
let &[a, b] = Zeroes.into();
}
```
We now prefer the impl candidate `impl Into<&'static [usize; 2]> for Zeroes`, it's not entirely clear to me that this is correct, but given that the slice impl would require a type annotation anyway, this doesn't seem unreasonable.
r? `@lcnr`
Fix suggestion spans for expr from macro expansions
### Issue #112007: rustc shows expanded `writeln!` macro in code suggestion
#### Before This PR
```
help: consider using a semicolon here
|
6 | };
| +
help: you might have meant to return this value
--> C:\Users\hayle\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib/rustlib/src/rust\library\core\src\macros\mod.rs:557:9
|
55| return $dst.write_fmt($crate::format_args_nl!($($arg)*));
| ++++++ +
```
#### After This PR
```
help: consider using a semicolon here
|
LL | };
| +
help: you might have meant to return this value
|
LL | return writeln!(w, "but not here");
| ++++++ +
```
### Issue #110017: `format!` `.into()` suggestion deletes the `format` macro
#### Before This PR
```
help: call `Into::into` on this expression to convert `String` into `Box<dyn std::error::Error>`
--> /Users/eric/.rustup/toolchains/nightly-aarch64-apple-darwin/lib/rustlib/src/rust/library/alloc/src/macros.rs:121:12
|
12| res.into()
| +++++++
```
#### After This PR
```
help: call `Into::into` on this expression to convert `String` into `Box<dyn std::error::Error>`
|
LL | Err(format!("error: {x}").into())
| +++++++
```
---
Fixes#112007.
Fixes#110017.
Miscellaneous HIR typeck nits
Remove some check functions that only have one usage
Also remove `Expectation::IsLast`, which was both undocumented, and was also made redundant by my cleanup/fix in #103987😸
Suggest `x build library` for a custom toolchain that fails to load `core`
Fixes#113222
The nicer suggestion for dev-channel won't be emitted if `-Z ui-testing` enabled. IMO, this is acceptable for now.
It's the same as `Delimiter`, minus the `Invisible` variant. I'm
generally in favour of using types to make impossible states
unrepresentable, but this one feels very low-value, and the conversions
between the two types are annoying and confusing.
Look at the change in `src/tools/rustfmt/src/expr.rs` for an example:
the old code converted from `MacDelimiter` to `Delimiter` and back
again, for no good reason. This suggests the author was confused about
the types.
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Exporting `__rust_alloc_error_handler_should_panic` multiple times
causes ld.gold to balk with: `error: version script assignment of to
symbol __rust_alloc_error_handler_should_panic failed: symbol not
defined`
Specifically this breaks builds on DragonFly and YoctoProject with
ld.gold. Builds with ld.bfd should be unaffected.
Rollup of 5 pull requests
Successful merges:
- #114079 (Use `upvar_tys` in more places, make it return a list)
- #114166 (Add regression test for resolving `--extern libc=test.rlib`)
- #114321 (get auto traits for parallel rustc)
- #114335 (fix and extend ptr_comparison test)
- #114347 (x.py print more detailed format files and untracked files count)
r? `@ghost`
`@rustbot` modify labels: rollup
Improve `invalid_reference_casting` lint
This PR is a follow-up to https://github.com/rust-lang/rust/pull/111567 and https://github.com/rust-lang/rust/pull/113422.
This PR does multiple things:
- First it adds support for deferred de-reference, the goal is to support code like this, where the casting and de-reference are not done on the same expression
```rust
let myself = self as *const Self as *mut Self;
*myself = Self::Ready(value);
```
- Second it does not lint anymore on SB/TB UB code by only checking assignments (`=`, `+=`, ...) and creation of mutable references `&mut *`
- Thirdly it greatly improves the diagnostics in particular for cast from `&mut` to `&mut` or assignments
- ~~And lastly it renames the lint from `cast_ref_to_mut` to `invalid_reference_casting` which is more consistent with the ["rules"](https://github.com/rust-lang/rust-clippy/issues/2845) and also more consistent with what the lint checks~~ *https://github.com/rust-lang/rust/pull/113422*
This PR is best reviewed commit by commit.
r? compiler
Miri: fix error on dangling pointer inbounds offset
We used to claim that the pointer was "dereferenced", but that is just not true.
Can be reviewed commit-by-commit. The first commit is an unrelated rename that didn't seem worth splitting into its own PR.
r? `@oli-obk`
coverage: Consolidate FFI types into one module
Coverage FFI types were historically split across two modules, because some of them were needed by code in `rustc_codegen_ssa`.
Now that all of the coverage codegen code has been moved into `rustc_codegen_llvm` (#113355), it's possible to move all of the FFI types into a single module, making it easier to see all of them at once.
---
This PR only moves code and adjusts imports; there should be no functional changes.
Coverage FFI types were historically split across two modules, because some of
them were needed by code in `rustc_codegen_ssa`.
Now that all of the coverage codegen code has been moved into
`rustc_codegen_llvm` (#113355), it's possible to move all of the FFI types into
a single module, making it easier to see all of them at once.
Rollup of 6 pull requests
Successful merges:
- #114178 (Account for macros when suggesting a new let binding)
- #114199 (Don't unsize coerce infer vars in select in new solver)
- #114301 (Don't check unnecessarily that impl trait is RPIT)
- #114314 (Tweaks to `adt_sized_constraint`)
- #114322 (Fix invalid slice coercion suggestion reported in turbofish)
- #114340 ([rustc_attr][nit] Replace `filter` + `is_some` with `map_or`.)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix invalid slice coercion suggestion reported in turbofish
This PR fixes the invalid slice coercion suggestion reported in turbofish and inferred generics by not emitting them.
Fixes https://github.com/rust-lang/rust/issues/110063
Don't check unnecessarily that impl trait is RPIT
We have this random `return_type_impl_trait` function to detect if a function returns an RPIT which is used in outlives suggestions, but removing it doesn't actually change any diagnostics. Let's just remove it.
Also, suppress a spurious outlives error from a ReError.
Fixes#114274
Account for macros when suggesting a new let binding
Provide a structured suggestion when the expression comes from a macro expansion:
```
error[E0716]: temporary value dropped while borrowed
--> $DIR/borrowck-let-suggestion.rs:2:17
|
LL | let mut x = vec![1].iter();
| ^^^^^^^ - temporary value is freed at the end of this statement
| |
| creates a temporary value which is freed while still in use
LL |
LL | x.use_mut();
| - borrow later used here
|
= note: this error originates in the macro `vec` (in Nightly builds, run with -Z macro-backtrace for more info)
help: consider using a `let` binding to create a longer lived value
|
LL ~ let binding = vec![1];
LL ~ let mut x = binding.iter();
|
```
WASI threads, implementation of wasm32-wasi-preview1-threads target
This PR adds a target proposed in https://github.com/rust-lang/compiler-team/issues/574 by `@abrown` and implementation of `std:🧵:spawn` for the target `wasm32-wasi-preview1-threads`
### Tier 3 Target Policy
As tier 3 targets, the new targets are required to adhere to [the tier 3 target policy](https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-3-target-policy) requirements. This section quotes each requirement in entirety and describes how they are met.
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
See [src/doc/rustc/src/platform-support/wasm32-wasi-preview1-threads.md](https://github.com/rust-lang/rust/pull/112922/files#diff-a48ee9d94f13e12be24eadd08eb47b479c153c340eeea4ef22276d876dfd4f3e).
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
The target is using the same name for $ARCH=wasm32 and $OS=wasi as existing Rust targets. The suffix `preview1` introduced to accurately set expectations because eventually this target will be deprecated and follows [MCP 607](https://github.com/rust-lang/compiler-team/issues/607). The suffix `threads` indicates that it’s an extension that enables threads to the existing target and it follows [MCP 574](https://github.com/rust-lang/compiler-team/issues/574) which describes the rationale behind introducing a separate target.
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
This PR does not introduce any new dependency.
The new target doesn’t support building host tools.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
The full standard library is available for this target as it’s an extension to an existing target that has already supported it.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Only manual test running is supported at the moment with some tweaks in the test runner codebase. For build and running tests see [src/doc/rustc/src/platform-support/wasm32-wasi-preview1-threads.md](https://github.com/rust-lang/rust/pull/112922/files#diff-a48ee9d94f13e12be24eadd08eb47b479c153c340eeea4ef22276d876dfd4f3e).
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> - This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I acknowledge these requirements and intend to ensure they are met.
Similar to the last commit, it's more of a `Parser`-level concern than a
`TokenCursor`-level concern. And the struct size reductions are nice.
After this change, `TokenCursor` is as minimal as possible (two fields
and two methods) which is nice.
It's more of a `Parser`-level concern than a `TokenCursor`-level
concern. Also, `num_bump_calls` is a more accurate name, because it's
incremented in `Parser::bump`.
Comparing vectors of string parts yields the same result but avoids
unnecessary `join` and potential allocation for resulting `String`.
This code is cold so it's unlikely to have any measurable impact, but
considering but since it's also simpler, why not? :)
Filter out short-lived LLVM diagnostics before they reach the rustc handler
During profiling I saw remark passes being unconditionally enabled: for example `Machine Optimization Remark Emitter`.
The diagnostic remarks enabled by default are [from missed optimizations and opt analyses](https://github.com/rust-lang/rust/pull/113339#discussion_r1259480303). They are created by LLVM, passed to the diagnostic handler on the C++ side, emitted to rust, where they are unpacked, C++ strings are converted to rust, etc.
Then they are discarded in the vast majority of the time (i.e. unless some kind of `-Cremark` has enabled some of these passes' output to be printed).
These unneeded allocations are very short-lived, basically only lasting between the LLVM pass emitting them and the rust handler where they are discarded. So it doesn't hugely impact max-rss, and is only a slight reduction in instruction count (cachegrind reports a reduction between 0.3% and 0.5%) _on linux_. It's possible that targets without `jemalloc` or with a worse allocator, may optimize these less.
It is however significant in the aggregate, looking at the total number of allocated bytes:
- it's the biggest source of allocations according to dhat, on the benchmarks I've tried e.g. `syn` or `cargo`
- allocations on `syn` are reduced by 440MB, 17% (from 2440722647 bytes total, to 2030461328 bytes)
- allocations on `cargo` are reduced by 6.6GB, 19% (from 35371886402 bytes total, to 28723987743 bytes)
Some of these diagnostics objects [are allocated in LLVM](https://github.com/rust-lang/rust/pull/113339#discussion_r1252387484) *before* they're emitted to our diagnostic handler, where they'll be filtered out. So we could remove those in the future, but that will require changing a few LLVM call-sites upstream, so I left a FIXME.
Move doc comment desugaring out of `TokenCursor`.
It's awkward that `TokenCursor` sometimes desugars doc comments on the fly, but usually doesn't.
r? `@petrochenkov`
now that remarks are filtered before cg_llvm's diagnostic handler callback
is called, we don't need to do the filtering post c++-to-rust conversion
of the diagnostic.
this will eliminate many short-lived allocations (e.g. 20% of the memory used
building cargo) when unpacking the diagnostic and converting its various
C++ strings into rust strings, just to be filtered out most of the time.
cleanup: remove pointee types
This can't be merged until the oldest LLVM version we support uses opaque pointers, which will be the case after #114148. (Also note `-Cllvm-args="-opaque-pointers=0"` can technically be used in LLVM 15, though I don't think we should support that configuration.)
I initially hoped this would provide some minor perf win, but in https://github.com/rust-lang/rust/pull/105412#issuecomment-1341224450 it had very little impact, so this is only valuable as a cleanup.
As a followup, this will enable #96242 to be resolved.
r? `@ghost`
`@rustbot` label S-blocked
Since all output characters taken from `BASE_64` are valid UTF8 chars
there is no need to waste cycles on validation.
Even though it's obviously a perf win, I've also used a [benchmark](https://gist.github.com/ttsugriy/e1e63c07927d8f31e71695a9c617bbf3)
on M1 MacBook Air with following results:
```
Running benches/base_n_benchmark.rs (target/release/deps/base_n_benchmark-825fe5895b5c2693)
push_str/old time: [14.670 µs 14.852 µs 15.074 µs]
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
4 (4.00%) high mild
7 (7.00%) high severe
push_str/new time: [12.573 µs 12.674 µs 12.801 µs]
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
7 (7.00%) high mild
4 (4.00%) high severe
```
[rustc_data_structures][perf] Simplify base_n::push_str.
This minor change removes the need to reverse resulting digits. Since reverse is O(|digit_num|) but bounded by 128, it's unlikely to be a noticeable in practice. At the same time, this code is also a 1 line shorter, so combined with tiny perf win, why not?
I ran https://gist.github.com/ttsugriy/ed14860ef597ab315d4129d5f8adb191 on M1 macbook air and got a small improvement
```
Running benches/base_n_benchmark.rs (target/release/deps/base_n_benchmark-825fe5895b5c2693)
push_str/old time: [14.180 µs 14.313 µs 14.462 µs]
Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
4 (4.00%) high mild
1 (1.00%) high severe
push_str/new time: [13.741 µs 13.839 µs 13.973 µs]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
```
Improve diagnostic for wrong borrow on binary operations
This PR improves the diagnostic for wrong borrow on binary operations by suggesting to reborrow on appropriate expressions.
```diff
+ = note: an implementation for `&Foo * &Foo` exist
+ help: consider reborrowing both sides
+ |
+ LL | let _ = &*ref_mut_foo * &*ref_mut_foo;
+ | ++ ++
```
Fixes https://github.com/rust-lang/rust/issues/109352
coverage: Replace `ExpressionOperandId` with enum `Operand`
*This is one step in my larger coverage refactoring ambitions described at <https://github.com/rust-lang/compiler-team/issues/645>.*
LLVM coverage has a concept of “mapping expressions” that allow a span's execution count to be computed as a simple arithmetic expression over other counters/expressions, instead of requiring a dedicated physical counter for every control-flow branch.
These expressions have an operator (`+` or `-`) and two operands. Operands are currently represented as `ExpressionOperandId`, which wraps a `u32` with the following semantics:
- 0 represents a special counter that always has a value of zero
- Values ascending from 1 represent counter IDs
- Values descending from `u32::MAX` represent the IDs of other expressions
---
This change replaces that whole `ExpressionOperandId` scheme with a simple enum that explicitly distinguishes between the three cases.
This lets us remove a lot of fiddly code for dealing with the different operand kinds:
- Previously it was only possible to distinguish between counter-ID operands and expression-ID operands by comparing the operand ID with the total number of counters in a function. This is unnecessary now that the enum distinguishes them explicitly.
- There's no need for expression IDs to descend from `u32::MAX` and then get translated into zero-based indices in certain places. Now that they ascend from zero, they can be used as indices directly.
- There's no need to reserve ID number 0 for the special zero operand, since it can just have its own variant in the enum, so counter IDs can count up from 0.
(Making counter IDs ascend from 0 also lets us fix an off-by-one error in the query for counting the total number of counters, which would cause LLVM to emit an extra unused counter for every instrumented function.)
---
This PR may be easiest to review as individual patches, since that breaks it up into clearly distinct parts:
- Replace a `u32` wrapper with an explicit enum, without changing the semantics of the underlying IDs being stored.
- Change the numbering scheme used by `Operand::Expression` to make expression IDs ascend from 0 (instead of descending from `u32::MAX`).
- Change the numbering scheme used by `Operand::Counter` to make counter IDs ascend from 0 (instead of ascending from 1).
[rustc_data_structures] Simplify SortedMap::insert.
It looks like current usage of `swap` is aimed at achieving what `std::mem::replace` does but more concisely and idiomatically.
Operand types are now tracked explicitly, so there is no need to reserve ID 0
for the special always-zero counter.
As part of the renumbering, this change fixes an off-by-one error in the way
counters were counted by the `coverageinfo` query. As a result, functions
should now have exactly the number of counters they actually need, instead of
always having an extra counter that is never used.
Operand types are now tracked explicitly, so there is no need for expression
IDs to avoid counter IDs by descending from `u32::MAX`. Instead they can just
count up from 0, and can be used directly as indices when necessary.
Because the three kinds of operand are now distinguished explicitly, we no
longer need fiddly code to disambiguate counter IDs and expression IDs based on
the total number of counters/expressions in a function.
This does increase the size of operands from 4 bytes to 8 bytes, but that
shouldn't be a big deal since they are mostly stored inside boxed structures,
and the current coverage code is not particularly size-optimized anyway.
The actual motivation here is to prevent `rustfmt` from suddenly reformatting
these enum variants onto a single line, when they become slightly shorter in
the future.
But there's no harm in adding some helpful documentation at the same time.
Detect trait upcasting through struct tail unsizing in new solver select
Oops, we were able to hide trait upcasting behind a parent unsize goal that evaluated to `Certainty::Yes`. Let's do rematching for `Certainty::Yes` unsize goals with `BuiltinImplSource::Misc` sources (corresponding to all of the other unsize rules) to make sure we end up selecting any nested goals which may be satisfied via `BuiltinImplSource::TraitUpcasting` or `::TupleUnsizing`.
r? ``@lcnr``
Update lexer emoji diagnostics to Unicode 15.0
This replaces the `unic-emoji-char` dep tree (which hasn't been updated for a while) with `unicode-properties` crate which contains Unicode 15.0 data.
Improves diagnostics for added emoji characters in recent years. (See tests).
cc #101840
cc ``@Manishearth``
This minor change removes the need to reverse resulting digits.
Since reverse is O(|digit_num|) but bounded by 128, it's unlikely
to be a noticeable in practice. At the same time, this code is
also a 1 line shorter, so combined with tiny perf win, why not?
I ran https://gist.github.com/ttsugriy/ed14860ef597ab315d4129d5f8adb191
on M1 macbook air and got a small improvement
```
Running benches/base_n_benchmark.rs (target/release/deps/base_n_benchmark-825fe5895b5c2693)
push_str/old time: [14.180 µs 14.313 µs 14.462 µs]
Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
4 (4.00%) high mild
1 (1.00%) high severe
push_str/new time: [13.741 µs 13.839 µs 13.973 µs]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
```
Map RPITIT's opaque type bounds back from projections to opaques
An RPITIT in a program's AST is eventually translated into both a projection GAT and an opaque. The opaque is used for default trait methods, like:
```
trait Foo {
fn bar() -> impl Sized { 0i32 }
}
```
The item bounds for both the projection and opaque are identical, and both have a *projection* self ty. This is mostly okay, since we can normalize this projection within the default trait method body to the opaque, but it does two things:
1. it leads to bugs in places where we don't normalize item bounds, like `deduce_future_output_from_obligations`
2. it leads to extra match arms that are both suspicious looking and also easy to miss
This PR maps the opaque type bounds of the RPITIT's *opaque* back to the opaque's self type to avoid this quirk. Then we can fix the UI test for #108304 (1.) and also remove a bunch of match arms (2.).
Fixes#108304
r? `@spastorino`
Check lazy type aliases for well-formedness
Previously we didn't check if `T: Mul` holds given lazy `type Alias<T> = <T as Mul>::Output;`.
Now we do. It only makes sense.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
This function has some shared code for the thin LTO and fat LTO cases,
but those cases have so little in common that it's actually clearer to
treat them fully separately.
PR #112946 tweaked the naming of LLVM threads, but messed things up
slightly, resulting in threads on Windows having names like `optimize
module {} regex.f10ba03eb5ec7975-cgu.0`.
This commit removes the extraneous `{} `.
The main loop has a *very* complex condition, which includes two
mentions of `codegen_state`. The body of the loop then immediately
switches on the `codegen_state`.
I find it easier to understand if it's a `loop` and we check for exit
conditions after switching on `codegen_state`. We end up with a tiny bit
of code duplication, but it's clear that (a) we never exit in the
`Ongoing` case, (b) we exit in the `Completed` state only if several
things are true (and there's interaction with LTO there), and (c) we
exit in the `Aborted` state if a couple of things are true. Also, the
exit conditions are all simple conjunctions.
This loop condition involves `codegen_state`, `work_items`, and
`running_with_own_token`. But the body of the loop cannot modify
`codegen_state`, so repeatedly checking it is unnecessary.
`CodegenContext` is immutable except for the `worker` field - we clone
`CodegenContext` in multiple places, changing the `worker` field each
time. It's simpler to move the `worker` field out of `CodegenContext`.
It took me some time to understand how the main thread can lend a
jobserver token to an LLVM thread. This commit renames a couple of
things to make it clearer.
- Rename the `LLVMing` variant as `Lending`, because that is a clearer
description of what is happening.
- Rename `running` as `running_with_own_token`, which makes it clearer
that there might be one additional LLVM thread running (with a loaned
token). Also add a comment to its definition.
And rename the `Compiled` variant as `Finished`, because that name makes
it clearer there is nothing left to do, contrasting nicely with the
`Needs*` variants.
