Move naive_layout_of query provider in separate sibling module

This commit is contained in:
Moulins 2023-07-01 23:32:14 +02:00
parent 8e28729a82
commit bf2f8ff2ec
4 changed files with 253 additions and 230 deletions

View File

@ -5,8 +5,7 @@ use rustc_index::{IndexSlice, IndexVec};
use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal};
use rustc_middle::query::{LocalCrate, Providers};
use rustc_middle::ty::layout::{
IntegerExt, LayoutCx, LayoutError, LayoutOf, NaiveAbi, NaiveLayout, TyAndLayout,
TyAndNaiveLayout, MAX_SIMD_LANES,
IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES,
};
use rustc_middle::ty::{
self, AdtDef, EarlyBinder, GenericArgsRef, ReprOptions, Ty, TyCtxt, TypeVisitableExt,
@ -25,7 +24,7 @@ use crate::errors::{
use crate::layout_sanity_check::sanity_check_layout;
pub fn provide(providers: &mut Providers) {
*providers = Providers { layout_of, naive_layout_of, reference_niches_policy, ..*providers };
*providers = Providers { layout_of, reference_niches_policy, ..*providers };
}
#[instrument(skip(tcx), level = "debug")]
@ -37,40 +36,6 @@ fn reference_niches_policy<'tcx>(tcx: TyCtxt<'tcx>, _: LocalCrate) -> ReferenceN
/// crates not specifying `-Z reference-niches`.
const DEFAULT_REF_NICHES: ReferenceNichePolicy = ReferenceNichePolicy { size: false, align: false };
#[instrument(skip(tcx, query), level = "debug")]
fn naive_layout_of<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Result<TyAndNaiveLayout<'tcx>, &'tcx LayoutError<'tcx>> {
let (param_env, ty) = query.into_parts();
debug!(?ty);
let param_env = param_env.with_reveal_all_normalized(tcx);
let unnormalized_ty = ty;
// FIXME: We might want to have two different versions of `layout_of`:
// One that can be called after typecheck has completed and can use
// `normalize_erasing_regions` here and another one that can be called
// before typecheck has completed and uses `try_normalize_erasing_regions`.
let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
Ok(t) => t,
Err(normalization_error) => {
return Err(tcx
.arena
.alloc(LayoutError::NormalizationFailure(ty, normalization_error)));
}
};
if ty != unnormalized_ty {
// Ensure this layout is also cached for the normalized type.
return tcx.naive_layout_of(param_env.and(ty));
}
let cx = LayoutCx { tcx, param_env };
let layout = naive_layout_of_uncached(&cx, ty)?;
Ok(TyAndNaiveLayout { ty, layout })
}
#[instrument(skip(tcx, query), level = "debug")]
fn layout_of<'tcx>(
tcx: TyCtxt<'tcx>,
@ -90,13 +55,9 @@ fn layout_of<'tcx>(
let cx = LayoutCx { tcx, param_env };
let layout = layout_of_uncached(&cx, ty)?;
if !naive.is_refined_by(layout) {
bug!("the naive layout isn't refined by the actual layout:\n{:#?}\n{:#?}", naive, layout,);
}
let layout = TyAndLayout { ty, layout };
record_layout_for_printing(&cx, layout);
sanity_check_layout(&cx, &layout);
sanity_check_layout(&cx, &layout, &naive);
Ok(layout)
}
@ -108,191 +69,6 @@ fn error<'tcx>(
cx.tcx.arena.alloc(err)
}
fn naive_layout_of_uncached<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
ty: Ty<'tcx>,
) -> Result<NaiveLayout, &'tcx LayoutError<'tcx>> {
let tcx = cx.tcx;
let dl = cx.data_layout();
let scalar = |value: Primitive| NaiveLayout {
abi: NaiveAbi::Scalar(value),
size: value.size(dl),
align: value.align(dl).abi,
exact: true,
};
let univariant = |fields: &mut dyn Iterator<Item = Ty<'tcx>>,
repr: &ReprOptions|
-> Result<NaiveLayout, &'tcx LayoutError<'tcx>> {
if repr.pack.is_some() && repr.align.is_some() {
cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
return Err(error(cx, LayoutError::Unknown(ty)));
}
let linear = repr.inhibit_struct_field_reordering_opt();
let pack = repr.pack.unwrap_or(Align::MAX);
let mut layout = NaiveLayout::EMPTY;
for field in fields {
let field = cx.naive_layout_of(field)?.packed(pack);
if linear {
layout = layout.pad_to_align(field.align);
}
layout = layout
.concat(&field, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
}
if let Some(align) = repr.align {
layout = layout.align_to(align);
}
if linear {
layout.abi = layout.abi.as_aggregate();
}
Ok(layout.pad_to_align(layout.align))
};
debug_assert!(!ty.has_non_region_infer());
Ok(match *ty.kind() {
// Basic scalars
ty::Bool => scalar(Int(I8, false)),
ty::Char => scalar(Int(I32, false)),
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
ty::Float(fty) => scalar(match fty {
ty::FloatTy::F32 => F32,
ty::FloatTy::F64 => F64,
}),
ty::FnPtr(_) => scalar(Pointer(dl.instruction_address_space)),
// The never type.