`TokenCursor` currently does doc comment desugaring on the fly, if the
`desugar_doc_comment` field is set. This requires also modifying the
token stream on the fly with `replace_prev_and_rewind`.
This commit moves the doc comment desugaring out of `TokenCursor`, by
introducing a new `TokenStream::desugar_doc_comment` method. This
separation of desugaring and iterating makes the code nicer.
Don't install default projection bound for return-position `impl Trait` in trait methods with no body
This ensures that we never try to project to an opaque type in a trait method that has no body to infer its hidden type, which means we never later call `type_of` on that opaque. This is because opaque types try to reveal their hidden type when proving auto traits.
I thought about this a lot, and I think this is a fix that's less likely to introduce other strange downstream ICEs than #113461.
Fixes#113434
r? `@spastorino`
Fix invalid suggestion for mismatched types in closure arguments
This PR fixes the invalid suggestion for mismatched types in closure arguments.
The invalid suggestion came from a wrongly created span in the parser for closure arguments that don't have a type specified. Specifically, the span in this case was the last token span, but in the case of tuples, the span represented the last parenthesis instead of the whole tuple, which is fixed by taking the more accurate span of the pattern.
There is one unfortunate downside of this fix, it worsens even more the diagnostic for mismatched types in closure args without an explicit type. This happens because there is no correct span for implied inferred type. I tried also fixing this but it's a rabbit hole.
Fixes https://github.com/rust-lang/rust/issues/114180
The invalid suggestion came from a wrongly created span in `rustc_parse'
for closure arguments that didn't have a type specified. Specifically,
the span in this case was the last token span, but in the case of
tuples, the span represented the last parenthesis instead of the whole
tuple, which is fixed by taking the more accurate span of the pattern.
[rustc][data_structures] Simplify binary_search_slice.
Instead of using `binary_search_by_key`, it's possible to use `partition_point` to find the lower bound. This avoids the need to locate the leftmost matching entry separately.
It's also possible to use `partition_point` to find the upper bound, so I plan to send a separate PR for your consideration.
Now that we use opaque pointers, ADTs can no longer be recursive, so we
do not need to name them. Previously, this would be necessary if you had
a struct like
```rs
struct Foo(Box<Foo>, u64, u64);
```
which would be represented with something like
```ll
%Foo = type { %Foo*, i64, i64 }
```
which is now just
```ll
{ ptr, i64, i64 }
```
Gracefully handle ternary operator
Fixes#112578
~~May not be the best way to do this as it doesn't check for a single `:`, so it could perhaps appear even when the actual issue is just a missing semicolon. May not be the biggest deal, though?~~
Nevermind, got it working properly now ^^
Update the minimum external LLVM to 15
With this change, we'll have stable support for LLVM 15 through 17 (pending release).
For reference, the previous increase to LLVM 14 was #107573.
Refactor + improve diagnostics for `&mut T`/`T` mismatch inside Option/Result
Follow up to #114052. This also makes the diagnostics structured + translatable.
r? `@WaffleLapkin`
Rename and allow `cast_ref_to_mut` lint
This PR is a small subset of https://github.com/rust-lang/rust/pull/112431, that is the renaming of the lint (`cast_ref_to_mut` -> `invalid_reference_casting`).
BUT also temporarily change the default level of the lint from deny-by-default to allow-by-default until https://github.com/rust-lang/rust/pull/112431 is merged.
r? `@Nilstrieb`
fix(resolve): update the ambiguity glob binding as warning recursively
Fixes#47525Fixes#56593, but `issue-56593-2.rs` is not fixed to ensure backward compatibility.
Fixes#98467Fixes#105235Fixes#112713
This PR had added a field called `warn_ambiguous` in `NameBinding` which is only for back compatibly reason and used for lint.
More details: https://github.com/rust-lang/rust/pull/112743
r? `@petrochenkov`
Rollup of 7 pull requests
Successful merges:
- #113773 (Don't attempt to compute layout of type referencing error)
- #114107 (Prevent people from assigning me as a PR reviewer)
- #114124 (tests/ui/proc-macro/*: Migrate FIXMEs to check-pass)
- #114171 (Fix switch-stdout test for none unix/windows platforms)
- #114172 (Fix issue_15149 test for the SGX target)
- #114173 (btree/map.rs: remove "Basic usage" text)
- #114174 (doc: replace wrong punctuation mark)
r? `@ghost`
`@rustbot` modify labels: rollup
Rollup of 7 pull requests
Successful merges:
- #114099 (privacy: no nominal visibility for assoc fns )
- #114128 (When flushing delayed span bugs, write to the ICE dump file even if it doesn't exist)
- #114138 (Adjust spans correctly for fn -> method suggestion)
- #114146 (Skip reporting item name when checking RPITIT GAT's associated type bounds hold)
- #114147 (Insert RPITITs that were shadowed by missing ADTs that resolve to [type error])
- #114155 (Replace a lazy `RefCell<Option<T>>` with `OnceCell<T>`)
- #114164 (Add regression test for `--cap-lints allow` and trait bounds warning)
r? `@ghost`
`@rustbot` modify labels: rollup
Replace a lazy `RefCell<Option<T>>` with `OnceCell<T>`
This code was using `RefCell<Option<T>>` to manually implement lazy initialization. Now that we have `OnceCell` in the standard library, we can just use that instead.
In particular, this avoids a confusing doubly-nested option, because the value being lazily computed is itself an `Option<Symbol>`.
Skip reporting item name when checking RPITIT GAT's associated type bounds hold
Doesn't really make sense to label an item that has a name that users can't really mention. Fixes#114145. Also fixes#113794.
r? `@spastorino`
privacy: no nominal visibility for assoc fns
Fixes#113860.
When `staged_api` is enabled, effective visibilities are computed earlier and this can trigger an ICE in some cases.
In particular, if a impl of a trait method has a visibility then an error will be reported for that, but when privacy invariants are being checked, the effective visibility will still be greater than the nominal visbility and that will trigger a `span_bug!`.
However, this invariant - that effective visibilites are limited to nominal visibility - doesn't make sense for associated functions.
Diagnostic namespace
This PR implements the basic infrastructure for accepting the `#[diagnostic]` attribute tool namespace as specified in https://github.com/rust-lang/rfcs/pull/3368. Note: This RFC is not merged yet, but it seems like it will be accepted soon. I open this PR early on to get feedback on the actual implementation as soon as possible. This hopefully enables getting at least the diagnostic namespace to stable rust "soon", so that crates do not need to bump their MSRV if we stabilize actual attributes in this namespace.
This PR only adds infrastructure accept attributes from this namespace, it does not add any specific attribute. Therefore the compiler will emit a lint warning for each attribute that's actually used. This namespace is added behind a feature flag, so it will be only available on a nightly compiler for now.
cc `@estebank` as they've supported me in planing, specifying and implementing this feature.
When `staged_api` is enabled, effective visibilities are computed earlier
and this can trigger an ICE in some cases.
In particular, if a impl of a trait method has a visibility then an error
will be reported for that, but when privacy invariants are being checked,
the effective visibility will still be greater than the nominal visbility
and that will trigger a `span_bug!`.
However, this invariant - that effective visibilites are limited to
nominal visibility - doesn't make sense for associated functions.
Signed-off-by: David Wood <david@davidtw.co>
Optimize `TokenKind::clone`.
`TokenKind` would impl `Copy` if it weren't for
`TokenKind::Interpolated`. This commit makes `clone` reflect that.
r? `@ghost`
Less `TokenTree` cloning
`TokenTreeCursor` has this comment on it:
```
// FIXME: Many uses of this can be replaced with by-reference iterator to avoid clones.
```
This PR completes that FIXME. It doesn't have much perf effect, but at least we now know that.
r? `@petrochenkov`
Turns out opaque types can have hidden types registered during mir validation
See the newly added test's documentation for an explanation.
fixes#114121
Restore region uniquification in the new solver 🎉
All of the bugs that were "due" to uniquification have been settled via other means (e.g. bidirectional alias-relate, param-env incompleteness, etc).
Firstly, revert the functional changes in #110180. 😸
Secondly, we need to ignore regions when considering if a goal has changed (the "has_changed" boolean returned from `evaluate_goal`) -- otherwise, because we're doing region uniquification, we may perpetually consider a goal to be changed. See the UI test I committed for an explanation.
Implement diagnostic translation for rustc-errors
This is my first PR to rustc yeah~
I'm going to implement diagnostic translation on rustc-errors crate.
This PR is WIP, the reason of opening this as draft, I want to show my code to prevent the issue caused by misunderstanding and also I have few questions.
Some error messages are processed by `pluralize!` macro which determines to use plural word or not. From now, I make two kinds of keys and combine with enum but I'm not sure is this best method to do it.
Is there any prefered method to do this? => This resolved on conversation on PR.
I'll remain to perform force-push until my first implementation looks good to me
Don't treat negative trait predicates as always knowable
We don't need this. It was added in #90104 but I don't really know why. It's not sound afaict -- negative trait predicates need the same coherence-ambiguity/orphan check rules as positive ones.
r? `@lcnr`
cc `@spastorino,` do you remember why?
Tweak CGU sorting in a couple of places.
In `base.rs`, tweak how the CGU size interleaving works. Since #113777, it's much more common to have multiple CGUs with identical sizes. With the existing code these same-sized items ended up in the opposite-to-desired order due to the stable sorting. The code now starts with a reverse sort (like is done in `partitioning.rs`) which gives the behaviour we want. This doesn't matter much for perf, but makes profiles in `samply` look more like what we expect.
In `partitioning.rs`, we can use `sort_by_key` instead of `sort_by_cached_key` because `CGU::size_estimate()` is cheap. (There is an identical CGU sort earlier in that function that already uses `sort_by_key`.)
r? `@pnkfelix`
This is surprising, but the new comment explains why. It's a logical
conclusion in the drive to avoid `TokenTree` clones.
`TokenTreeCursor` is now only used within `Parser`. It's still needed
due to `replace_prev_and_rewind`.
Replace in-tree `rustc_apfloat` with the new version of the crate
Replace the in-tree version of `rustc_apfloat` with the new version of the crate which has been correctly licensed. The new crate incorporates upstream changes from LLVM since the original port was done including many correctness fixes and has been extensively fuzz tested to validate correctness.
Fixes#100233Fixes#102403Fixes#113407Fixes#113409Fixes#55993Fixes#93224Closes#93225Closes#109573
Currently, Clippy, Miri, Rustfmt, and rustc all use an environment variable to
indicate that output should be blessed, but they use different variable names.
In order to improve consistency, this patch applies the following changes:
- Emit `RUSTC_BLESS` within `prepare_cargo_test` so it is always
available
- Change usage of `MIRI_BLESS` in the Miri subtree to use `RUSTC_BLESS`
- Change usage of `BLESS` in the Clippy subtree to `RUSTC_BLESS`
- Change usage of `BLESS` in the Rustfmt subtree to `RUSTC_BLESS`
- Adjust the blessable test in `rustc_errors` to use this same
convention
- Update documentation where applicable
Any tools that uses `RUSTC_BLESS` should check that it is set to any value
other than `"0"`.
Remove -Z diagnostic-width
This removes the `-Z diagnostic-width` option since it is ignored and does nothing. `-Z diagnostic-width` was stabilized as `--diagnostic-width` in #95635. It is not entirely clear why the `-Z` flag was kept, but in part its final use was removed in #102216, but the `-Z` flag itself was not removed.
Squelch a noisy rustc_expand unittest
The test `rustc_parse::tests::bad_path_expr_1` prints an error message to stderr, circumventing libtest's stderr intercept. This causes noise when running tests, in particular they show up 16 times on the GitHub Actions summary page. The solution here is to not use an error emitter that prints to stderr, and instead check that the correct error is generated.
lint/ctypes: fix `()` return type checks
Fixes#113436.
`()` is normally FFI-unsafe, but is FFI-safe when used as a return type. It is also desirable that a transparent newtype for `()` is FFI-safe when used as a return type.
In order to support this, when a type was deemed FFI-unsafe, because of a `()` type, and was used in return type - then the type was considered FFI-safe. However, this was the wrong approach - it didn't check that the `()` was part of a transparent newtype! The consequence of this is that the presence of a `()` type in a more complex return type would make it the entire type be considered safe (as long as the `()` type was the first that the lint found) - which is obviously incorrect.
Instead, this logic is removed, and after [consultation with t-lang](https://github.com/rust-lang/rust/issues/113436#issuecomment-1640756721), I've fixed the bugs and inconsistencies and made `()` FFI-safe within types.
I also refactor a function, but that's not too exciting.
interpret: make read/write methods generic
Instead of always having to call `into()` to convert things to `PlaceTy`/`OpTy`, make the relevant methods generic. This also means that when we read from an `MPlaceTy`, we avoid creating an intermediate `PlaceTy`.
This makes it feasible to remove the `Copy` from `MPlaceTy`. All the other `*Ty` interpreter types already had their `Copy` removed a while ago so this is only consistent. (And in fact we had one function that accidentally took `MPlaceTy` instead of `&MPlaceTy`.)
Split some functions with many arguments into builder pattern functions
r? `@estebank`
This doesn't resolve all of the ones in rustc, mostly because I need to do other cleanups in order to be able to use some builder derives from crates.io
Works around https://github.com/rust-lang/rust/issues/90672 by making `x test rustfmt --bless` format itself instead of testing that it is formatted
It doesn't really matter what the `desugar_doc_comments` argument is
here, because in practice we never look ahead through doc comments.
Changing it to `cursor.desugar_doc_comments` will allow some follow-up
simplifications.
new unstable option: -Zwrite-long-types-to-disk
This option guards the logic of writing long type names in files and instead using short forms in error messages in rustc_middle/ty/error behind a flag. The main motivation for this change is to disable this behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their file is.
Some ui tests actually rely on this behaviour for their assertions, so for those we enable the flag manually.
Double check that hidden types match the expected hidden type
Fixes https://github.com/rust-lang/rust/issues/113278 specifically, but I left a TODO for where we should also add some hardening.
It feels a bit like papering over the issue, but at least this way we don't get unsoundness, but just surprising errors. Errors will be improved and given spans before this PR lands.
r? `@compiler-errors` `@lcnr`
Don't say that a type is uncallable if its fn signature has errors in it
This is fallout from #106309, where we don't consider param-env candidates that reference errors because they unify with everything. This means, however, that we don't consider an APIT like `impl Fn(MissingType)` isn't considered to implement `Fn`, for example.
We can double-check that with a weaker heuristic [`extract_callable_info`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/fn_ctxt/struct.FnCtxt.html#method.extract_callable_info), and suppress the knock-down error using that.
Fixes#113566
Rollup of 7 pull requests
Successful merges:
- #114008 (coverage: Obtain the `__llvm_covfun` section name outside a per-function loop)
- #114014 (builtin_macros: expect raw strings too)
- #114043 (docs(LazyLock): add example pass local LazyLock variable to struct)
- #114051 (Add regression test for invalid "unused const" in method)
- #114052 (Suggest `{Option,Result}::as_ref()` instead of `cloned()` in some cases)
- #114058 (Add help for crate arg when crate name is invalid)
- #114060 (abi: unsized field in union - assert to delay bug )
r? `@ghost`
`@rustbot` modify labels: rollup
abi: unsized field in union - assert to delay bug
Fixes#113279.
> Unions cannot have unsized fields, and as such, layout computation for
unions asserts that each union field is sized (as this would normally
have halted compilation earlier).
>
> However, if a generator ends up with an unsized local - a circumstance
in which an error will always have been emitted earlier, for example, if
attempting to dereference a `&str` - then the generator transform will
produce a union with an unsized field.
>
> Since https://github.com/rust-lang/rust/pull/110107, later passes will be run, such as constant propagation,
and can attempt layout computation on the generator, which will result
in layout computation of `str` in the context of it being a field of a
union - and so the aforementioned assertion would cause an ICE.
>
> It didn't seem appropriate to try and detect this case in the MIR body
and skip this specific pass; tainting the MIR body or delaying a bug
from the generator transform (or elsewhere) wouldn't prevent this either
(as neither would prevent the later pass from running); and tainting when
the deref of `&str` is reported, if that's possible, would unnecessarily
prevent potential other errors from being reported later in compilation,
and is very tailored to this specific case of getting a unsized type in
a generator.
>
> Given that this circumstance can only happen when an error should have
already been reported, the correct fix appears to be just changing the
assert to a delayed bug. This will still assert if there is some
circumstance where this occurs and no error has been reported, but it
won't crash the compiler in this instance.
While debugging this, I noticed a translation ICE in a delayed bug, so I fixed that too:
> During borrowck, the `MultiSpan` from a buffered diagnostic is cloned and
used to emit a delayed bug indicating a diagnostic was buffered - when
the buffered diagnostic is translated, then the cloned `MultiSpan` may
contain labels which can only render with the diagnostic's arguments, but
the delayed bug being emitted won't have those arguments. Adds a function
which clones `MultiSpan` without also cloning the contained labels, and
use this function when creating the buffered diagnostic delayed bug.
Suggest `{Option,Result}::as_ref()` instead of `cloned()` in some cases
Fixes#114050
When we have an expr available that produces the type expectation, we can suggest appending `.as_ref()` to the span, instead of cloning the expr producing the mismatch
coverage: Obtain the `__llvm_covfun` section name outside a per-function loop
This section name is always constant for a given target, but obtaining it from LLVM requires a few intermediate allocations. There's no need to do so repeatedly from inside a per-function loop.
Normalize the RHS of an `Unsize` goal in the new solver
`Unsize` goals are... tricky. Not only do they structurally match on their self type, but they're also structural on their other type parameter. I'm pretty certain that it is both incomplete and also just plain undesirable to not consider normalizing the RHS of an unsize goal. More practically, I'd like for this code to work:
```rust
trait A {}
trait B: A {}
impl A for usize {}
impl B for usize {}
trait Mirror {
type Assoc: ?Sized;
}
impl<T: ?Sized> Mirror for T {
type Assoc = T;
}
fn main() {
// usize: Unsize<dyn B>
let x = Box::new(1usize) as Box<<dyn B as Mirror>::Assoc>;
// dyn A: Unsize<dyn B>
let y = x as Box<<dyn A as Mirror>::Assoc>;
}
```
---
In order to achieve this, we add `EvalCtxt::normalize_non_self_ty` (naming modulo bikeshedding), which *must* be used for all non-self type arguments that are structurally matched in candidate assembly. Currently this is only necessary for `Unsize`'s argument, but I could see future traits requiring this (hopefully rarely) in the future. It uses `repeat_while_none` to limit infinite looping, and normalizes the self type until it is no longer an alias.
Also, we need to fix feature gate detection for `trait_upcasting` and `unsized_tuple_coercion` when HIR typeck has unnormalized types. We can do that by checking the `ImplSource` returned by selection, which necessitates adding a new impl source for tuple upcasting.
Unions cannot have unsized fields, and as such, layout computation for
unions asserts that each union field is sized (as this would normally
have halted compilation earlier).
However, if a generator ends up with an unsized local - a circumstance
in which an error will always have been emitted earlier, for example, if
attempting to dereference a `&str` - then the generator transform will
produce a union with an unsized field.
Since #110107, later passes will be run, such as constant propagation,
and can attempt layout computation on the generator, which will result
in layout computation of `str` in the context of it being a field of a
union - and so the aforementioned assertion would cause an ICE.
It didn't seem appropriate to try and detect this case in the MIR body
and skip this specific pass; tainting the MIR body or delaying a bug
from the generator transform (or elsewhere) wouldn't prevent this either
(as neither would prevent the later pass from running); and tainting when
the deref of `&str` is reported, if that's possible, would unnecessarily
prevent potential other errors from being reported later in compilation,
and is very tailored to this specific case of getting a unsized type in
a generator.
Given that this circumstance can only happen when an error should have
already been reported, the correct fix appears to be just changing the
assert to a delayed bug. This will still assert if there is some
circumstance where this occurs and no error has been reported, but it
won't crash the compiler in this instance.
Signed-off-by: David Wood <david@davidtw.co>
interpret: Unify projections for MPlaceTy, PlaceTy, OpTy
For ~forever, we didn't really have proper shared code for handling projections into those three types. This is mostly because `PlaceTy` projections require `&mut self`: they might have to `force_allocate` to be able to represent a project part-way into a local.
This PR finally fixes that, by enhancing `Place::Local` with an `offset` so that such an optimized place can point into a part of a place without having requiring an in-memory representation. If we later write to that place, we will still do `force_allocate` -- for now we don't have an optimized path in `write_immediate` that would avoid allocation for partial overwrites of immediately stored locals. But in `write_immediate` we have `&mut self` so at least this no longer pollutes all our type signatures.
(Ironically, I seem to distantly remember that many years ago, `Place::Local` *did* have an `offset`, and I removed it to simplify things. I guess I didn't realize why it was so useful... I am also not sure if this was actually used to achieve place projection on `&self` back then.)
The `offset` had type `Option<Size>`, where `None` represent "no projection was applied". This is needed because locals *can* be unsized (when they are arguments) but `Place::Local` cannot store metadata: if the offset is `None`, this refers to the entire local, so we can use the metadata of the local itself (which must be indirect); if a projection gets applied, since the local is indirect, it will turn into a `Place::Ptr`. (Note that even for indirect locals we can have `Place::Local`: when the local appears in MIR, we always start with `Place::Local`, and only check `frame.locals` later. We could eagerly normalize to `Place::Ptr` but I don't think that would actually simplify things much.)
Having done all that, we can finally properly abstract projections: we have a new `Projectable` trait that has the basic methods required for projecting, and then all projection methods are implemented for anything that implements that trait. We can even implement it for `ImmTy`! (Not that we need that, but it seems neat.) The visitor can be greatly simplified; it doesn't need its own trait any more but it can use the `Projectable` trait. We also don't need the separate `Mut` visitor any more; that was required only to reflect that projections on `PlaceTy` needed `&mut self`.
It is possible that there are some more `&mut self` that can now become `&self`... I guess we'll notice that over time.
r? `@oli-obk`
Reimplement C-str literals
This reverts #113334, cc `@fmease.`
While converting lexer tokens to ast Tokens in `rustc_parse`, we check the edition of the span of the token. If the edition < 2021, we split the token into two, one being the identifier and other being the str literal.
If a raw string was used in the `env!` invocation, then it should also
be shown in the diagnostic messages as a raw string.
Signed-off-by: David Wood <david@davidtw.co>
fix(resolve): skip panic when resolution is dummy
Fixes#113953
Skip the panic when the binding refers to a dummy node during the finalization.
r? `@petrochenkov`
Add `x86_64-unikraft-linux-musl` target
This introduces `x86_64-unikraft-linux-musl` as the first Rust target for the [Unikraft] Unikernel Development Kit.
[Unikraft]: https://unikraft.org/
Unikraft imitates Linux and uses musl as libc.
It is extremely configurable, and does not even provide a `poll` implementation or a network stack, unless enabled by the end user who compiles the application.
Our approach for integrating the build process with `rustc` is to hide the build process as well as the actual final linking step behind a linker-shim (`kraftld`, see https://github.com/unikraft/kraftkit/issues/612).
## Tier 3 target policy
> - A tier 3 target must have a designated developer or developers (the "target
> maintainers") on record to be CCed when issues arise regarding the target.
> (The mechanism to track and CC such developers may evolve over time.)
I will be the target maintainer.
> - Targets must use naming consistent with any existing targets; for instance, a
> target for the same CPU or OS as an existing Rust target should use the same
> name for that CPU or OS. Targets should normally use the same names and
> naming conventions as used elsewhere in the broader ecosystem beyond Rust
> (such as in other toolchains), unless they have a very good reason to
> diverge. Changing the name of a target can be highly disruptive, especially
> once the target reaches a higher tier, so getting the name right is important
> even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless
> absolutely necessary to maintain ecosystem compatibility. For example, if
> the name of the target makes people extremely likely to form incorrect
> beliefs about what it targets, the name should be changed or augmented to
> disambiguate it.
> - If possible, use only letters, numbers, dashes and underscores for the name.
> Periods (`.`) are known to cause issues in Cargo.
The target name `x86_64-unikraft-linux-musl` was derived from `x86_64-unknown-linux-musl`, setting Unikraft as vendor.
Unikraft exactly imitates Linux + musl.
> - Tier 3 targets may have unusual requirements to build or use, but must not
> create legal issues or impose onerous legal terms for the Rust project or for
> Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust
> license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other
> host (even when supporting cross-compilation to the target) to depend
> on any new dependency less permissive than the Rust licensing policy. This
> applies whether the dependency is a Rust crate that would require adding
> new license exceptions (as specified by the `tidy` tool in the
> rust-lang/rust repository), or whether the dependency is a native library
> or binary. In other words, the introduction of the target must not cause a
> user installing or running a version of Rust or the Rust tools to be
> subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other
> code for the target (whether hosted on the target itself or cross-compiling
> from another target) must not depend on proprietary (non-FOSS) libraries.
> Host tools built for the target itself may depend on the ordinary runtime
> libraries supplied by the platform and commonly used by other applications
> built for the target, but those libraries must not be required for code
> generation for the target; cross-compilation to the target must not require
> such libraries at all. For instance, `rustc` built for the target may
> depend on a common proprietary C runtime library or console output library,
> but must not depend on a proprietary code generation library or code
> optimization library. Rust's license permits such combinations, but the
> Rust project has no interest in maintaining such combinations within the
> scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous"
> legal/licensing terms include but are *not* limited to: non-disclosure
> requirements, non-compete requirements, contributor license agreements
> (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
> requirements conditional on the employer or employment of any particular
> Rust developers, revocable terms, any requirements that create liability
> for the Rust project or its developers or users, or any requirements that
> adversely affect the livelihood or prospects of the Rust project or its
> developers or users.
No dependencies were added to Rust.
Requirements for linking are [Unikraft] and [KraftKit] (both BSD-3-Clause), but none of these are added to Rust.
[KraftKit]: https://github.com/unikraft/kraftkit
> - Neither this policy nor any decisions made regarding targets shall create any
> binding agreement or estoppel by any party. If any member of an approving
> Rust team serves as one of the maintainers of a target, or has any legal or
> employment requirement (explicit or implicit) that might affect their
> decisions regarding a target, they must recuse themselves from any approval
> decisions regarding the target's tier status, though they may otherwise
> participate in discussions.
> - This requirement does not prevent part or all of this policy from being
> cited in an explicit contract or work agreement (e.g. to implement or
> maintain support for a target). This requirement exists to ensure that a
> developer or team responsible for reviewing and approving a target does not
> face any legal threats or obligations that would prevent them from freely
> exercising their judgment in such approval, even if such judgment involves
> subjective matters or goes beyond the letter of these requirements.
Understood.
I am not a member of a Rust team.
> - Tier 3 targets should attempt to implement as much of the standard libraries
> as possible and appropriate (`core` for most targets, `alloc` for targets
> that can support dynamic memory allocation, `std` for targets with an
> operating system or equivalent layer of system-provided functionality), but
> may leave some code unimplemented (either unavailable or stubbed out as
> appropriate), whether because the target makes it impossible to implement or
> challenging to implement. The authors of pull requests are not obligated to
> avoid calling any portions of the standard library on the basis of a tier 3
> target not implementing those portions.
Understood.
`std` is supported.
> - The target must provide documentation for the Rust community explaining how
> to build for the target, using cross-compilation if possible. If the target
> supports running binaries, or running tests (even if they do not pass), the
> documentation must explain how to run such binaries or tests for the target,
> using emulation if possible or dedicated hardware if necessary.
Building is described in the platform support doc.
It will be updated once proper `kraftld` support has landed.
> - Tier 3 targets must not impose burden on the authors of pull requests, or
> other developers in the community, to maintain the target. In particular,
> do not post comments (automated or manual) on a PR that derail or suggest a
> block on the PR based on a tier 3 target. Do not send automated messages or
> notifications (via any medium, including via ``@`)` to a PR author or others
> involved with a PR regarding a tier 3 target, unless they have opted into
> such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to
> an issue or PR are not considered a violation of this policy, within
> reason. However, such messages (even on a separate repository) must not
> generate notifications to anyone involved with a PR who has not requested
> such notifications.
Understood.
> - Patches adding or updating tier 3 targets must not break any existing tier 2
> or tier 1 target, and must not knowingly break another tier 3 target without
> approval of either the compiler team or the maintainers of the other tier 3
> target.
> - In particular, this may come up when working on closely related targets,
> such as variations of the same architecture with different features. Avoid
> introducing unconditional uses of features that another variation of the
> target may not have; use conditional compilation or runtime detection, as
> appropriate, to let each target run code supported by that target.
I don't think this PR breaks anything.
r? compiler-team
fix intra-doc links on nested `use` and `extern crate` items
This PR fixes two rustdoc ICEs that happen if there are any intra-doc links on nested `use` or `extern crate` items, for example:
```rust
/// Re-export [`fmt`] and [`io`].
pub use std::{fmt, io}; // "nested" use = use with braces
/// Re-export [`std`].
pub extern crate std;
```
Nested use items were incorrectly considered private and therefore didn't have their intra-doc links resolved. I fixed this by always resolving intra-doc links for nested `use` items that are declared `pub`.
<details>
During AST->HIR lowering, nested `use` items are desugared like this:
```rust
pub use std::{}; // "list stem"
pub use std::fmt;
pub use std::io;
```
Each of these HIR nodes has it's own effective visibility and the list stem is always considered private.
To check the effective visibility of an AST node, the AST node is mapped to a HIR node with `Resolver::local_def_id`, which returns the (private) list stem for nested use items.
</details>
For `extern crate`, there was a hack in rustdoc that stored the `DefId` of the crate itself in the cleaned item, instead of the `DefId` of the `extern crate` item. This made rustdoc look at the resolved links of the extern crate's crate root instead of the `extern crate` item. I've removed this hack and instead translate the `DefId` in the appropriate places.
As as side effect of fixing `extern crate`, i've turned
```rust
#[doc(masked)]
extern crate self as _;
```
into a no-op instead of hiding all trait impls. Proper verification for `doc(masked)` is included as a bonus.
fixes https://github.com/rust-lang/rust/issues/113896
lint/ctypes: only try normalize
Fixes#113900.
Now that this lint runs on any external-ABI fn-ptr, normalization won't always succeed, so use `try_normalize_erasing_regions` instead.
Optimize format usage
Per #112156, using `&` in `format!` may cause a small perf delay, so I tried to clean up one module at a time format usage. This PR includes a few removals of the ref in format (they do compile locally without the ref), as well as a few format inlining for consistency.
Optimize format usage
Per #112156, using `&` in `format!` may cause a small perf delay, so I tried to clean up one module at a time format usage. This PR includes a few removals of the ref in format (they do compile locally without the ref), as well as a few format inlining for consistency.
arm-none fixups
- Remove "-unknown" from `llvm_target` for arm\*v7r-none-eabi\* targets.
- Remove redundant `c_enum_min_bits` option from the thumbv4t-none-eabi target.
- Fix comments about GCC/Clang's enum width for arm-none targets.
Previously part of #110482, which is a larger change to add a new target.
These nits were found along the way.
This is necessary for closure captures in 2021 edition, as they capture individual fields, not the full mentioned variables. So it may try to capture a field of an opaque (because the hidden type is known to be something with a field).
rustdoc: handle cross-crate RPITITs correctly
Filter out the internal associated types synthesized during the desugaring of RPITITs, they really shouldn't show up in the docs.
This also fixes#113929 since we're no longer invoking `is_impossible_associated_item` (renamed from `is_impossible_method`) which cannot handle them (leading to an ICE). I don't think it makes sense to try to make `is_impossible_associated_item` handle this exotic kind of associated type (CC original author `@compiler-errors).`
@ T-rustdoc reviewers, currently I'm throwing out ITIT assoc tys before cleaning assoc tys at each usage-site. I'm thinking about making `clean_middle_assoc_item` return an `Option<_>` instead and doing the check inside of it to prevent any call sites from forgetting the check for ITITs. Since I wasn't sure if you would like that approach, I didn't go through with it. Let me know what you think.
<details><summary>Explanation on why <code>is_impossible_associated_item(itit_assoc_ty)</code> leads to an ICE</summary>
Given the following code:
```rs
pub trait Trait { fn def<T>() -> impl Default {} }
impl Trait for () {}
```
The generated associated type looks something like (simplified):
```rs
type {opaque#0}<T>: Default = impl Default; // the name is actually `kw::Empty` but this is the `def_path_str` repr
```
The query `is_impossible_associated_item` goes through all predicates of the associated item – in this case `<T as Sized>` – to check if they contain any generic parameters from the (generic) associated type itself. For predicates that don't contain any *own* generics, it does further processing, part of which is instantiating the predicate with the generic arguments of the impl block (which is only correct if they truly don't contain any own generics since they wouldn't get instantiated this way leading to an ICE).
It checks if `parent_def_id(T) == assoc_ty_def_id` to get to know if `T` is owned by the assoc ty. Unfortunately this doesn't work for ITIT assoc tys. In this case, the parent of `T` is `Trait::def` (!) which is the associated function (I'm pretty sure this is very intentional) which is of course not equal to the assoc ty `Trait::{opaque#0}`.
</details>
`@rustbot` label A-cross-crate-reexports
During borrowck, the `MultiSpan` from a buffered diagnostic is cloned and
used to emit a delayed bug indicating a diagnostic was buffered - when
the buffered diagnostic is translated, then the cloned `MultiSpan` may
contain labels which can only render with the diagnostic's arguments, but
the delayed bug being emitted won't have those arguments. Adds a function
which clones `MultiSpan` without also cloning the contained labels, and
use this function when creating the buffered diagnostic delayed bug.
Signed-off-by: David Wood <david@davidtw.co>
Add `riscv64gc-unknown-hermit` target
This PR adds the new `riscv64gc-unknown-hermit` target, initially created by `@simonschoening,` a 64-bit RISC-V target for the [Hermit] unikernel project.
Furthermore, this cleans up the existing Hermit targets and adds a platform support documentation page for _all_ Hermit targets and goes through the new tier 3 target policy process:
[Hermit]: https://github.com/hermitcore
## Tier 3 target policy
> - A tier 3 target must have a designated developer or developers (the "target
> maintainers") on record to be CCed when issues arise regarding the target.
> (The mechanism to track and CC such developers may evolve over time.)
`@stlankes` as the Hermit project lead and I will be the target maintainers.
> - Targets must use naming consistent with any existing targets; for instance, a
> target for the same CPU or OS as an existing Rust target should use the same
> name for that CPU or OS. Targets should normally use the same names and
> naming conventions as used elsewhere in the broader ecosystem beyond Rust
> (such as in other toolchains), unless they have a very good reason to
> diverge. Changing the name of a target can be highly disruptive, especially
> once the target reaches a higher tier, so getting the name right is important
> even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless
> absolutely necessary to maintain ecosystem compatibility. For example, if
> the name of the target makes people extremely likely to form incorrect
> beliefs about what it targets, the name should be changed or augmented to
> disambiguate it.
> - If possible, use only letters, numbers, dashes and underscores for the name.
> Periods (`.`) are known to cause issues in Cargo.
The target name `riscv64gc-unknown-hermit` was derived from the existing `x86_64-unknown-hermit` and `aarch64-unknown-hermit` targets.
> - Tier 3 targets may have unusual requirements to build or use, but must not
> create legal issues or impose onerous legal terms for the Rust project or for
> Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust
> license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other
> host (even when supporting cross-compilation to the target) to depend
> on any new dependency less permissive than the Rust licensing policy. This
> applies whether the dependency is a Rust crate that would require adding
> new license exceptions (as specified by the `tidy` tool in the
> rust-lang/rust repository), or whether the dependency is a native library
> or binary. In other words, the introduction of the target must not cause a
> user installing or running a version of Rust or the Rust tools to be
> subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other
> code for the target (whether hosted on the target itself or cross-compiling
> from another target) must not depend on proprietary (non-FOSS) libraries.
> Host tools built for the target itself may depend on the ordinary runtime
> libraries supplied by the platform and commonly used by other applications
> built for the target, but those libraries must not be required for code
> generation for the target; cross-compilation to the target must not require
> such libraries at all. For instance, `rustc` built for the target may
> depend on a common proprietary C runtime library or console output library,
> but must not depend on a proprietary code generation library or code
> optimization library. Rust's license permits such combinations, but the
> Rust project has no interest in maintaining such combinations within the
> scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous"
> legal/licensing terms include but are *not* limited to: non-disclosure
> requirements, non-compete requirements, contributor license agreements
> (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
> requirements conditional on the employer or employment of any particular
> Rust developers, revocable terms, any requirements that create liability
> for the Rust project or its developers or users, or any requirements that
> adversely affect the livelihood or prospects of the Rust project or its
> developers or users.
No dependencies were added to Rust.
> - Neither this policy nor any decisions made regarding targets shall create any
> binding agreement or estoppel by any party. If any member of an approving
> Rust team serves as one of the maintainers of a target, or has any legal or
> employment requirement (explicit or implicit) that might affect their
> decisions regarding a target, they must recuse themselves from any approval
> decisions regarding the target's tier status, though they may otherwise
> participate in discussions.
> - This requirement does not prevent part or all of this policy from being
> cited in an explicit contract or work agreement (e.g. to implement or
> maintain support for a target). This requirement exists to ensure that a
> developer or team responsible for reviewing and approving a target does not
> face any legal threats or obligations that would prevent them from freely
> exercising their judgment in such approval, even if such judgment involves
> subjective matters or goes beyond the letter of these requirements.
Understood.
I am not a member of a Rust team.
> - Tier 3 targets should attempt to implement as much of the standard libraries
> as possible and appropriate (`core` for most targets, `alloc` for targets
> that can support dynamic memory allocation, `std` for targets with an
> operating system or equivalent layer of system-provided functionality), but
> may leave some code unimplemented (either unavailable or stubbed out as
> appropriate), whether because the target makes it impossible to implement or
> challenging to implement. The authors of pull requests are not obligated to
> avoid calling any portions of the standard library on the basis of a tier 3
> target not implementing those portions.
Understood.
`std` is supported.
> - The target must provide documentation for the Rust community explaining how
> to build for the target, using cross-compilation if possible. If the target
> supports running binaries, or running tests (even if they do not pass), the
> documentation must explain how to run such binaries or tests for the target,
> using emulation if possible or dedicated hardware if necessary.
Building is described in the platform support doc.
> - Tier 3 targets must not impose burden on the authors of pull requests, or
> other developers in the community, to maintain the target. In particular,
> do not post comments (automated or manual) on a PR that derail or suggest a
> block on the PR based on a tier 3 target. Do not send automated messages or
> notifications (via any medium, including via ``@`)` to a PR author or others
> involved with a PR regarding a tier 3 target, unless they have opted into
> such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to
> an issue or PR are not considered a violation of this policy, within
> reason. However, such messages (even on a separate repository) must not
> generate notifications to anyone involved with a PR who has not requested
> such notifications.
Understood.
> - Patches adding or updating tier 3 targets must not break any existing tier 2
> or tier 1 target, and must not knowingly break another tier 3 target without
> approval of either the compiler team or the maintainers of the other tier 3
> target.
> - In particular, this may come up when working on closely related targets,
> such as variations of the same architecture with different features. Avoid
> introducing unconditional uses of features that another variation of the
> target may not have; use conditional compilation or runtime detection, as
> appropriate, to let each target run code supported by that target.
I don't think this PR breaks anything.
r? compiler-team
This section name is always constant for a given target, but obtaining it from
LLVM requires a few intermediate allocations. There's no need to do so
repeatedly from inside a per-function loop.
Reuse `codegen_ssa` monomorphization errors in `codegen_gcc`
Removes monomorphization errors duplication by reusing the ones defined in `codegen_ssa`.
Also updates `expected_simd` errors usage in `codegen_gcc` by assuming we want to treat those parameters as translatable. See 7a888fb56e
This option guards the logic of writing long type names in files and
instead using short forms in error messages in rustc_middle/ty/error
behind a flag. The main motivation for this change is to disable this
behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a
long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their
file is.
Some ui tests actually rely on this behaviour for their assertions,
so for those we enable the flag manually.
These pre-link args are remains from Hermit's old C version.
We don't need them and we have no reason to override the defaults here.
See ld [1] for details.
[1]: https://sourceware.org/binutils/docs/ld/Options.html
Signed-off-by: Martin Kröning <martin.kroening@eonerc.rwth-aachen.de>
Per #112156, using `&` in `format!` may cause a small perf delay, so I tried to clean up one module at a time format usage. This PR includes a few removals of the ref in format (they do compile locally without the ref), as well as a few format inlining for consistency.
Per #112156, using `&` in `format!` may cause a small perf delay, so I tried to clean up one module at a time format usage. This PR includes a few removals of the ref in format (they do compile locally without the ref), as well as a few format inlining for consistency.
GCC uses the `-fshort-enums` ABI for arm-none and the `int`-sized enum
ABI for arm-linux.
Clang uses the `int`-sized enum ABI for all arm targets.
Both options are permitted by AAPCS.
Rust is matching GCC's behavior for these targets, as interop with code
code compiled by GCC is desirable in the bare-metal context. See #87917.