ty::Never => NaiveLayout { abi: NaiveAbi::Uninhabited, ..NaiveLayout::EMPTY },
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
let data_ptr = scalar(Pointer(AddressSpace::DATA));
if let Some(metadata) = ptr_metadata_scalar(cx, pointee)? {
// Effectively a (ptr, meta) tuple.
let l = data_ptr
.concat(&scalar(metadata.primitive()), dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
l.pad_to_align(l.align)
} else {
// No metadata, this is a thin pointer.
data_ptr
}
}
ty::Dynamic(_, _, ty::DynStar) => {
let ptr = scalar(Pointer(AddressSpace::DATA));
ptr.concat(&ptr, dl).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?
}
// Arrays and slices.
ty::Array(element, count) => {
let count = compute_array_count(cx, count)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
let element = cx.naive_layout_of(element)?;
NaiveLayout {
abi: element.abi.as_aggregate(),
size: element
.size
.checked_mul(count, cx)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?,
..*element
}
}
ty::Slice(element) => {
let element = cx.naive_layout_of(element)?;
NaiveLayout { abi: NaiveAbi::Unsized, size: Size::ZERO, ..*element }
}
ty::FnDef(..) => NaiveLayout::EMPTY,
// Unsized types.
ty::Str | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
NaiveLayout { abi: NaiveAbi::Unsized, ..NaiveLayout::EMPTY }
}
// FIXME(reference_niches): try to actually compute a reasonable layout estimate,
// without duplicating too much code from `generator_layout`.
ty::Generator(..) => NaiveLayout { exact: false, ..NaiveLayout::EMPTY },
ty::Closure(_, ref substs) => {
univariant(&mut substs.as_closure().upvar_tys(), &ReprOptions::default())?
}
ty::Tuple(tys) => univariant(&mut tys.iter(), &ReprOptions::default())?,
ty::Adt(def, substs) if def.is_union() => {
let repr = def.repr();
let pack = repr.pack.unwrap_or(Align::MAX);
if repr.pack.is_some() && repr.align.is_some() {
cx.tcx.sess.delay_span_bug(DUMMY_SP, "union cannot be packed and aligned");
return Err(error(cx, LayoutError::Unknown(ty)));
}
let mut layout = NaiveLayout::EMPTY;
for f in &def.variants()[FIRST_VARIANT].fields {
let field = cx.naive_layout_of(f.ty(tcx, substs))?;
layout = layout.union(&field.packed(pack));
}
// Unions are always inhabited, and never scalar if `repr(C)`.
if !matches!(layout.abi, NaiveAbi::Scalar(_)) || repr.inhibit_enum_layout_opt() {
layout.abi = NaiveAbi::Sized;
}
if let Some(align) = repr.align {
layout = layout.align_to(align);
}
layout.pad_to_align(layout.align)
}
ty::Adt(def, substs) => {
let repr = def.repr();
let base = NaiveLayout {
// For simplicity, assume that any enum has its discriminant field (if it exists)
// niched inside one of the variants; this will underestimate the size (and sometimes
// alignment) of enums. We also doesn't compute exact alignment for SIMD structs.
// FIXME(reference_niches): Be smarter here.
// Also consider adding a special case for null-optimized enums, so that we can have
// `Option<&T>: PointerLike` in generic contexts.
exact: !def.is_enum() && !repr.simd(),
// An ADT with no inhabited variants should have an uninhabited ABI.
abi: NaiveAbi::Uninhabited,
..NaiveLayout::EMPTY
};
let layout = def.variants().iter().try_fold(base, |layout, v| {
let mut fields = v.fields.iter().map(|f| f.ty(tcx, substs));
let vlayout = univariant(&mut fields, &repr)?;
Ok(layout.union(&vlayout))
})?;
layout.pad_to_align(layout.align)
}
// Types with no meaningful known layout.
ty::Alias(..) => {
// NOTE(eddyb) `layout_of` query should've normalized these away,
// if that was possible, so there's no reason to try again here.
return Err(error(cx, LayoutError::Unknown(ty)));
}
ty::Bound(..) | ty::GeneratorWitness(..) | ty::GeneratorWitnessMIR(..) | ty::Infer(_) => {
bug!("Layout::compute: unexpected type `{}`", ty)
}
ty::Placeholder(..) | ty::Param(_) | ty::Error(_) => {
return Err(error(cx, LayoutError::Unknown(ty)));
}
})
}
fn univariant_uninterned<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
ty: Ty<'tcx>,
@ -739,7 +515,7 @@ fn layout_of_uncached<'tcx>(
})
}
fn compute_array_count<'tcx>(
pub(crate) fn compute_array_count<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
mut count: ty::Const<'tcx>,
) -> Option<u64> {
@ -754,7 +530,7 @@ fn compute_array_count<'tcx>(
count.try_eval_target_usize(tcx, param_env)
}
fn ptr_metadata_scalar<'tcx>(
pub(crate) fn ptr_metadata_scalar<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
pointee: Ty<'tcx>,
) -> Result<Option<Scalar>, &'tcx LayoutError<'tcx>> {