Fix #[inline(always)] on closures with target feature 1.1
Fixes#108655. I think this is the most obvious solution that isn't overly complicated. The comment includes more justification, but I think this is likely better than demoting the `#[inline(always)]` to `#[inline]`, since existing code is unaffected.
Support interpolated block for `try` and `async`
I'm putting this up for T-lang discussion, to decide whether or not they feel like this should be supported. This was raised in #112952, which surprised me. There doesn't seem to be a *technical* reason why we don't support this.
### Precedent:
This is supported:
```rust
macro_rules! always {
($block:block) => {
if true $block
}
}
fn main() {
always!({});
}
```
### Counterpoint:
However, for context, this is *not* supported:
```rust
macro_rules! unsafe_block {
($block:block) => {
unsafe $block
}
}
fn main() {
unsafe_block!({});
}
```
If this support for `async` and `try` with interpolated blocks is *not* desirable, then I can convert them to instead the same diagnostic as `unsafe $block` and make this situation a lot less ambiguous.
----
I'll try to write up more before T-lang triage on Tuesday. I couldn't find anything other than #69760 for why something like `unsafe $block` is not supported, and even that PR doesn't have much information.
Fixes#112952
Remove Scope::Elision from bound-vars resolution.
This scope is a remnant of HIR-based lifetime resolution.
It's only role was to ensure that object lifetime resolution falled back to `'static`. This can be done using `ObjectLifetimeDefault` scope.
Get rid of subst-relate incompleteness in new solver
We shouldn't need subst-relate if we have bidirectional-normalizes-to in the new solver.
The only potential issue may happen if we have an unconstrained projection like `<Wrapper<?0> as Trait>::Assoc == <Wrapper<T> as Trait>::Assoc` where they both normalize to something that doesn't mention any substs, which would possibly prefer `?0 = T` if we fall back to subst-relate. But I'd prefer if we remove incompleteness until we can determine some case where we need them, and the bidirectional-normalizes-to seems better to have in general.
I can update https://github.com/rust-lang/trait-system-refactor-initiative/issues/26 and https://github.com/rust-lang/trait-system-refactor-initiative/issues/25 once this lands.
r? `@lcnr`
Tweak spans for self arg, fix borrow suggestion for signature mismatch
1. Adjust a suggestion message that was annoying me
2. Fix#112503 by recording the right spans for the `self` part of the `&self` 0th argument
3. Remove the suggestion for adjusting a trait signature on type mismatch, bc that's gonna probably break all the other impls of the trait even if it fixes its one usage 😅
Reuse the MIR validator for MIR inlining
Instead of having the inliner home-cook its own validation, we just check that the substituted MIR body passes the regular validation.
The MIR validation is first split in two: control flow validation (MIR syntax and CFG invariants) and type validation (subtyping relationship in assignments and projections). Only the latter can be affected by instantiating type parameters.
[RFC] Support `.comment` section like GCC/Clang (`!llvm.ident`)
Both GCC and Clang write by default a `.comment` section with compiler information:
```txt
$ gcc -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] GCC: (GNU) 11.2.0
$ clang -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] clang version 14.0.1 (https://github.com/llvm/llvm-project.git c62053979489ccb002efe411c3af059addcb5d7d)
```
They also implement the `-Qn` flag to avoid doing so:
```txt
$ gcc -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
$ clang -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
```
So far, `rustc` only does it for WebAssembly targets and only when debug info is enabled:
```txt
$ echo 'fn main(){}' | rustc --target=wasm32-unknown-unknown --emit=llvm-ir -Cdebuginfo=2 - && grep llvm.ident rust_out.ll
!llvm.ident = !{!27}
```
The RFC part of this PR is about which behavior should `rustc` follow:
- Always add it.
- Add it by default, i.e. have an opt-out flag (GCC, Clang).
- Have an opt-in flag.
- Never add it (current).
There is also the question of whether debug info being enabled matters for that decision, given the current behavior of WebAssembly targets.
For instance, adding it by default gets us closer to other popular compilers, but that may surprise some users with an information leak. The most conservative option is to only do so opt-in, even if debug info is enabled (some users may be stripping debug info and not expecting something else to be leaked elsewhere).
Implementation-wise, this covers both `ModuleLlvm::new()` and `ModuleLlvm::new_metadata()` cases by moving the addition to `context::create_module` and adds a few test cases.
ThinLTO also sees the `llvm.ident` named metadata duplicated (in temporary outputs), so this deduplicates it like it is done for `wasm.custom_sections`. The tests also check this duplication does not take place.
Both GCC and Clang write by default a `.comment` section with compiler
information:
```txt
$ gcc -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] GCC: (GNU) 11.2.0
$ clang -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] clang version 14.0.1 (https://github.com/llvm/llvm-project.git c62053979489ccb002efe411c3af059addcb5d7d)
```
They also implement the `-Qn` flag to avoid doing so:
```txt
$ gcc -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
$ clang -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
```
So far, `rustc` only does it for WebAssembly targets and only
when debug info is enabled:
```txt
$ echo 'fn main(){}' | rustc --target=wasm32-unknown-unknown --emit=llvm-ir -Cdebuginfo=2 - && grep llvm.ident rust_out.ll
!llvm.ident = !{!27}
```
In the RFC part of this PR it was decided to always add
the information, which gets us closer to other popular compilers.
An opt-out flag like GCC and Clang may be added later on if deemed
necessary.
Implementation-wise, this covers both `ModuleLlvm::new()` and
`ModuleLlvm::new_metadata()` cases by moving the addition to
`context::create_module` and adds a few test cases.
ThinLTO also sees the `llvm.ident` named metadata duplicated (in
temporary outputs), so this deduplicates it like it is done for
`wasm.custom_sections`. The tests also check this duplication does
not take place.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
clarify MIR uninit vs LLVM undef/poison
In [this LLVM discussion](https://discourse.llvm.org/t/rfc-load-instruction-uninitialized-memory-semantics/67481) I learned that mapping our uninitialized memory in MIR to poison in LLVM would be quite problematic due to the lack of a byte type. I am not sure where to write down this insight but this seems like a reasonable start.
Rollup of 4 pull requests
Successful merges:
- #113887 (new solver: add a separate cache for coherence)
- #113910 (Add FnPtr ty to SMIR)
- #113913 (error/E0691: include alignment in error message)
- #113914 (rustc_target: drop duplicate code)
r? `@ghost`
`@rustbot` modify labels: rollup
rustc_target: drop duplicate code
Drop duplicate helper methods on `Layout`, which are already implemented on `LayoutS`. Note that `Layout` has a `Deref` implementation to `LayoutS`, so all accessors are automatically redirected.
The methods are identical and have been copied to `rustc_abi` in:
commit 390a637e29
Author: hamidreza kalbasi <hamidrezakalbasi@protonmail.com>
Date: Mon Nov 7 00:36:11 2022 +0330
move things from rustc_target::abi to rustc_abi
This commit left behind the original implementation. Drop it now.
(originally moved by ``@HKalbasi)``
error/E0691: include alignment in error message
Include the computed alignment of the violating field when rejecting transparent types with non-trivially aligned ZSTs.
ZST member fields in transparent types must have an alignment of 1 (to ensure it does not raise the layout requirements of the transparent field). The current error message looks like this:
```text
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment larger than 1
```
This patch changes the report to include the alignment of the violating field:
```text
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment of 4, which is larger than 1
```
In case of unknown alignments, it will yield:
```text
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ may have alignment larger than 1
```
This allows developers to get a better grasp why a specific field is rejected. Knowing the alignment of the violating field makes it easier to judge where that alignment-requirement originates, and thus hopefully provide better hints on how to mitigate the problem.
This idea was proposed in 2022 in #98071 as part of a bigger change. This commit simply extracts this error-message change, to decouple it from the other diagnostic improvements.
(Originally proposed by `@compiler-errors` in #98071)
Prototype: Add unstable `-Z reference-niches` option
MCP: rust-lang/compiler-team#641
Relevant RFC: rust-lang/rfcs#3204
This prototype adds a new `-Z reference-niches` option, controlling the range of valid bit-patterns for reference types (`&T` and `&mut T`), thereby enabling new enum niching opportunities. Like `-Z randomize-layout`, this setting is crate-local; as such, references to built-in types (primitives, tuples, ...) are not affected.
The possible settings are (here, `MAX` denotes the all-1 bit-pattern):
| `-Z reference-niches=` | Valid range |
|:---:|:---:|
| `null` (the default) | `1..=MAX` |
| `size` | `1..=(MAX- size)` |
| `align` | `align..=MAX.align_down_to(align)` |
| `size,align` | `align..=(MAX-size).align_down_to(align)` |
------
This is very WIP, and I'm not sure the approach I've taken here is the best one, but stage 1 tests pass locally; I believe this is in a good enough state to unleash this upon unsuspecting 3rd-party code, and see what breaks.
Now that this lint runs on any external-ABI fn-ptr, normalization won't
always succeed, so use `try_normalize_erasing_regions` instead.
Signed-off-by: David Wood <david@davidtw.co>
Still more complexity, but this allows computing exact `NaiveLayout`s
for null-optimized enums, and thus allows calls like
`transmute::<Option<&T>, &U>()` to work in generic contexts.
avoid clone path prefix when lowering to hir
Found this while trying to parallelize `lower_to_hir`.
When lowering to hir, `Nested` paths in `ast` will be split and the prefix segments will be cloned. This could be omited, since the only consequence is that the prefix segments in `Path`s in hir will have the same `HirId`s, and it seems harmless.
This simplifies the process of lowering to hir and avoids re-modification of `ResolverAstLowering`.
r? `@Aaron1011`
cc #99292
Substitute types before checking inlining compatibility.
Addresses https://github.com/rust-lang/rust/issues/112332 and https://github.com/rust-lang/rust/issues/113781
I don't have a minimal test, but I this seems to remove the ICE locally.
This whole pre-inlining validation mirrors the "real" MIR validation pass to verify that inlined MIR will still pass validation.
The debuginfo loop is added because MIR validation check projections in debuginfo.
Likewise, MIR validation only checks `is_subtype`, so there is no reason for a stronger check.
The types were not being substituted in `check_equal`, so we were not bailing out of inlining if the substituted MIR callee body would not pass validation.
Include the computed alignment of the violating field when rejecting
transparent types with non-trivially aligned ZSTs.
ZST member fields in transparent types must have an alignment of 1 (to
ensure it does not raise the layout requirements of the transparent
field). The current error message looks like this:
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment larger than 1
This patch changes the report to include the alignment of the violating
field:
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment of 4, which is larger than 1
In case of unknown alignments, it will yield:
LL | struct Foobar<T>(u32, [T; 0]);
| ^^^^^^ may have alignment larger than 1
This allows developers to get a better grasp why a specific field is
rejected. Knowing the alignment of the violating field makes it easier
to judge where that alignment-requirement originates, and thus hopefully
provide better hints on how to mitigate the problem.
This idea was proposed in 2022 in #98071 as part of a bigger change.
This commit simply extracts this error-message change, to decouple it
from the other diagnostic improvements.
Drop duplicate helper methods on `Layout`, which are already implemented
on `LayoutS`. Note that `Layout` has a `Deref` implementation to
`LayoutS`, so all accessors are automatically redirected.
The methods are identical and have been copied to `rustc_abi` in:
commit 390a637e29
Author: hamidreza kalbasi <hamidrezakalbasi@protonmail.com>
Date: Mon Nov 7 00:36:11 2022 +0330
move things from rustc_target::abi to rustc_abi
This commit left behind the original implementation. Drop it now.
Signed-off-by: David Rheinsberg <david@readahead.eu>
Use SHA256 source file checksums by default when targeting MSVC
Currently, when targeting Windows (more specifically, the MSVC toolchain), Rust will use SHA1 source file checksums by default. SHA1 has been superseded by SHA256, and Microsoft recommends migrating to SHA256.
As of Visual Studio 2022, MSVC defaults to SHA256. This change aligns Rust and MSVC.
LLVM can already use SHA256 checksums, so this does not require any change to LLVM.
MSVC docs on source file checksums: https://learn.microsoft.com/en-us/cpp/build/reference/zh?view=msvc-170
Support `--print KIND=PATH` command line syntax
As is already done for `--emit KIND=PATH` and `-L KIND=PATH`.
In the discussion of #110785, it was pointed out that `--print KIND=PATH` is nicer than trying to apply the single global `-o` path to `--print`'s output, because in general there can be multiple print requests within a single rustc invocation, and anyway `-o` would already be used for a different meaning in the case of `link-args` and `native-static-libs`.
I am interested in using `--print cfg=PATH` in Buck2. Currently Buck2 works around the lack of support for `--print KIND=PATH` by [indirecting through a Python wrapper script](d43cf3a51a/prelude/rust/tools/get_rustc_cfg.py) to redirect rustc's stdout into the location dictated by the build system.
From skimming Cargo's usages of `--print`, it definitely seems like it would benefit from `--print KIND=PATH` too. Currently it is working around the lack of this by inserting `--crate-name=___ --print=crate-name` so that it can look for a line containing `___` as a delimiter between the 2 other `--print` informations it actually cares about. This is commented as a "HACK" and "abuse". 31eda6f7c3/src/cargo/core/compiler/build_context/target_info.rs (L242) (FYI `@weihanglo` as you dealt with this recently in https://github.com/rust-lang/cargo/pull/11633.)
Mentioning reviewers active in #110785: `@fee1-dead` `@jyn514` `@bjorn3`
Resurrect: rustc_llvm: Add a -Z `print-codegen-stats` option to expose LLVM statistics.
This resurrects PR https://github.com/rust-lang/rust/pull/104000, which has sat idle for a while. And I want to see the effect of stack-move optimizations on LLVM (like https://reviews.llvm.org/D153453) :).
I have applied the changes requested by `@oli-obk` and `@nagisa` https://github.com/rust-lang/rust/pull/104000#discussion_r1014625377 and https://github.com/rust-lang/rust/pull/104000#discussion_r1014642482 in the latest commits.
r? `@oli-obk`
-----
LLVM has a neat [statistics](https://llvm.org/docs/ProgrammersManual.html#the-statistic-class-stats-option) feature that tracks how often optimizations kick in. It's very handy for optimization work. Since we expose the LLVM pass timings, I thought it made sense to expose the LLVM statistics too.
-----
(Edit: fix broken link
(Edit2: fix segmentation fault and use malloc
If `rustc` is built with
```toml
[llvm]
assertions = true
```
Then you can see like
```
rustc +stage1 -Z print-codegen-stats -C opt-level=3 tmp.rs
===-------------------------------------------------------------------------===
... Statistics Collected ...
===-------------------------------------------------------------------------===
3 aa - Number of MayAlias results
193 aa - Number of MustAlias results
531 aa - Number of NoAlias results
...
```
And the current default build emits only
```
$ rustc +stage1 -Z print-codegen-stats -C opt-level=3 tmp.rs
===-------------------------------------------------------------------------===
... Statistics Collected ...
===-------------------------------------------------------------------------===
$
```
This might be better to emit the message to tell assertion flag necessity, but now I can't find how to do that...
THis significantly complicates `NaiveLayout` logic, but is necessary to
ensure that bounds like `NonNull<T>: PointerLike` hold in generic
contexts.
Also implement exact layout computation for structs.
Always const-prop scalars and scalar pairs
This removes some complexity from the pass.
The limitation to propagate ScalarPairs only for tuple comes from https://github.com/rust-lang/rust/pull/67015, when ScalarPair constant were modeled using `Rvalue::Aggregate`. Nowadays, we use `ConstValue::ByRef`, which does not care about the underlying type.
The justification for not propagating in all cases was perf. This seems not to be a clear cut any more: https://github.com/rust-lang/rust/pull/113858#issuecomment-1642396746
Refactor vtable encoding and optimize it for the case of multiple marker traits
This PR does two things
- Refactor `prepare_vtable_segments` (this was motivated by the other change, `prepare_vtable_segments` was quite hard to understand and while trying to edit it I've refactored it)
- Mostly remove `loop`s labeled `break`s/`continue`s whenever there is a simpler solution
- Also use `?`
- Make vtable format a bit more efficient wrt to marker traits
- See the tests for an example
Fixes https://github.com/rust-lang/rust/issues/113840
cc `@crlf0710`
----
Review wise it's probably best to review each commit individually, as then it's more clear why the refactoring is correct.
I can split the last two commits (which change behavior) into a separate PR if it makes reviewing easier
Querify unused trait check.
This code transitively loads information for all bodies, and from resolutions. As it does not return a value, it should be beneficial to have it as a query.
Don't translate compiler-internal bug messages
These are not very useful to be translated, as
* translators would get really weird and bad english versions to start out from,
* compiler devs have to do some work for what is supposed to be dead code and just a sanity check,
* the target audience is other compiler devs.
r? `@davidtwco`
new solver: don't consider blanket impls multiple times
only consider candidates which rely on the self type in `assemble_candidates_after_normalizing_self_ty`.
r? ``@compiler-errors``
Turn copy into moves during DSE.
Dead store elimination computes whether removing a direct store to an unborrowed place is allowed.
Where removing a store is allowed, writing `uninit` is too.
This means that we can use this pass to transform `copy` operands into `move` operands. This is only interesting in call terminators, so we only handle those.
Special care is taken for the `use_both(_1, _1)` case:
- moving the second argument is ok, as `_1` is not live after the call;
- moving the first argument is not, as the second argument reads `_1`.
Fixes#75993
Fixes https://github.com/rust-lang/rust/issues/108068
r? `@RalfJung`
cc `@JakobDegen`
Verify that all crate sources are in sync
This ensures that rustc will not attempt to link against a cdylib as if it is a rust dylib when an rlib for the same crate is available. Previously rustc didn't actually check if any further formats of a crate which has been loaded are of the same version and if they are actually valid. This caused a cdylib to be interpreted as rust dylib as soon as the corresponding rlib was loaded. As cdylibs don't export any rust symbols, linking would fail if rustc decides to link against the cdylib rather than the rlib.
Two crates depended on the previous behavior by separately compiling a test crate as both rlib and dylib. These have been changed to capture their original spirit to the best of my ability while still working when rustc verifies that all crates are in sync. It is unlikely that build systems depend on the current behavior and in any case we are taking a lot of measures to ensure that any change to either the source or the compilation options (including crate type) results in rustc rejecting it as incompatible. We merely didn't do this check here for now obsolete perf reasons.
Fixes https://github.com/rust-lang/rust/issues/10786
Fixes https://github.com/rust-lang/rust/issues/82151
Fixes https://github.com/rust-lang/rust/issues/82972
Closes https://github.com/bevy-cheatbook/bevy-cheatbook/issues/114
Use the correct span for displaying the line following a derive sugge…
`span` here is the main span of the diagnostic. In the linked issue's case, this belongs to `main.rs`. However, the line numbers (and line we are trying to display) are in `name.rs`, so using `span_to_lines` gives us the wrong `FileLines`.
Use `parts[0].span` (the span of the suggestion) here like the rest of the code does to get the right file.
Not sure if this needs a dedicated test because this fixes an existing error in the UI suite
Fixes#113844
Properly document `lifetime_mapping` in `OpaqueTy`
Also use an `Option` to signify that the value is actually present, instead of just no captured lifetimes.
On nightly, dump ICE backtraces to disk
Implement rust-lang/compiler-team#578.
When an ICE is encountered on nightly releases, the new rustc panic handler will also write the contents of the backtrace to disk. If any `delay_span_bug`s are encountered, their backtrace is also added to the file. The platform and rustc version will also be collected.
<img width="1032" alt="Screenshot 2023-03-03 at 2 13 25 PM" src="https://user-images.githubusercontent.com/1606434/222842420-8e039740-4042-4563-b31d-599677171acf.png">
The current behavior will *always* write to disk on nightly builds, regardless of whether the backtrace is printed to the terminal, unless the environment variable `RUSTC_ICE_DISK_DUMP` is set to `0`. This is a compromise and can be changed.
In `base.rs`, tweak how the CGU size interleaving works. Since #113777,
it's much more common to have multiple CGUs with identical sizes. With
the existing code these same-sized items ended up in the
opposite-to-desired order due to the stable sorting. The code now starts
with a reverse sort (like is done in `partitioning.rs`) which gives the
behaviour we want. This doesn't matter much for perf, but makes profiles
in `samply` look more like what we expect.
In `partitioning.rs`, we can use `sort_by_key` instead of
`sort_by_cached_key` because `CGU::size_estimate()` is cheap. (There is
an identical CGU sort earlier in that function that already uses
`sort_by_key`.)
Rollup of 7 pull requests
Successful merges:
- #113444 (add tests for alias bound preference)
- #113716 (Add the `no-builtins` attribute to functions when `no_builtins` is applied at the crate level.)
- #113754 (Simplify native_libs query)
- #113765 (Make it clearer that edition functions are `>=`, not `==`)
- #113774 (Improve error message when closing bracket interpreted as formatting fill character)
- #113785 (Fix invalid display of inlined re-export when both local and foreign items are inlined)
- #113803 (Fix inline_const with interpolated block)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix inline_const with interpolated block
Interpolation already worked when we had a `const $block` that wasn't a statement expr:
```
fn foo() {
let _ = const $block;
}
```
But it was failing when the const block was in statement expr position:
```
fn foo() {
const $block;
}
```
... because of a bug in a check for const items. This fixes that.
---
cc https://github.com/rust-lang/rust/pull/112953#issuecomment-1631354481, though I don't think this requires an FCP since it's already supported in exprs and seems to me to be fully a parser bug.
Make it clearer that edition functions are `>=`, not `==`
r? `@Nilstrieb`
We could also perhaps derive `Ord` on `Edition` and use comparison operators.
Add the `no-builtins` attribute to functions when `no_builtins` is applied at the crate level.
**When `no_builtins` is applied at the crate level, we should add the `no-builtins` attribute to each function to ensure it takes effect in LTO.**
This is also the reason why no_builtins does not take effect in LTO as mentioned in #35540.
Now, `#![no_builtins]` should be similar to `-fno-builtin` in clang/gcc, see https://clang.godbolt.org/z/z4j6Wsod5.
Next, we should make `#![no_builtins]` participate in LTO again. That makes sense, as LTO also takes into consideration function-level instruction optimizations, such as the MachineOutliner. More importantly, when a user writes a large `#![no_builtins]` crate, they would like this crate to participate in LTO as well.
We should also add a function-level no_builtins attribute to allow users to have more control over it. This is similar to Clang's `__attribute__((no_builtin))` feature, see https://clang.godbolt.org/z/Wod6KK6eq. Before implementing this feature, maybe we should discuss whether to support more fine-grained control, such as `__attribute__((no_builtin("memcpy")))`.
Related discussions:
- #109821
- #35540
Next (a separate pull request?):
- [ ] Revert #35637
- [ ] Add a function-level `no_builtin` attribute?
Encode shorthands for spans in metadata.
Spans occupy a typically large proportion of metadata.
This PR deduplicates encoded spans in order to reduce encoded length.
This ensures that rustc will not attempt to link against a cdylib as if
it is a rust dylib when an rlib for the same crate is available.
Previously rustc didn't actually check if any further formats of a
crate which has been loaded are of the same version and if they are
actually valid. This caused a cdylib to be interpreted as rust dylib as
soon as the corresponding rlib was loaded. As cdylibs don't export any
rust symbols, linking would fail if rustc decides to link against the
cdylib rather than the rlib.
Two crates depended on the previous behavior by separately compiling a
test crate as both rlib and dylib. These have been changed to capture
their original spirit to the best of my ability while still working
when rustc verifies that all crates are in sync. It is unlikely that
build systems depend on the current behavior and in any case we are
taking a lot of measures to ensure that any change to either the source
or the compilation options (including crate type) results in rustc
rejecting it as incompatible. We merely didn't do this check here for
now obsolete perf reasons.
Implement rust-lang/compiler-team#578.
When an ICE is encountered on nightly releases, the new rustc panic
handler will also write the contents of the backtrace to disk. If any
`delay_span_bug`s are encountered, their backtrace is also added to the
file. The platform and rustc version will also be collected.
Reasoning: if the stack is empty, the loop will be infinite,
so the assumption is that the stack can't be non empty. Unwrap
makes the assumption more clear (and removes an indentation level)
Consider `()` within types to be FFI-safe, and `()` to be FFI-safe as a
return type (incl. when in a transparent newtype).
Signed-off-by: David Wood <david@davidtw.co>
`()` is normally FFI-unsafe, but is FFI-safe when used as a return type.
It is also desirable that a transparent newtype for `()` is FFI-safe when
used as a return type.
In order to support this, when an type was deemed FFI-unsafe, because of
a `()` type, and was used in return type - then the type was considered
FFI-safe. However, this was the wrong approach - it didn't check that the
`()` was part of a transparent newtype! The consequence of this is that
the presence of a `()` type in a more complex return type would make it
the entire type be considered safe (as long as the `()` type was the
first that the lint found) - which is obviously incorrect.
Instead, this logic is removed, and a unit return type or a transparent
wrapper around a unit is checked for directly for functions and fn-ptrs.
Signed-off-by: David Wood <david@davidtw.co>
Better diagnostics for dlltool errors.
When dlltool fails, show the full command that was executed. In particular, llvm-dlltool is not very helpful, printing a generic usage message rather than what actually went wrong, so stdout and stderr aren't of much use when troubleshooting.
First, we reuse the `MAX_FRAMES` constant.
Co-authored-by: erikdesjardins <erikdesjardins@users.noreply.github.com>
Then we choose an arbitrary recursion depth for
the other case. In this case, I used 2d20. Honest.
This cleans up the formatting of the backtrace considerably,
dodging the fact that a backtrace with recursion normally
emits hundreds of lines. Instead, simply write repeated symbols,
and add how many times the recursion occurred.
Also, it makes it look more like the "normal" backtrace.
Some fine details in the code are important for reducing
the amount of possible panic branches.
...to both compiler contributors and other rustc invokers.
The previous error messaging was extremely unfriendly,
and potentially both confusing and alarming.
The entire modules is extracted into a new file to help
ease of reading, and plenty of comments get layered in.
The design of the messaging is focused on preventing
the overall purpose of the output from being too opaque
in common cases, so users understand why it is there.
There's not an immediate need for it being actionable,
but some suggestions are offered anyways.
allow opaques to be defined by trait queries, again
This basically reverts #112963.
Moreover, all call-sites of `enter_canonical_trait_query` can now define opaque types, see the ui test `defined-by-user-annotation.rs`.
Fixes#113689
r? `@compiler-errors` `@oli-obk`
Instead of repeatedly merging the two smallest CGUs, we now use a
merging algorithm that aims to minimize the duplication of inlined
functions.
`exa-0.10.1` was one benchmark that saw particularly good results. The
old CGU stats:
```
INTERNALIZE
- unique items: 2774 (1216 root + 1558 inlined), unique size: 122065 (77219 root + 44846 inlined)
- placed items: 3834 (1216 root + 2618 inlined), placed size: 154552 (77219 root + 77333 inlined)
- placed/unique items ratio: 1.38, placed/unique size ratio: 1.27
- CGUs: 16, mean size: 9659.5, sizes: [11791, 11634, 11173, 10987, 10939, 10507, 9992, 9813, 9593, 9580, 9030, 8447, 7975, 7961, 7876, 7254]
```
The new CGU stats:
```
INTERNALIZE
- unique items: 2774 (1216 root + 1558 inlined), unique size: 122065 (77219 root + 44846 inlined)
- placed items: 3626 (1216 root + 2410 inlined), placed size: 147201 (77219 root + 69982 inlined)
- placed/unique items ratio: 1.31, placed/unique size ratio: 1.21
- CGUs: 16, mean size: 9200.1, sizes: [11634, 10939, 10227, 9555, 9178, 9167, 8879, 8804, 8604, 8603 (x3), 8602 (x2), 8601, 8600]
```
The difference is in the number of inlined items. There are 1558 unique
inlined items. With the old algorithm these were placed 2618 times,
resulting in 1060 duplicates. With the new algorithm these were placed
2410 times, resulting in 852 duplicates. Also, the mean CGU size dropped
from 9659.5 to 9200.1, and the CGU size distribution tightened, with the
biggest one a little smaller and the smallest ones a little bigger.
Restrict recursive opaque type check
We have a recursive opaque check in writeback to avoid inferring the hidden of an opaque type to be itself:
33a2c2487a/compiler/rustc_hir_typeck/src/writeback.rs (L556-L575)
Issue #113619 treats `make_option2` as not defining the TAIT `TestImpl` since it is inferred to have the definition `TestImpl := B<TestImpl>`, which fails this check. This regressed in #102700 (5d15beb591), I think due to the refactoring that made us record the hidden types of TAITs during writeback.
However, nothing actually seems to go bad if we relax this recursion checker to only check for directly recursive definitions. This PR fixes#113619 by changing this recursive check from being a visitor to just checking that the hidden type is exactly the same as the opaque being inferred.
Alternatively, we may be able to fix#113619 by restricting this recursion check only to RPITs/async fns. It seems to only be possible to use misuse the recursion check to cause ICEs for TAITs (though I didn't try too hard to create a bad RPIT example... may be possible, actually.)
r? `@oli-obk`
--
Fixes#113314
Fix removal span calculation of `unused_qualifications` suggestion
Given a path such as `std::ops::Index<str>`, calculate the unnecessary qualification removal span by computing the beginning of the entire span until the ident span of the last path segment, which handles generic arguments and lifetime arguments in the last path segment. Previous logic only kept the ident span of the last path segment which is incorrect.
Closes#113808.
Safe Transmute: Fix ICE (due to UnevaluatedConst)
This patch updates the code that looks at the `Assume` type when evaluating if transmutation is possible. An ICE was being triggered in the case that the `Assume` parameter contained an unevaluated const (in this test case, due to a function with missing parameter names).
Fixes#110892
Rename `arg_iter` to `iter_instantiated`
`arg_iter` doesn't make sense, and doesn't really indicate what it's doing (returning an iterator that ~~substitutes~~ instantiates its elements).
`iter_instantiated_copied` is kinda awkward but i don't really wanna bikeshed it.
r? `@oli-obk`
Add x86_64-unknown-linux-ohos target
This complements the existing `aarch64-unknown-linux-ohos` and `armv7-unknown-linux-ohos` targets.
This should be covered by the existing MCP (https://github.com/rust-lang/compiler-team/issues/568), but I can also create a new MCP if that is preferred.
When dlltool fails, show the full command that was executed. In
particular, llvm-dlltool is not very helpful, printing a generic usage
message rather than what actually went wrong, so stdout and stderr
aren't of much use when troubleshooting.
miri: fail when calling a function that requires an unavailable target feature
miri will report an UB when calling a function that has a `#[target_feature(enable = ...)]` attribute is called and the required feature is not available.
"Available features" are the same that `is_x86_feature_detected!` (or equivalent) reports to be available during miri execution (which can be enabled or disabled with the `-C target-feature` flag).
This patch updates the code that looks at the `Assume` type when evaluating if
transmutation is possible. An ICE was being triggered in the case that the
`Assume` parameter contained an unevaluated const (in this test case, due to a
function with missing parameter names).
Fixes#110892
CI: build CMake 3.20 to support LLVM 17
LLVM 17 will require CMake at least 3.20, so we have to go back to building our own CMake on the Linux x64 dist builder.
r? `@nikic`
Generate safe stable code for derives on empty enums
Generate `match *self {}` instead of `unsafe { core::intrinsics::unreachable() }`.
This is:
1. safe
2. stable
for the benefit of everyone looking at these derived impls through `cargo expand`.
[Both expansions compile to the same code at all optimization levels (including `0`).](https://rust.godbolt.org/z/P79joGMh3)
Add a sparc-unknown-none-elf target.
# `sparc-unknown-none-elf`
**Tier: 3**
Rust for bare-metal 32-bit SPARC V7 and V8 systems, e.g. the Gaisler LEON3.
## Target maintainers
- Jonathan Pallant, `jonathan.pallant@ferrous-systems.com`, https://ferrous-systems.com
## Requirements
> Does the target support host tools, or only cross-compilation?
Only cross-compilation.
> Does the target support std, or alloc (either with a default allocator, or if the user supplies an allocator)?
Only tested with `libcore` but I see no reason why you couldn't also support `liballoc`.
> Document the expectations of binaries built for the target. Do they assume
specific minimum features beyond the baseline of the CPU/environment/etc? What
version of the OS or environment do they expect?
Tested by linking with a standard SPARC bare-metal toolchain - specifically I used the [BCC2] toolchain from Gaisler (both GCC and clang variants, both pre-compiled for x64 Linux and compiling my own SPARC GCC from source to run on `aarch64-apple-darwin`).
The target is set to use the lowest-common-denominator `SPARC V7` architecture (yes, they started at V7 - see [Wikipedia](https://en.wikipedia.org/wiki/SPARC#History)).
[BCC2]: https://www.gaisler.com/index.php/downloads/compilers
> Are there notable `#[target_feature(...)]` or `-C target-feature=` values that
programs may wish to use?
`-Ctarget-cpu=v8` adds the instructions added in V8.
`-Ctarget-cpu=leon3` adds the V8 instructions and sets up scheduling to suit the Gaisler LEON3.
> What calling convention does `extern "C"` use on the target?
I believe this is defined by the SPARC architecture reference manuals and V7, V8 and V9 are all compatible.
> What format do binaries use by default? ELF, PE, something else?
ELF
## Building the target
> If Rust doesn't build the target by default, how can users build it? Can users
just add it to the `target` list in `config.toml`?
Yes. I did:
```toml
target = ["aarch64-apple-darwin", "sparc-unknown-none-elf"]
```
## Building Rust programs
> Rust does not yet ship pre-compiled artifacts for this target. To compile for
this target, you will either need to build Rust with the target enabled (see
"Building the target" above), or build your own copy of `core` by using
`build-std` or similar.
Correct.
## Testing
> Does the target support running binaries, or do binaries have varying
expectations that prevent having a standard way to run them?
No - it's a bare metal platform.
> If users can run binaries, can they do so in some common emulator, or do they need native
hardware?
But if you use [BCC2] as the linker, you get default memory map suitable for the LEON3, and a default BSP for the LEON3, and so you can run the binaries in the `tsim-leon3` simulator from Gaisler.
```console
$ cat .cargo/config.toml | grep runner
runner = "tsim-leon3 -c sim-commands.txt"
$ cat sim-commands.txt
run
quit
$ cargo +sparcrust run --targe=sparc-unknown-none-elf
Compiling sparc-demo-rust v0.1.0 (/work/sparc-demo-rust)
Finished dev [unoptimized + debuginfo] target(s) in 3.44s
Running `tsim-leon3 -c sim-commands.txt target/sparc-unknown-none-elf/debug/sparc-demo-rust`
TSIM3 LEON3 SPARC simulator, version 3.1.9 (evaluation version)
Copyright (C) 2023, Frontgrade Gaisler - all rights reserved.
This software may only be used with a valid license.
For latest updates, go to https://www.gaisler.com/
Comments or bug-reports to support@gaisler.com
This TSIM evaluation version will expire 2023-11-28
Number of CPUs: 2
system frequency: 50.000 MHz
icache: 1 * 4 KiB, 16 bytes/line (4 KiB total)
dcache: 1 * 4 KiB, 16 bytes/line (4 KiB total)
Allocated 8192 KiB SRAM memory, in 1 bank at 0x40000000
Allocated 32 MiB SDRAM memory, in 1 bank at 0x60000000
Allocated 8192 KiB ROM memory at 0x00000000
section: .text, addr: 0x40000000, size: 104400 bytes
section: .rodata, addr: 0x400197d0, size: 15616 bytes
section: .data, addr: 0x4001d4d0, size: 1176 bytes
read 1006 symbols
Initializing and starting from 0x40000000
Hello, this is Rust!
PANIC: PanicInfo { payload: Any { .. }, message: Some(I am a panic), location: Location { file: "src/main.rs", line: 33, col: 5 }, can_unwind: true }
Program exited normally on CPU 0.
```
> Does the target support running the Rust testsuite?
I don't think so, the testsuite requires `libstd` IIRC.
## Cross-compilation toolchains and C code
> Does the target support C code?
Yes.
> If so, what toolchain target should users use to build compatible C code? (This may match the target triple, or it may be a toolchain for a different target triple, potentially with specific options or caveats.)
I suggest [BCC2] from Gaisler. It comes in both GCC and Clang variants.
Use u64 for incr comp allocation offsets
Fixes https://github.com/rust-lang/rust/issues/76037
Fixes https://github.com/rust-lang/rust/issues/95780
Fixes https://github.com/rust-lang/rust/issues/111613
These issues are all reporting ICEs caused by using `u32` to store offsets to allocations in the incremental compilation cache. This PR aims to lift that limitation by changing the offset type in question to `u64`.
There are two perf runs in this PR. The first reports a regression, and the second does not. The changes are the same in both. I rebased the PR then did the second perf run because I noticed that the primary regression in it was very commonly seen in spurious regression reports.
I do not know what the perf run will report when this is merged. I would not be surprised to see regression or neutral, but the cachegrind diffs for the regression point at `try_mark_previous_green` which is a common source of inexplicable regressions and I don't think should be perturbed by this PR.
I'm not opposed to adding a regression test such as
```rust
fn main() {
println!("{}", [37; 1 << 30].len());
}
```
But that program takes 1 minute to compile and consumes 4.6 GB of memory then writes that much to disk. Is that a concerning amount of resource use for a test?
r? `@nnethercote`
Streamline size estimates (take 2)
This was merged in #113684 but then [something happened](https://github.com/rust-lang/rust/pull/113684#issuecomment-1636811985):
> There has been a bors issue that lead to the merge commit of this PR getting purged from master.
> You'll have to make a new PR to reapply it.
So this is exactly the same changes.
`@bors` r=wesleywiser
Add support for inherent projections in new solver
Not hard to support these, and it cuts out a really big chunk of failing UI tests with `--compare-mode=next-solver`
r? `@lcnr` (feel free to reassign, anyone can review this)
They're quite rare, and ignoring them simplifies things quite a bit, and
further reduces the number of calls to `MonoItem::size_estimate` to the
number of placed items (one per root item, and one or more per reachable
inlined item).
This means we call `MonoItem::size_estimate` (which involves a query)
less often: just once per mono item, and then once more per inline item
placement. After that we can reuse the stored value as necessary. This
means `CodegenUnit::compute_size_estimate` is cheaper.
Generate `match *self {}` instead of `unsafe { core::intrinsics::unreachable() }`.
This is:
1. safe
2. stable
for the benefit of everyone looking at these derived impls through `cargo expand`.
Both expansions compile to the same code at all optimization levels (including `0`).
Don't call `predicate_must_hold`-esque functions during fulfillment in intercrate
Fixes#113415
Given that this only happens in `translate_substs`, I don't actually think that this is something that you can weaponize, but it's still sketchy regardless.
r? `@lcnr`
Check entry type as part of item type checking.
This code is currently executed inside the root `analysis` query.
Instead, check it during `check_for_entry_fn(CRATE_DEF_ID)` to hopefully avoid some re-executions.
`CRATE_DEF_ID` is chosen by considering that entry fn are typically at crate root, so the corresponding HIR should already be in the dependencies.
Add `#[rustc_confusables]` attribute to allow targeted "no method" error suggestions on standard library types
After this PR, the standard library developer can annotate methods on e.g. `BTreeSet::push` with `#[rustc_confusables("insert")]`. When the user mistypes `btreeset.push()`, `BTreeSet::insert` will be suggested if there are no other candidates to suggest. This PR lays the foundations for contributors to add `rustc_confusables` annotations to standard library types for targeted suggestions, as specified in #59450, or to address cases such as #108437.
### Example
Assume `BTreeSet` is the standard library type:
```
// Standard library definition
#![feature(rustc_attrs)]
struct BTreeSet;
impl BTreeSet {
#[rustc_confusables("push")]
fn insert(&self) {}
}
// User code
fn main() {
let x = BTreeSet {};
x.push();
}
```
A new suggestion (which has lower precedence than suggestions for misspellings and only is shown when there are no misspellings suggestions) will be added to hint the user maybe they intended to write `x.insert()` instead:
```
error[E0599]: no method named `push` found for struct `BTreeSet` in the current scope
--> test.rs:12:7
|
3 | struct BTreeSet;
| --------------- method `push` not found for this struct
...
12 | x.push();
| ^^^^ method not found in `BTreeSet`
|
help: you might have meant to use `insert`
|
12 | x.insert();
| ~~~~~~
error: aborting due to previous error
```
LLVM has a neat [statistics] feature that tracks how often optimizations kick
in. It's very handy for optimization work. Since we expose the LLVM pass
timings, I thought it made sense to expose the LLVM statistics too.
[statistics]: https://llvm.org/docs/ProgrammersManual.html#the-statistic-class-stats-option
Hide `compiler_builtins` in the prelude
This crate is a private implementation detail. We only need to insert it into the crate graph for linking and should not expose any of its public API.
Fixes#113533
"no method" errors on standard library types
The standard library developer can annotate methods on e.g.
`BTreeSet::push` with `#[rustc_confusables("insert")]`. When the user
mistypes `btreeset.push()`, `BTreeSet::insert` will be suggested if
there are no other candidates to suggest.
De-duplicate consecutive libs when printing native-static-libs
This PR adds a de-duplicate step just before printing the `native-static-libs`.
This step de-duplicates all the consecutive libs based only on the relevant comparison elements (this exclude spans, ast elements, ...).
Fixes https://github.com/rust-lang/rust/issues/113209
Remove `LLVMRustCoverageHashCString`
Coverage has two FFI functions for computing the hash of a byte string. One takes a ptr/len pair (`LLVMRustCoverageHashByteArray`), and the other takes a NUL-terminated C string (`LLVMRustCoverageHashCString`).
But on closer inspection, the C string version is unnecessary. The calling-side code converts a Rust `&str` into a `CString`, and the C++ code then immediately turns it back into a ptr/len string before actually hashing it. So we can just call the ptr/len version directly instead.
---
This PR also fixes a bug in the C++ declaration of `LLVMRustCoverageHashByteArray`. It should be `size_t`, since that's what is declared and passed on the Rust side, and it's what `StrRef`'s constructor expects to receive on the callee side.
miri will report an UB when calling a function that has a `#[target_feature(enable = ...)]` attribute is called and the required feature is not available.
"Available features" are the same that `is_x86_feature_detected!` (or equivalent) reports to be available during miri execution (which can be enabled or disabled with the `-C target-feature` flag).
Don't require each rustc_interface tool to opt-in to parallel_compiler
Previously, forgetting to call `interface::set_thread_safe_mode` would cause the following ICE:
```
thread 'rustc' panicked at 'uninitialized dyn_thread_safe mode!', /rustc/dfe0683138de0959b6ab6a039b54d9347f6a6355/compiler/rustc_data_structures/src/sync.rs:74:18
```
This calls `set_thread_safe_mode` in `interface::run_compiler` to avoid requiring it in the caller.
Fixes `tests/run-make-fulldeps/issue-19371` when parallel-compiler is enabled.
r? `@SparrowLii` cc https://github.com/rust-lang/rust/issues/75760
Implement "items do not inherit unsafety" note for THIR unsafeck
Implements the "items do not inherit unsafety from separate enclosing items" note from the MIR unsafety checker in the THIR unsafety checker (`-Z thir-unsafeck`) to maintain parity between the two unsafety checkers. The logic to find the separate enclosing item is nearly the same as in the MIR unsafety checker.
Structurally normalize in selection
We need to do this because of the fact that we're checking the `Ty::kind` on a type during selection, but goals passed into select are not necessarily normalized.
Right now, we're (kinda) unnecessarily normalizing the RHS of a trait upcasting goal, which is broken for different reasons (#113393). But I'm waiting for this PR to land before discussing that one.
r? `@lcnr`
Resurrect: rustc_target: Add alignment to indirectly-passed by-value types, correcting the alignment of byval on x86 in the process.
Same as #111551, which I [accidentally closed](https://github.com/rust-lang/rust/pull/111551#issuecomment-1571222612) :/
---
This resurrects PR #103830, which has sat idle for a while.
Beyond #103830, this also:
- fixes byval alignment for types containing vectors on Darwin (see `tests/codegen/align-byval-vector.rs`)
- fixes byval alignment for overaligned types on x86 Windows (see `tests/codegen/align-byval.rs`)
- fixes ABI for types with 128bit requested alignment on ARM64 Linux (see `tests/codegen/aarch64-struct-align-128.rs`)
r? `@nikic`
---
`@pcwalton's` original PR description is reproduced below:
Commit 88e4d2c from five years ago removed
support for alignment on indirectly-passed arguments because of problems with
the `i686-pc-windows-msvc` target. Unfortunately, the `memcpy` optimizations I
recently added to LLVM 16 depend on this to forward `memcpy`s. This commit
attempts to fix the problems with `byval` parameters on that target and now
correctly adds the `align` attribute.
The problem is summarized in [this comment] by `@eddyb.` Briefly, 32-bit x86 has
special alignment rules for `byval` parameters: for the most part, their
alignment is forced to 4. This is not well-documented anywhere but in the Clang
source. I looked at the logic in Clang `TargetInfo.cpp` and tried to replicate
it here. The relevant methods in that file are
`X86_32ABIInfo::getIndirectResult()` and
`X86_32ABIInfo::getTypeStackAlignInBytes()`. The `align` parameter attribute
for `byval` parameters in LLVM must match the platform ABI, or miscompilations
will occur. Note that this doesn't use the approach suggested by eddyb, because
I felt it was overkill to store the alignment in `on_stack` when special
handling is really only needed for 32-bit x86.
As a side effect, this should fix#80127, because it will make the `align`
parameter attribute for `byval` parameters match the platform ABI on LLVM
x86-64.
[this comment]: #80822 (comment)
Allow escaping bound vars during `normalize_erasing_regions` in new solver
Add `AllowEscapingBoundVars` to `deeply_normalize`, and use it in the new solver in the `query_normalize` routine.
Ideally, we'd make all `query_normalize` calls handle pass in `AllowEscapingBoundVars` individually, because really the only `query_normalize` call that needs `AllowEscapingBoundVars::Yes` is the one in `try_normalize_generic_arg_after_erasing_regions`, but I think that's kind of overkill. I am happy to be convinced otherwise, though.
r? `@lcnr`
Rollup of 9 pull requests
Successful merges:
- #113599 (Use maybe_body_owned_by for multiple suggestions)
- #113662 (Rename VecDeque's `rotate_left` and `rotate_right` parameters)
- #113681 (rustdoc-json: Add test for private supertrait.)
- #113682 (trait system refactor ping: also apply to nested modules of `solve`)
- #113685 (Print artifact sizes in `opt-dist`)
- #113688 (llvm-wrapper: update for LLVM API change)
- #113692 (tests: adapt for removal of -opaque-pointers in LLVM 17)
- #113698 (Make it clearer that we're just checking for an RPITIT)
- #113699 (update Miri)
Failed merges:
- #113625 (Structurally normalize in selection)
r? `@ghost`
`@rustbot` modify labels: rollup
Make it clearer that we're just checking for an RPITIT
Tiny nit to use `is_impl_trait_in_trait` more, to make it clearer that we're just checking whether a def-id is an RPITIT, rather than doing something meaningful with the `opt_rpitit_info`.
r? `@spastorino`
Use maybe_body_owned_by for multiple suggestions
This is a continued work from https://github.com/rust-lang/rust/pull/113567
We have several other suggestions not working for closure, this PR use `maybe_body_owned_by` to fix them and add test cases for them.
This crate is a private implementation detail. We only need to insert it
into the crate graph for linking and should not expose any of its public
API.
Fixes#113533
refactor(rustc_middle): Substs -> GenericArg
resolves#110793
- [x] rename `SubstsRef` and `InternalSubsts` to `GenericArgsRef<'tcx>` and `GenericArgs<'tcx>`.
- [x] rename variables and fields currently using `substs` to `args`.
- [x] update the module name of `ty::subst` to `ty::generic_args` or sth. Make that module private and publicly reexport its content in the ty module.
- [x] rename `EarlyBinder::subst(_identity)` to `EarlyBinder::instantiate(_identity)`.
- [x] types called `[a-zA-Z]+Substs` renamed to `XArgs`.
- [x] functions containing `substs` now use `args` or `generic_args` (mostly the former).
However, the verb of "substituting" is still being used here and there, mostly in comments. I think that can be a separate PR as part of https://github.com/rust-lang/rust/issues/110254 to change the verb to `replace_generics` or something similar.
bootstrap: update defaults for `compiler` and `library` aliases
* `x doc compiler` now documents all of compiler, not just `rustc_driver`.
* `x doc` with compiler docs enabled now includes `rustc-main` and `rustc_smir`. `rustc_codegen_llvm` is only included if the LLVM backend is enabled, which is the default.
* `x doc library` now excludes `sysroot`.
* `x check compiler` and `x check library` now properly check tests/benches/examples of all compiler or library crates, respectively. Note that `x check compiler` will check the library artifacts, but not tests.
fixes the fallout from https://github.com/rust-lang/rust/pull/111955, cc `@jyn514`
Enable potential_query_instability lint in rustc_hir_typeck.
Fix linting errors by using `FxIndex(Map|Set)` and `Unord(Map|Set)` as appropriate. Part of [MCP 533](https://github.com/rust-lang/compiler-team/issues/533).
I really like the `potential_query_instability` lint!
r? `@lcnr`
Add a cache for `maybe_lint_level_root_bounded`
`maybe_lint_level_root_bounded` is called many times and traces node sub-paths many times. This PR adds a cache that lets many of these tracings be skipped, avoiding lots of calls to functions like `Map::attrs` and `Map::parent_id`.
r? `@cjgillot`
make MCP510 behavior opt-in to avoid conflicts between the CLI and target flavors
Fixes#113597, which contains more details on how this happens through the code, and showcases an unexpected `Gnu(Cc::Yes, Lld::Yes)` flavor.
#112910 added support to use `lld` when the flavor requests it, but didn't explicitly do so only when using `-Clink-self-contained=+linker` or one of the unstable `-Clinker-flavor`s.
The problem: some targets have a `lld` linker and flavor, e.g. `thumbv6m-none-eabi` from that issue. Users can override the linker but there are no linker flavors precise enough to describe the linker opting out of lld: when using `-Clinker=arm-none-eabi-gcc`, we infer this is a `Cc::Yes` linker flavor, but the `lld` component is unknown and therefore defaulted to the target's linker flavor, `Lld::Yes`.
<details>
<summary>Walkthrough of how this happens</summary>
The linker flavor used is a mix between what can be inferred from the CLI (`-C linker`) and the target's default linker flavor:
- there is no linker flavor on the CLI (and that also offers another workaround on nightly: `-C linker-flavor=gnu-cc -Zunstable-options`), so it will have to be inferred [from here](5dac6b320b/compiler/rustc_codegen_ssa/src/back/link.rs (L1334-L1336)) to [here](5dac6b320b/compiler/rustc_codegen_ssa/src/back/link.rs (L1321-L1327)).
- in [`infer_linker_hints`](5dac6b320b/compiler/rustc_target/src/spec/mod.rs (L320-L352)) `-C linker=arm-none-eabi-gcc` infers a `Some(Cc::Yes)` cc hint, and no hint about lld.
- the target's `linker_flavor` is combined in `with_cli_hints` with these hints. We have our `Cc::Yes`, but there is no hint about lld, [so the target's flavor `lld` component is used](5dac6b320b/compiler/rustc_target/src/spec/mod.rs (L356-L358)). It's [`Gnu(Cc::No, Lld::Yes)`](993deaa0bf/compiler/rustc_target/src/spec/thumb_base.rs (L35)).
- so we now have our `Gnu(Cc::Yes, Lld::Yes)` flavor
</details>
This results in a `Gnu(Cc::Yes, Lld::Yes)` flavor on a non-lld linker, causing an additional unexpected `-fuse-ld=lld` argument to be passed.
I don't know if this target defaulting to `rust-lld` is expected, but until MCP510's new linker flavor are stable, when people will be able to describe their linker/flavor accurately, this PR keeps the stable behavior of not doing anything when the linker/flavor on the CLI unexpectedly conflict with the target's.
I've tested this on a `no_std` `-C linker=arm-none-eabi-gcc -C link-arg=-nostartfiles --target thumbv6m-none-eabi` example, trying to simulate one of `cortex-m`'s test mentioned in issue #113597 (I don't know how to build a local complete `thumbv6m-none-eabi` toolchain to run the exact test), and checked that `-fuse-lld` was indeed gone and the error disappeared.
r? `````@petrochenkov`````
refactor proof tree formatting
mostly:
- handle indentation via a separate formatter
- change nested to use a closure
tested it after rebasing on top of #113536 and everything looks good.
r? `````@BoxyUwU`````
Make Placeholder, GeneratorWitness*, Infer and Error unreachable on SMIR rustc_ty_to_ty
Let's remove these todos to not confuse ``@ericmarkmartin`` if they pick some conversion up.
r? ``@oli-obk``
Implement selection for `Unsize` for better coercion behavior
In order for much of coercion to succeed, we need to be able to deal with partial ambiguity of `Unsize` traits during selection. However, I pessimistically implemented selection in the new trait solver to just bail out with ambiguity if it was a built-in impl:
9227ff28af/compiler/rustc_trait_selection/src/solve/eval_ctxt/select.rs (L126)
This implements a proper "rematch" procedure for dealing with built-in `Unsize` goals, so that even if the goal is ambiguous, we are able to get nested obligations which are used in the coercion selection-like loop:
9227ff28af/compiler/rustc_hir_typeck/src/coercion.rs (L702)
Second commit just moves a `resolve_vars_if_possible` call to fix a bug where we weren't detecting a trait upcasting to occur.
r? ``@lcnr``
Coverage has two FFI functions for computing the hash of a byte string. One
takes a ptr/len pair, and the other takes a NUL-terminated C string.
But on closer inspection, the C string version is unnecessary. The calling-side
code converts a Rust `&str` into a C string, and the C++ code then immediately
turns it back into a ptr/len string before actually hashing it.
The function body immediately treats it as a slice anyway, so this just makes
it possible to call the hash function with arbitrary read-only byte slices.
(re-)tighten sourceinfo span of adjustments in MIR
Diagnostics rely on the spans of MIR statements being (approximately) correct in order to give suggestions relative to that span (i.e. `shrink_to_hi` and `shrink_to_lo`).
I discovered that we're *intentionally* lowering THIR exprs with their parent expr's span if they come from adjustments that are due to a parent expression. While I understand why that may be desirable to demonstrate the relationship of an adjustment and the expression that requires it, it leads to
1. very verbose borrowck output
2. incorrect spans for suggestions
Some diagnostics get around that by giving suggestions relative to other spans we've collected during MIR lowering, such as the span of the method's identifier (e.g. `name` in `.name()`), but this doesn't work too well when things come from desugaring.
I assume it also has lead to numerous tweaks and complications to diagnostics code down the road, which this PR doesn't necessarily aim to fix but may open the gates to fixing later... The last three commits are simplifications due to the fact that we can assume that the move span actually points to what is being moved (and a test).
This regressed in #89110, which was debated somewhat in #90286. cc `@Aaron1011` who originally made this change.
r? diagnostics
Fixes#113547Fixes#111016
miri: protect Move() function arguments during the call
This gives `Move` operands a meaning specific to function calls:
- for the duration of the call, the place the operand comes from is protected, making all read and write accesses insta-UB.
- the contents of that place are reset to `Uninit`, so looking at them again after the function returns, we cannot observe their contents
Turns out we can replace the existing "retag return place" hack with the exact same sort of protection on the return place, which is nicely symmetric.
Fixes https://github.com/rust-lang/rust/issues/112564
Fixes https://github.com/rust-lang/miri/issues/2927
This starts with a Miri rustc-push, since we'd otherwise conflict with a PR that recently landed in Miri.
(The "miri tree borrows" commit is an unrelated cleanup I noticed while doing the PR. I can remove it if you prefer.)
r? `@oli-obk`
Previously, forgetting to call `interface::set_thread_safe_mode` would cause the following ICE:
```
thread 'rustc' panicked at 'uninitialized dyn_thread_safe mode!', /rustc/dfe0683138de0959b6ab6a039b54d9347f6a6355/compiler/rustc_data_structures/src/sync.rs:74:18
```
This calls `set_thread_safe_mode` in `interface::run_compiler` to avoid requiring it in the caller.
Fixes `tests/run-make-fulldeps/issue-19371` when parallel-compiler is enabled.
Introduce `trait DebugWithInfcx` to debug format types with universe info
Seeing universes of infer vars is valuable for debugging but currently we have no way of easily debug formatting a type with the universes of all the infer vars shown. In the future I hope to augment the new solver's proof tree output with a `DebugWithInfcx` impl so that it can show universes but I left that out of this PR as it would be non trivial and this is already large and complex enough.
The goal here is to make the various abstractions taking `T: Debug` able to use the codepath for printing out universes, that way we can do `debug!("{:?}", my_x)` and have `my_x` have universes shown, same for the `write!` macro. It's not possible to put the `Infcx: InferCtxtLike<I>` into the formatter argument to `Debug::fmt` so it has to go into the self ty. For this we introduce the type `OptWithInfcx<I: Interner, Infcx: InferCtxtLike<I>, T>` which has the data `T` optionally coupled with the infcx (more on why it's optional later).
Because of coherence/orphan rules it's not possible to write the impl `Debug for OptWithInfcx<..., MyType>` when `OptWithInfcx` is in a upstream crate. This necessitates a blanket impl in the crate defining `OptWithInfcx` like so: `impl<T: DebugWithInfcx> Debug for OptWithInfcx<..., T>`. It is not intended for people to manually call `DebugWithInfcx::fmt`, the `Debug` impl for `OptWithInfcx` should be preferred.
The infcx has to be optional in `OptWithInfcx` as otherwise we would end up with a large amount of code duplication. Almost all types that want to be used with `OptWithInfcx` do not themselves need access to the infcx so if we were to not optional we would end up with large `Debug` and `DebugWithInfcx` impls that were practically identical other than that when formatting their fields we wrap the field in `OptWithInfcx` instead of formatting it alone.
The only types that need access to the infcx themselves are ty/const/region infer vars, everything else is implemented by having the `Debug` impl defer to `OptWithInfcx` with no infcx available. The `DebugWithInfcx` impl is pretty much just the standard `Debug` impl except that instead of recursively formatting fields with `write!(f, "{x:?}")` we must do `write!(f, "{:?}", opt_infcx.wrap(x))`. This is some pretty rough boilerplate but I could not think of an alternative unfortunately.
`OptWithInfcx::wrap` is an eager `Option::map` because 99% of callsites were discarding the existing data in `OptWithInfcx` and did not need lazy evaluation.
A trait `InferCtxtLike` was added instead of using `InferCtxt<'tcx>` as we need to implement `DebugWithInfcx` for types living in `rustc_type_ir` which are generic over an interner and do not have access to `InferCtxt` since it lives in `rustc_infer`. Additionally I suspect that adding universe info to new solver proof tree output will require an implementation of `InferCtxtLike` for something that is not an `InferCtxt` although this is not the primary motivaton.
---
To summarize:
- There is a type `OptWithInfcx` which bundles some data optionally with an infcx with allows us to pass an infcx into a `Debug` impl. It's optional instead of being there unconditionally so that we can share code for `Debug` and `DebugWithInfcx` impls that don't care about whether there is an infcx available but have fields that might care.
- There is a trait `DebugWithInfcx` which allows downstream crates to add impls of the form `Debug for OptWithInfcx<...>` which would normally be forbidden by orphan rules/coherence.
- There is a trait `InferCtxtLike` to allow us to implement `DebugWithInfcx` for types that live in `rustc_type_ir`
This allows debug formatting various `ty::*` structures with universes shown by using the `Debug` impl for `OptWithInfcx::new(ty, infcx)`
---
This PR does not add `DebugWithInfcx` impls to absolutely _everything_ that should realistically have them, for example you cannot use `OptWithInfcx<Obligation<Predicate>>`. I am leaving this to a future PR to do so as it would likely be a lot more work to do.
Rollup of 4 pull requests
Successful merges:
- #112717 (Implement a few more rvalue translation to smir)
- #113310 (Don't suggest `impl Trait` in path position)
- #113497 (Support explicit 32-bit MIPS ABI for the synthetic object)
- #113560 (Lint against misplaced where-clauses on associated types in traits)
r? `@ghost`
`@rustbot` modify labels: rollup
Lint against misplaced where-clauses on associated types in traits
Extends the scope of the lint `deprecated_where_clause_location` (#89122) from associated types in impls to associated types in any location (impl or trait). This is only relevant for `#![feature(associated_type_defaults)]`. Previously we didn't warn on the following code for example:
```rs
#![feature(associated_type_defaults)]
trait Trait { type Assoc where u32: Copy = (); }
```
Personally I would've preferred to emit a *hard* error here instead of a lint warning since the feature is unstable but unfortunately we are constrained by back compat as associated type defaults won't necessarily trigger the feature-gate error if they are inside of a macro call (since they use a post-expansion feature-gate due to historical reasons, see also #66004).
I've renamed and moved related preexisting tests: 1. They test AST validation passes not the parser & thus shouldn't live in `parser/` (historical reasons?). 2. One test file was named after type aliases even though it tests assoc tys.
`@rustbot` label A-lint
Support explicit 32-bit MIPS ABI for the synthetic object
PR #95604 introduced a "synthetic object file to ensure all exported and used symbols participate in the linking". One constraint on this file is that for MIPS-based targets, its architecture-specific ELF flags must be the same as all other object files passed to the linker. That's enforced by LLD, here:
https://github.com/llvm/llvm-project/blob/llvmorg-16.0.6/lld/ELF/Arch/MipsArchTree.cpp#L77
The current approach to determining e_flags for 32-bit was implemented in PR #96930, which links to this issue that summarizes the problem well: https://github.com/ayrtonm/psx-sdk-rs/issues/9
> ... the temporary object file is created with an e_flags which is
> invalid for 32-bit MIPS targets. The main issue is that it omits the ABI
> bits (EF_MIPS_ABI_O32) which implies it uses the N64 ABI.
To enable the N32 MIPS ABI (which succeeded O32), this patch enables setting the synthetic object's ABI based on the target "llvm-abiname" field, if it's given; otherwise, the O32 ABI is assumed for 32-bit MIPS targets.
More information about the N32 ABI can be found here: https://web.archive.org/web/20160121005457/http://techpubs.sgi.com/library/manuals/2000/007-2816-005/pdf/007-2816-005.pdf
Implement a few more rvalue translation to smir
Add the implementation for a few more RValue variants. For now, I simplified the stable version of `RValue::Ref` by removing the notion of Region.
r? `@oli-obk`
Structurally resolve in pattern matching when peeling refs in new solver
Let me know if you want me to commit the minimized test:
```rust
fn test() {}
fn test2() {}
fn main() {
let tests: &[(_, fn())] = &[
("test", test),
("test2", test2),
];
for (a, b) in tests {
todo!();
}
}
```
In that test above, the match scrutinee is `<std::vec::Iter<(&'static str, fn())> as Iterator>::Item`, which we cannot peel the refs from.
We also need to structurally resolve in the loop, since structural resolve is inherently shallow. I haven't come up with a test where this matters, but I can if you care.
Also, I removed two other calls to `resolve_vars_with_obligations` in diagnostics code that I'm pretty convinced are not useful.
r? `@lcnr`
Uplift `clippy::fn_null_check` lint
This PR aims at uplifting the `clippy::fn_null_check` lint into rustc.
## `incorrect_fn_null_checks`
(warn-by-default)
The `incorrect_fn_null_checks` lint checks for expression that checks if a function pointer is null.
### Example
```rust
let fn_ptr: fn() = /* somehow obtained nullable function pointer */
if (fn_ptr as *const ()).is_null() { /* ... */ }
```
### Explanation
Function pointers are assumed to be non-null, checking for their nullity is incorrect.
-----
Mostly followed the instructions for uplifting a clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
`@rustbot` label: +I-lang-nominated
r? compiler
Rewrite `UnDerefer`, again
This PR is intended to improve the perf regression introduced by #112882.
`UnDerefer` has been separated out again for borrowck reasons. It was a bit overzealous to remove it in the previous PR.
r? `@oli-obk`
- moved work from `find_local` to `gather_statement`
- created custom iterator for `iter_projections`
- reverted change from `IndexVec` to `FxIndexMap`
alignment of `byval` on x86 in the process.
Commit 88e4d2c291 from five years ago removed
support for alignment on indirectly-passed arguments because of problems with
the `i686-pc-windows-msvc` target. Unfortunately, the `memcpy` optimizations I
recently added to LLVM 16 depend on this to forward `memcpy`s. This commit
attempts to fix the problems with `byval` parameters on that target and now
correctly adds the `align` attribute.
The problem is summarized in [this comment] by @eddyb. Briefly, 32-bit x86 has
special alignment rules for `byval` parameters: for the most part, their
alignment is forced to 4. This is not well-documented anywhere but in the Clang
source. I looked at the logic in Clang `TargetInfo.cpp` and tried to replicate
it here. The relevant methods in that file are
`X86_32ABIInfo::getIndirectResult()` and
`X86_32ABIInfo::getTypeStackAlignInBytes()`. The `align` parameter attribute
for `byval` parameters in LLVM must match the platform ABI, or miscompilations
will occur. Note that this doesn't use the approach suggested by eddyb, because
I felt it was overkill to store the alignment in `on_stack` when special
handling is really only needed for 32-bit x86.
As a side effect, this should fix#80127, because it will make the `align`
parameter attribute for `byval` parameters match the platform ABI on LLVM
x86-64.
[this comment]: https://github.com/rust-lang/rust/pull/80822#issuecomment-829985417
Dynamically size sigaltstk in rustc
rustc installs a signal stack that assumes that MINSIGSTKSZ is a constant, unchanging value. Newer hardware undermines that assumption greatly, with register files larger than glibc's traditional static MINSIGSTKZ. Properly handle this so that it is correct on all supported Linux versions with all CPUs.
rustc installs a signal stack that assumes that
MINSIGSTKSZ is a constant, unchanging value.
Newer hardware undermines that assumption greatly,
with register files larger than MINSIGSTKZ.
Properly handle this so that it is correct on
all supported Linux versions with all CPUs.
Replace RPITIT current impl with new strategy that lowers as a GAT
This PR replaces the current implementation of RPITITs with the new implementation that we had under -Zlower-impl-trait-in-trait-to-assoc-ty flag that lowers the RPIT as a GAT on the trait and on the impls that implement that trait.
Opening this PR as a draft because this goes after #112682, ~#112981~ and ~#112983~.
As soon as those are merged, I can rebase and we should run perf, crater and test a lot.
r? `@compiler-errors`
Add filter with following segment while lookup typo for path
From the discussion: https://github.com/rust-lang/rust/pull/112917#discussion_r1239150173
Seems we can not get the assoc items for `Struct`, `Enum` in the resolving phase.
A obvious filter is avoid suggesting the same name with the following segment path.
Use `following_seg` can extend the function `smart_resolve_partial_mod_path_errors` for more scenarios, such as `std::sync_error::atomic::AtomicBool` in test case.
r? `@estebank`
PR #95604 introduced a "synthetic object file to ensure all exported and
used symbols participate in the linking". One constraint on this file is
that for MIPS-based targets, its architecture-specific ELF flags must be
the same as all other object files passed to the linker. That's enforced
by LLD, here:
https://github.com/llvm/llvm-project/blob/llvmorg-16.0.6/lld/ELF/Arch/MipsArchTree.cpp#L77
The current approach to determining e_flags for 32-bit was implemented
in PR #96930, which links to this issue that summarizes the problem well:
https://github.com/ayrtonm/psx-sdk-rs/issues/9
> ... the temporary object file is created with an e_flags which is
> invalid for 32-bit MIPS targets. The main issue is that it omits the ABI
> bits (EF_MIPS_ABI_O32) which implies it uses the N64 ABI.
To enable the N32 MIPS ABI (which succeeded O32), this patch enables
setting the synthetic object's ABI based on the target "llvm-abiname"
field, if it's given; otherwise, the O32 ABI is assumed for 32-bit MIPS
targets.
More information about the N32 ABI can be found here:
https://web.archive.org/web/20160121005457/http://techpubs.sgi.com/library/manuals/2000/007-2816-005/pdf/007-2816-005.pdf
Always name the return place.
MIR opts more and more consider `_0` as just another local, so there is no point in keeping the special case in debug-info logic.
Don't call `query_normalize` when reporting similar impls
Firstly, It's sketchy to be using `query_normalize` at all during HIR typeck -- it's asking for an ICE 😅. Secondly, we're normalizing an impl trait ref that potentially has parameter types in `ty::ParamEnv::empty()`, which is kinda sketchy as well.
The only UI test change from removing this normalization is that we don't evaluate anonymous constants in impls, which end up giving us really ugly suggestions:
```
error[E0277]: the trait bound `[X; 35]: Default` is not satisfied
--> /home/gh-compiler-errors/test.rs:4:5
|
4 | <[X; 35] as Default>::default();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Default` is not implemented for `[X; 35]`
|
= help: the following other types implement trait `Default`:
&[T]
&mut [T]
[T; 32]
[T; core::::array::{impl#30}::{constant#0}]
[T; core::::array::{impl#31}::{constant#0}]
[T; core::::array::{impl#32}::{constant#0}]
[T; core::::array::{impl#33}::{constant#0}]
[T; core::::array::{impl#34}::{constant#0}]
and 27 others
```
So just fold the impls with a `BottomUpFolder` that calls `ty::Const::eval`. This doesn't work totally correctly with generic-const-exprs, but it's fine for stable code, and this is error reporting after all.
Rollup of 7 pull requests
Successful merges:
- #112931 (Enable zlib in LLVM on aarch64-apple-darwin)
- #113158 (tests: unset `RUSTC_LOG_COLOR` in a test)
- #113173 (CI: include workflow name in concurrency group)
- #113335 (Reveal opaques in new solver)
- #113390 (CGU formation tweaks)
- #113399 (Structurally normalize again for byte string lit pat checking)
- #113412 (Add basic types to SMIR)
r? `@ghost`
`@rustbot` modify labels: rollup
Structurally normalize again for byte string lit pat checking
We need to structurally normalize the pointee of a match scrutinee when trying to match byte string patterns -- we used[^1] to call `structurally_resolve_type`, which errors for type vars[^2], but lcnr added `try_structurally_resolve_type`[^3] in the mean time, which is the right thing to use here since it's totally opportunistic.
Fixes rust-lang/trait-system-refactor-initiative#38
[^1]: #112428
[^2]: #112993
[^3]: #113086
Reveal opaques in new solver
We were testing against the wrong reveal mode 😨
Also a couple of misc commits that I don't want to really put in separate prs
r? ``@lcnr``
Rename `adjustment::PointerCast` and variants using it to `PointerCoercion`
It makes it sounds like the `ExprKind` and `Rvalue` are supposed to represent all pointer related casts, when in reality their just used to share a little enum variants. Make it clear there these are only coercions and that people who see this and think "why are so many pointer related casts not in these variants" aren't insane.
This enum was added in #59987. I'm not sure whether the variant sharing is actually worth it, but this at least makes it less confusing.
r? oli-obk
Rollup of 8 pull requests
Successful merges:
- #113413 (Add needs-triage to all new issues)
- #113426 (Don't ICE in `resolve_bound_vars` when associated return-type bounds are in bad positions)
- #113427 (Remove `variances_of` on RPITIT GATs, remove its one use-case)
- #113441 (miri: check that assignments do not self-overlap)
- #113453 (Remove unused from_method from rustc_on_unimplemented)
- #113456 (Avoid calling report_forbidden_specialization for RPITITs)
- #113466 (Update cargo)
- #113467 (Fix comment of `fn_can_unwind`)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove unused from_method from rustc_on_unimplemented
Fixes#113439
`on_unimplemented_note` was calling `item_name` for RPITITs and that produced ICEs. I've added a regression test for that but also have removed `from_method` symbol entirely because it wasn't even used and by doing that the `item_name` call was also removed.
r? ``@compiler-errors``
Remove `variances_of` on RPITIT GATs, remove its one use-case
It doesn't make sense to implement variances on a GAT anyways, since we don't relate GATs with variance:
85bf07972a/compiler/rustc_middle/src/ty/relate.rs (L569-L579)
r? ``@spastorino``
It makes it sound like the `ExprKind` and `Rvalue` are supposed to represent all pointer related
casts, when in reality their just used to share a some enum variants. Make it clear there these
are only coercion to make it clear why only some pointer related "casts" are in the enum.
Split `SelectionContext::select` into fns that take a binder and don't
*most* usages of `SelectionContext::select` don't need to use a binder, but wrap them in a dummy because of the signature. Let's split this out into `SelectionContext::{select,poly_select}` and limit the usages of the latter.
Right now, we only have 3 places where we're calling `poly_select` -- fulfillment, internally within the old solver, and the auto-trait finder.
r? `@lcnr`
Do not assert >1 RPITITs on collect_return_position_impl_trait_in_trait_tys
Fixes#113403
Assert on collect_return_position_impl_trait_in_trait_tys is not correct when we call it from type_of(GAT). The included test is an example of a situation that collector collects 0 types.
r? `@compiler-errors`
Prefer object candidates in new selection
`dyn Any` shouldn't be using [this implementation](https://doc.rust-lang.org/std/any/trait.Any.html#impl-Any-for-T) during codegen.
Prefer object candidates over other candidates, except for other object candidates.
Don't call `type_of` on TAIT in defining scope in new solver
It's *never* productive to call `consider_auto_trait_candidate` on a TAIT in the defining scope, since it will always lead to a query cycle since we call `type_of` on the TAIT. So let's just don't.
I've reserved this behavior just to `SolverMode::Normal` just to avoid any future problems, since this is *technically* incomplete since we're discarding a candidate that could *theoretically* apply. But given such candidate assembly *always* leads to a query cycle, I think it's relatively low risk, and I could be convinced otherwise and make this apply to both solver mode. I assume it's far less likely to be encountered in coherence, though.
This is much more likely to encounter in the new solver, though it can also be encountered in the old solver too, so I'm happy to discuss whether this new behavior we even want in the first place...
I encountered this in a couple of failing UI tests:
* `tests/ui/type-alias-impl-trait/issue-62000-associate-impl-trait-lifetimes.rs`
* `tests/ui/type-alias-impl-trait/issue-93411.rs`
r? `@lcnr`
Dont ICE for `dyn* Trait: Trait` (built-in object) goals during selection in new trait solver
We were ICEing too eagerly during selection for `dyn*` goals -- both for dyn unsizing candidates and for built-in object candidates. The former should only be performed on `dyn` objects, but the latter are totally fine.
Move `TyCtxt::mk_x` to `Ty::new_x` where applicable
Part of rust-lang/compiler-team#616
turns out there's a lot of places we construct `Ty` this is a ridiculously huge PR :S
r? `@oli-obk`
Rollup of 9 pull requests
Successful merges:
- #111119 (style-guide: Add chapter about formatting for nightly-only syntax)
- #112791 (llvm ffi: Expose `CallInst->setTailCallKind`)
- #113145 (style-guide: Document newline rules for assignment operators)
- #113163 (Add a regression test for #112895)
- #113332 (resolve: Use `Interned` for some interned structures)
- #113334 (Revert the lexing of `c"…"` string literals)
- #113350 (Fix the issue of wrong diagnosis for extern pub fn)
- #113371 (Fix submodule handling when the current branch is named after a tag)
- #113384 (style-guide: Clarify grammar for small patterns (not a semantic change))
r? `@ghost`
`@rustbot` modify labels: rollup
Revert the lexing of `c"…"` string literals
Fixes \[after beta-backport\] #113235.
Further progress is tracked in #113333.
This PR *manually* reverts parts of #108801 (since a git-revert would've been too coarse-grained & messy)
and git-reverts #111647.
CC `@fee1-dead` (#108801) `@klensy` (#111647)
r? `@compiler-errors`
`@rustbot` label F-c_str_literals beta-nominated
Specialize `try_destructure_mir_constant` for its sole user (pretty printing)
We can't remove the query, as we need to invoke it from rustc_middle, but can only implement it in mir interpretation/const eval.
r? `@RalfJung` for a first round.
While we could move all the logic into pretty printing, that would end up duplicating a bit of code with const eval, which doesn't seem great either.
Rollup of 8 pull requests
Successful merges:
- #113010 (rust-installer & rls: remove exclusion from rustfmt & tidy )
- #113317 ( -Ztrait-solver=next: stop depending on old solver)
- #113319 (`TypeParameterDefinition` always require a `DefId`)
- #113320 (Add some extra information to opaque type cycle errors)
- #113321 (Move `ty::ConstKind` to `rustc_type_ir`)
- #113337 (Winnow specialized impls during selection in new solver)
- #113355 (Move most coverage code out of `rustc_codegen_ssa`)
- #113356 (Add support for NetBSD/riscv64 aka. riscv64gc-unknown-netbsd.)
r? `@ghost`
`@rustbot` modify labels: rollup
Move most coverage code out of `rustc_codegen_ssa`
*This is one step in my larger coverage refactoring ambitions described at <https://github.com/rust-lang/compiler-team/issues/645>.*
The backend implementation of coverage instrumentation was originally split between SSA and LLVM, perhaps in the hopes that it could be used by other backends.
In practice, this split mostly just makes the coverage implementation harder to navigate and harder to modify. It seems unlikely that any backend will actually implement coverage instrumentation in the foreseeable future, especially since many parts of the existing implementation (outside the LLVM backend) are heavily tied to the specific details of LLVM's coverage instrumentation features.
The current shared implementation of `codegen_coverage` is heavily tied to the details of `StatementKind::Coverage`, which makes those details difficult to change. I have reason to want to change those details as part of future fixes/improvements, so this will reduce the amount of interface churn caused by those later changes.
---
This is intended to be a pure refactoring change, with no changes to actual behaviour. All of the “added” code has really just been moved from other files.
Winnow specialized impls during selection in new solver
We need to be able to winnow impls that are specialized by more specific impls in order for codegen to be able to proceed.
r? ``@lcnr``
Move `ty::ConstKind` to `rustc_type_ir`
Needed this in another PR for custom debug impls, and this will also be required to move the new solver into a separate crate that does not use `TyCtxt` so that r-a and friends can depend on the trait solver.
Rebased on top of #113325, only the second and third commits needs reviewing
Add some extra information to opaque type cycle errors
Plus a bunch of cleanups.
This should help users debug query cycles due to auto trait checking. We'll probably want to fix cycle errors in most (or all?) cases by looking at the current item's hidden types (new solver does this), and by delaying the auto trait checks to after typeck.
`TypeParameterDefinition` always require a `DefId`
the `None` case never actually reaches diagnostics so it feels better for diagnostics to be able to rely on the `DefId` being there, cc #113310
Effects/keyword generics MVP
This adds `feature(effects)`, which adds `const host: bool` to the generics of const functions, const traits and const impls. This will be used to replace the current logic around const traits.
r? `@oli-obk`
Don't require associated types with Self: Sized bounds in `dyn Trait` objects
Trait objects require *all* associated types to be specified, even if the associated type has an explicit `where Self: Sized` bound. The following snippet does not compile on master, but does with this PR.
```rust
fn _assert_is_object_safe(_: &dyn Foo) {}
pub trait Foo {
type Bar where Self: Sized;
}
```
In contrast, if a `Self: Sized` bound is added to a method, the methodjust isn't callable on trait objects, but the trait can be made object safe just fine.
```rust
fn _assert_is_object_safe(_: &dyn Foo) {}
pub trait Foo {
fn foo() where Self: Sized;
}
```
This PR closes this inconsistency (though it still exists for associated constants).
Additionally this PR adds a new lint that informs users they can remove associated type bounds from their trait objects if those associated type bounds have a `where Self: Sized` bound, and are thus useless.
r? `@compiler-errors`
Add simple markdown formatting to `rustc --explain` output
This is a second attempt at #104540, which is #63128 without dependencies.
This PR adds basic markdown formatting to `rustc --explain` output when available. Currently, the output just displays raw markdown: this works of course, but it really doesn't look very elegant. (output is `rustc --explain E0038`)
<img width="583" alt="image" src="https://github.com/rust-lang/rust/assets/13724985/ea418117-47af-455b-83c0-6fc59276efee">
After this patch, sample output from the same file:
<img width="693" alt="image" src="https://github.com/rust-lang/rust/assets/13724985/12f7bf9b-a3fe-4104-b74b-c3e5227f3de9">
This also obeys the `--color always/auto/never` command option. Behavior:
- If pager is available and supports color, print with formatting to the pager
- If pager is not available or fails print with formatting to stdout - otherwise without formatting
- Follow `--color always/never` if suppied
- If everything fails, just print plain text to stdout
r? `@oli-obk`
cc `@estebank`
(since the two of you were involved in the previous discussion)
add `ecx.probe_candidate`
Not yet changing the candidate source to an enum because that would be more involved, but this by itself should already be a significant improvement imo
r? `@BoxyUwU`
Rollup of 5 pull requests
Successful merges:
- #113192 (`assemble_candidates_after_normalizing_self_ty` docs)
- #113251 (Use scoped-tls for SMIR to map between TyCtxt and SMIR datastructures)
- #113282 (Update platform-support.md to improve ARM target descriptions)
- #113296 (add flag for enabling global cache usage for proof trees and printing proof trees on error)
- #113324 (implement `ConstEvaluatable` goals in new solver)
r? `@ghost`
`@rustbot` modify labels: rollup
Replace `mk_const` with `Const::new_x` methods
Part of rust-lang/compiler-team#616. Instead of just havign `Const::new(` and nothing else I did it like this since this is more like how the `mk_x` works for `Ty`, and also another PR of mine will require changing from `Const::new(` to `Const::new_x(` anyway.
r? `@oli-bok`
implement `ConstEvaluatable` goals in new solver
this only supports stable const generics. `feature(generic_const_exprs)` needs to extend that function is non-trivial ways. Leaving this for someone else or some later date.
r? `@BoxyUwU`
add flag for enabling global cache usage for proof trees and printing proof trees on error
This adds a few new things:
- `-Zdump-solver-proof-tree=always/never/on-error`
- `always`/`never` were previosuly specifiable by whether the flag exists or not, th new flag is `on_error` which reruns obligations of fulfillment and selection errors with proof tree generation enabled and prints them out
- `-Zdump-solver-proof-tree-uses-cache`
- allows forcing global cache to be used or unused for all generated proof trees, global cache is enabled by default for `always` so that it accurately represents what happend. This flag currently would affect misc uses of `GenerateProofTree::Yes` which will be added in the future for things like diagnostics logic and rustdoc's auto_trait file. We can fix this when we start using proof tree generation for those use cases if it's desirable.
I also changed the output to go straight to stdout instead of going through `debug!` so that `-Zdump-solver-proof-tree` can be adequately used on `nightly` not just a locally built toolchain.
The idea for `on-error` is that it should hopefully make it easier to quickly figure out "why doesnt this code compile"- you just pass in `-Zdump-solver-proof-tree=on-error` and you'll only get proof trees you care about.
---
r? `@lcnr` `@compiler-errors`
`assemble_candidates_after_normalizing_self_ty` docs
I already explained that in different places a few times, should have added that explanation as a doc comment the first time I did so :3
r? `@BoxyUwU`
Remove chalk support from the compiler
Removes chalk (`-Ztrait-solver=chalk`) from the compiler and prunes any dead code resulting from this, mainly:
* Remove the chalk compatibility layer in `compiler/rustc_traits/src/chalk`
* Remove the chalk flag `-Ztrait-solver=chalk` and its `TraitEngine` implementation
* Remove `TypeWellFormedFromEnv` (and its many `bug!()` match arms)
* Remove the chalk migration mode from compiletest
* Remove the `chalkify` UI tests (do we want to keep any of these, but migrate them to `-Ztrait-solver=next`??)
Fulfills rust-lang/types-team#93.
r? `@jackh726`
Upgrade to indexmap 2.0.0
The new version was already added to the tree as an indirect dependency
in #113046, but now our direct dependents are using it too.
Make RPITITs assume/require their parent method's predicates
Removes a FIXME from the `param_env` query where we were manually adding the parent function's predicates to the RPITIT's assumptions.
r? `@spastorino`
lint/ctypes: ext. abi fn-ptr in internal abi fn
Fixes#94223.
- In the improper ctypes lint, instead of skipping functions with internal ABIs, check that the signature doesn't contain any fn-ptr types with external ABIs that aren't FFI-safe.
- When computing the ABI for fn-ptr types, remove an `unwrap` that assumed FFI-safe types in foreign fn-ptr types.
- I'm not certain that this is the correct approach.
Currently, the output of `rustc --explain foo` displays the raw markdown in a
pager. This is acceptable, but using actual formatting makes it easier to
understand.
This patch consists of three major components:
1. A markdown parser. This is an extremely simple non-backtracking recursive
implementation that requires normalization of the final token stream
2. A utility to write the token stream to an output buffer
3. Configuration within rustc_driver_impl to invoke this combination for
`--explain`. Like the current implementation, it first attempts to print to
a pager with a fallback colorized terminal, and standard print as a last
resort.
If color is disabled, or if the output does not support it, or if printing
with color fails, it will write the raw markdown (which matches current
behavior).
Pagers known to support color are: `less` (with `-r`), `bat` (aka `catbat`),
and `delta`.
The markdown parser does not support the entire markdown specification, but
should support the following with reasonable accuracy:
- Headings, including formatting
- Comments
- Code, inline and fenced block (no indented block)
- Strong, emphasis, and strikethrough formatted text
- Links, anchor, inline, and reference-style
- Horizontal rules
- Unordered and ordered list items, including formatting
This parser and writer should be reusable by other systems if ever needed.
This reverts commit b913f5593d.
CI builds with profile=nightly, causing different test output.
Making the output depend on the release channel was not a great idea.
Extend previous checks for external ABI fn-ptrs to use in internal
statics, constants, type aliases and algebraic data types.
Signed-off-by: David Wood <david.wood@huawei.com>
Extend previous commit's support for checking for external fn-ptrs in
internal fn types to report errors for multiple found fn-ptrs.
Signed-off-by: David Wood <david.wood@huawei.com>
Instead of skipping functions with internal ABIs, check that the
signature doesn't contain any fn-ptr types with external ABIs that
aren't FFI-safe.
Signed-off-by: David Wood <david.wood@huawei.com>
implement deep normalization via the new solver
together with #112869 this should remove all uses of the old solver with `-Ztrait-solver=next`.
see https://hackmd.io/V0qsUB_fTxexfQO_pcOcrg for a description of this PR. Will move that doc to the `rustc-dev-guide` after merging this.
r? `@compiler-errors`
Rollup of 3 pull requests
Successful merges:
- #113253 (Fixed documentation of from<CString> for Rc<CStr>: Arc -> Rc)
- #113258 (Migrate GUI colors test to original CSS color format)
- #113259 (Suggest `x build library` for a custom toolchain that fails to load `core`)
r? `@ghost`
`@rustbot` modify labels: rollup
Rewrite `UnDerefer`
Currently, `UnDerefer` is used by drop elaboration to undo the effects of the `Derefer` pass. However, it just recreates the original places with derefs in the middle of the projection. Because `ProjectionElem::Deref` is intended to be removed completely in the future, this will not work forever.
This PR introduces a `deref_chain` method that returns the places behind `DerefTemp` locals in a place and rewrites the move path code to use this. In the process, `UnDerefer` was merged into `MovePathLookup`. Now that move paths use the same places as in the MIR, the other uses of `UnDerefer` no longer require it.
See #98145
cc `@ouz-a`
r? `@oli-obk`
There's currently a deadlock with tracing when RUSTC_LOG is enabled.
Downgrade tracing-core for now to avoid blocking the other updates.
syns upgrades cause some nontrivial changes in the diagnostics derive tests,
which are best dealt with in another PR.
Add `-Zremark-dir` unstable flag to write LLVM optimization remarks to YAML
This PR adds an option for `rustc` to emit LLVM optimization remarks to a set of YAML files, which can then be digested by existing tools, like https://github.com/OfekShilon/optview2. When `-Cremark-dir` is passed, and remarks are enabled (`-Cremark=all`), the remarks will be now written to the specified directory, **instead** of being printed to standard error output. The files are named based on the CGU from which they are being generated.
Currently, the remarks are written using the LLVM streaming machinery, directly in the diagnostics handler. It seemed easier than going back to Rust and then form there back to C++ to use the streamer from the diagnostics handler. But there are many ways to implement this, of course, so I'm open to suggestions :)
I included some comments with questions into the code. Also, I'm not sure how to test this.
r? `@tmiasko`
Fix `dropping_copy_types` lint from linting in match-arm with side-effects
This PR fixes an issue with the `dropping_copy_types` and `dropping_references` lints when not all patterns that can have side-effects were detected and ignored.
Nearly _fixes_ https://github.com/rust-lang/rust/issues/112653 (will need beta-backport to completely fix the issue)
r? ``@Nilstrieb``
Make simd_shuffle_indices use valtrees
This removes the second-to-last user of the `destructure_mir_constant` query. So in a follow-up we can remove the query and just move the query provider function directly into pretty printing (which is the last user).
cc `@rust-lang/clippy` there's a small functional change, but I think it is correct?
Implement most of MCP510
This implements most of what remains to be done for MCP510:
- turns `-C link-self-contained` into a `+`/`-` list of components, like `-C link-self-contained=+linker,+crto,+libc,+unwind,+sanitizers,+mingw`. The scaffolding is present for all these expected components to be implemented and stabilized in the future on their own time. This PR only handles the `-Zgcc-ld=lld` subset of these link-self-contained components as `-Clink-self-contained=+linker`
- handles `-C link-self-contained=y|n` as-is today, for compatibility with `rustc_codegen_ssa:🔙🔗:self_contained`'s [explicit opt-in and opt-out](9eee230cd0/compiler/rustc_codegen_ssa/src/back/link.rs (L1671-L1676)).
- therefore supports our plan to opt out of `rust-lld` (when it's enabled by default) even for current `-Clink-self-contained` users, with e.g. `-Clink-self-contained -Clink-self-contained=-linker`
- turns `add_gcc_ld_path` into its expected final form, by using the `-C link-self-contained=+linker` CLI flag, and whether the `LinkerFlavor` has the expected `Cc::Yes` and `Lld::Yes` shape (this is not yet the case in practice for any CLI linker flavor)
- makes the [new clean linker flavors](https://github.com/rust-lang/rust/pull/96827#issuecomment-1208441595) selectable in the CLI in addition to the legacy ones, in order to opt-in to using `cc` and `lld` to emulate `-Zgcc-ld=lld`
- ensure the new `-C link-self-contained` components, and `-C linker-flavor`s are unstable, and require `-Z unstable-options` to be used
The up-to-date set of flags for the future stable CLI version of `-Zgcc-ld=lld` is currently: `-Clink-self-contained=+linker -Clinker-flavor=gnu-lld-cc -Zunstable-options`.
It's possible we'll also need to do something for distros that don't ship `rust-lld`, but maybe there are already no tool search paths to be added to `cc` in this situation anyways.
r? `@petrochenkov`
Rollup of 6 pull requests
Successful merges:
- #113168 (fix(resolve): skip assertion judgment when NonModule is dummy)
- #113174 (Better messages for next on a iterator inside for loops)
- #113182 (Error when RPITITs' hidden types capture more lifetimes than their trait definitions)
- #113196 (Fix associated items effective visibility calculation for type privacy lints)
- #113226 (Fix try builds on the msvc builder)
- #113227 (Update cargo)
r? `@ghost`
`@rustbot` modify labels: rollup
Error when RPITITs' hidden types capture more lifetimes than their trait definitions
This implements a stricter set of captures rules for RPITITs. They now may only capture:
1. Lifetimes from the impl header (both the self type and any trait substs -- we may want to restrict just to the self type's lifetimes, but the PR makes that easy to do, too)
2. Lifetimes mentioned by the `impl Trait` in the trait method's definition.
Namely, they may not mention lifetimes from the method (early or late) that are not mentioned in the `impl Trait`.
cc #105258 which I think was trying to do this too, though I'm not super familiar with what exactly differs from that or why that one was broken.
cc #112194 (doesn't fix this issue per se, because it's still an open question, but I think this is objectively better than the status quo, and gets us closer to resolving that issue.)
Technically is a fix for the ICE in #108580, but it turns that issue into an error now. We can decide separately whether or not nested RPITITs should capture lifetimes from their parents.
r? ``@oli-obk``
fix(resolve): skip assertion judgment when NonModule is dummy
Fixes#85992
## Why #85992 panic
During `resolve_imports`, the `path_res` of the import `issue_85992_extern_2::Outcome` is pointing to `external::issue_85992_extern_2` instead of `crate::issue_85992_extern_2`. As a result `import.imported_module.set` had been executed.
Attached 1: the state of `early_resolve_ident_in_lexical_scope` during the `resolve_imports` for `use issue_85992_extern_2::Outcome` is as follows:
|iter in `visit_scopes` | `scope` | `result.binding` |
| - | - | - |
| init | - | - |
| 0 | `CrateRoot` | Err(Determined) |
| 1 | `ExternPrelude` | pointing to the `issue_85992_extern_2`(external) |
However, during finalization for `issue_85992_extern_2::Outcome`, the `innermost_result` was pointed to `crate::issue_85992_extern_2` and no ambiguity was generated, leading to a panic.
Attached 2: the state of `early_resolve_ident_in_lexical_scope` during the `finalize_import` for `use issue_85992_extern_2::Outcome` is as follows:
|iter in `visit_scopes` | `scope` | `result.binding` | `innermost_result` |
| - | - | - | - |
| init | - | - | `None` |
| 0 | `CrateRoot` | pointing to `use crate::issue_85992_extern_2` **(introdcued by dummy)** | same as `result` but with a `Some` wapper|
| 1 | `ExternPrelude` | pointing to the `issue_85992_extern_2`(external) | smae as above |
## Try to solve
Skip assertion judgment when `NonModule` is dummy
r? `@petrochenkov`
loongarch: Fix ELF header flags
This patch changes the ELF header flags so that the ABI matches the floating-point features. It also updates the link to the new official documentation.
No need to distinguish `LocalTy` from `Ty`
I think the distinction between `decl_ty` and `revealed_ty` was from when you were allowed to put `impl Trait` in let bindings... I don't think we need that anymore, and it makes typeck that much more confusing 😆
Side-note: I don't know why we store this in a separate field [`locals`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/struct.Inherited.html#structfield.locals) in `Inherited`, rather than just the `TypeckResults`... Might look into changing that next.
linker flavors
- only the stable values for `-Clink-self-contained` can be used on stable until we
have more feedback on the interface
- `-Zunstable-options` is required to use unstable linker flavors
Fix unset e_flags in ELF files generated for AVR targets
Closes#106576
~~Sort-of blocked by gimli-rs/object#500~~ (merged)
I'm not sure whether the list of AVR CPU names is okay here. Maybe it could be moved out-of-line to improve the readability of the function.
Use structured suggestion when telling user about `for<'a>`
```
error[E0637]: `&` without an explicit lifetime name cannot be used here
--> $DIR/E0637.rs:13:13
|
LL | T: Into<&u32>,
| ^ explicit lifetime name needed here
|
help: consider introducing a higher-ranked lifetime here
|
LL | T: for<'a> Into<&'a u32>,
| +++++++ ++
```
Encode item bounds for `DefKind::ImplTraitPlaceholder`
This was lost in a refactoring -- `hir::ItemKind::OpaqueTy` doesn't always map to `DefKind::Opaque`, specifically for RPITITs, so the check was migrated subtly wrong, and unfortunately I never had a test for this 🙃Fixes#113155
r? ``@cjgillot``
Account for late-bound vars from parent arg-position impl trait
We should be reporting an error like we do for late-bound args coming from a parent APIT.
Fixes#113016
suggest `slice::swap` for `mem::swap(&mut x[0], &mut x[1])` borrowck error
Recently saw someone ask why this code (example slightly modified):
```rs
fn main() {
let mut foo = [1, 2];
std::mem::swap(&mut foo[0], &mut foo[1]);
}
```
triggers this error and how to fix it:
```
error[E0499]: cannot borrow `foo[_]` as mutable more than once at a time
--> src/main.rs:4:33
|
4 | std::mem::swap(&mut foo[0], &mut foo[1]);
| -------------- ----------- ^^^^^^^^^^^ second mutable borrow occurs here
| | |
| | first mutable borrow occurs here
| first borrow later used by call
|
= help: consider using `.split_at_mut(position)` or similar method to obtain two mutable non-overlapping sub-slices
```
The current help message is nice and goes in the right direction, but I think we can do better for this specific instance and suggest `slice::swap`, which makes this compile
```
error[E0637]: `&` without an explicit lifetime name cannot be used here
--> $DIR/E0637.rs:13:13
|
LL | T: Into<&u32>,
| ^ explicit lifetime name needed here
|
help: consider introducing a higher-ranked lifetime here
|
LL | T: for<'a> Into<&'a u32>,
| +++++++ ++
```
Normalize opaques with late-bound vars again
We have a hack in the compiler where if an opaque has escaping late-bound vars, we skip revealing it even though we *could* reveal it from a technical perspective. First of all, this is weird, since we really should be revealing all opaques in `Reveal::All` mode. Second of all, it causes subtle bugs (linked below).
I attempted to fix this in #100980, which was unfortunately reverted due to perf regressions on codebases that used really deeply nested futures in some interesting ways. The worst of which was #103423, which caused the project to hang on build. Another one was #104842, which was just a slow-down, but not a hang. I took some time afterwards to investigate how to rework `normalize_erasing_regions` to take advantage of better caching, but that effort kinda fizzled out (#104133).
However, recently, I was made aware of more bugs whose root cause is not revealing opaques during codegen. That made me want to fix this again -- in the process, interestingly, I took the the minimized example from https://github.com/rust-lang/rust/issues/103423#issuecomment-1292947043, and it doesn't seem to hang any more...
Thinking about this harder, there have been some changes to the way we lower and typecheck async futures that may have reduced the pathologically large number of outlives obligations (see description of #103423) that we were encountering when normalizing opaques with bound vars the last time around:
* #104321 (lower `async { .. }` directly as a generator that implements `Future`, removing the `from_generator` shim)
* #104833 (removing an `identity_future` fn that was wrapping desugared future generators)
... so given that I can see:
* No significant regression on rust perf bot (https://github.com/rust-lang/rust/pull/107620#issuecomment-1600070317)
* No timeouts in crater run I did (https://github.com/rust-lang/rust/pull/107620#issuecomment-1605428952, rechecked failing crates in https://github.com/rust-lang/rust/pull/107620#issuecomment-1605973434)
... and given that this PR:
* Fixes#104601
* Fixes#107557
* Fixes#109464
* Allows us to remove a `DefiningAnchor::Bubble` from codegen (75a8f68183)
I'm inclined to give this another shot at landing this. Best case, it just works -- worst case, we get more examples to study how we need to improve the compiler to make this work.
r? types
Make the `Elaboratable` trait take clauses
We only ever elaborate clauses, so make this explicit in the trait's definition rather than having a bunch of `.expect_clause()` calls everywhere.
Support for native WASM exceptions
### Motivation
Currently, rustc does not support native WASM exceptions. It does support JavaScript based exceptions for the wasm32-emscripten-target, but this requires back&forth with javascript for many calls, which is very slow.
Native wasm support for exceptions is quite common: Clang+LLVM implemented them years ago, and all major browsers support them by now. They enable zero-cost exceptions, at least with regard to runtime-performance-cost. They may increase startup-time and code size, though.
### Important: This PR does not change default behaviour
Exceptions usually add a lot of code in form of unwinding blocks, increasing the binary size. Most users probably do not want that, especially which regard to web development.
Therefore, wasm exceptions play a similar role as WASM-threads: rustc should support them, like clang does, but users who want to use it have to use some command-line magic like rustflags to opt in.
### What does this PR do?
As stated above, the default behaviour is not changed. It is already possible to opt-in into wasm exceptions using the command line. Unfortunately, the LLVM IR is invalid and the LLVM backend crashes.
```
rustc <sourcefile>
--target wasm32-unknown-unknown
-C panic=unwind
-C llvm-args=-wasm-enable-eh
-C target-feature=+exception-handling
```
As it turns out, LLVM is quite picky when it comes to IR for exception handling. If the IR does not look exactly like it should, some LLVM-assertions fail and the code generation crashes.
This PR adds the necessary modifications to the code generator to make it work. It also adds `exception-handling` as a wasm target feature.
### What this PR does not / what is missing
This PR is not a full fledges solution. It is the first step. A few parts are still missing; however, it is already useable (see next section).
Currently missing:
* The std library has to be adapted. Currently, only [no_std] crates work
* Usually, nested exceptions abort the program (i.e. a panic during the cleanup of another panic). This is currently not done yet.
- Currently, code inside cleanup handlers does not unwind
- To fix this requires a little more work: The code generator currently maintains a single terminate block per function for this. Unfortunately, WASM requires funclet based exception handling. Therefore, we need to create a terminate block per funclet. This is probably not a big problem, but I want to keep this PR simple.
### How to use the compiler given this PR?
This PR does not add any command line flags or features. It uses those which are already there. To compile with exceptions enabled, you need
* to set the panic strategy to unwind, i.e. `-C panic=unwind`
* to enable the exception-handling target feature, i.e. `-C target-feature=+exception-handling`
* to tell LLVM about the exception handling, i.e. `-C llvm-args=-wasm-enable-eh`
Since the standard library has not been adapted, you can only use it in [no_std] crates as of now. The intrinsic `core::intrinsics::r#try` works. To throw exceptions, you need the ```@llvm.wasm.throw``` intrinsic.
I created a sample application which works for me: https://github.com/mirkootter/rust-wasm-demos
This example can be run at https://webassembly.sh
Rollup of 5 pull requests
Successful merges:
- #112946 (Improve cgu naming and ordering)
- #113048 (Fix build on Solaris where fd-lock cannot be used.)
- #113100 (Fix display of long items in search results)
- #113107 (add check for ConstKind::Value(_) to in_operand())
- #113119 (rustdoc: Reduce internal function visibility.)
r? `@ghost`
`@rustbot` modify labels: rollup
After the last commit, they contain `Option<&OperandBundleDef<'a>>` but
the values are always `Some(_)`. This commit removes the needless
`Option` wrapper. This also simplifies the type signatures of
`LLVMRustBuild{Invoke,Call}`, which were relying on the fact that the
represention of `Option<&T>` is the same as `&T` for non-`None` values.