View File

@ -0,0 +1,240 @@
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
IntegerExt, LayoutCx, LayoutError, LayoutOf, NaiveAbi, NaiveLayout, TyAndNaiveLayout,
};
use rustc_middle::ty::{self, ReprOptions, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::DUMMY_SP;
use rustc_target::abi::*;
use crate::layout::{compute_array_count, ptr_metadata_scalar};
pub fn provide(providers: &mut Providers) {
*providers = Providers { naive_layout_of, ..*providers };
}
#[instrument(skip(tcx, query), level = "debug")]
fn naive_layout_of<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Result<TyAndNaiveLayout<'tcx>, &'tcx LayoutError<'tcx>> {
let (param_env, ty) = query.into_parts();
debug!(?ty);
let param_env = param_env.with_reveal_all_normalized(tcx);
let unnormalized_ty = ty;
// FIXME: We might want to have two different versions of `layout_of`:
// One that can be called after typecheck has completed and can use
// `normalize_erasing_regions` here and another one that can be called
// before typecheck has completed and uses `try_normalize_erasing_regions`.
let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
Ok(t) => t,
Err(normalization_error) => {
return Err(tcx
.arena
.alloc(LayoutError::NormalizationFailure(ty, normalization_error)));
}
};
if ty != unnormalized_ty {
// Ensure this layout is also cached for the normalized type.
return tcx.naive_layout_of(param_env.and(ty));
}
let cx = LayoutCx { tcx, param_env };
let layout = naive_layout_of_uncached(&cx, ty)?;
Ok(TyAndNaiveLayout { ty, layout })
}
fn error<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
err: LayoutError<'tcx>,
) -> &'tcx LayoutError<'tcx> {
cx.tcx.arena.alloc(err)
}
fn naive_layout_of_uncached<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
ty: Ty<'tcx>,
) -> Result<NaiveLayout, &'tcx LayoutError<'tcx>> {
let tcx = cx.tcx;
let dl = cx.data_layout();
let scalar = |value: Primitive| NaiveLayout {
abi: NaiveAbi::Scalar(value),
size: value.size(dl),
align: value.align(dl).abi,
exact: true,
};
let univariant = |fields: &mut dyn Iterator<Item = Ty<'tcx>>,
repr: &ReprOptions|
-> Result<NaiveLayout, &'tcx LayoutError<'tcx>> {
if repr.pack.is_some() && repr.align.is_some() {
cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
return Err(error(cx, LayoutError::Unknown(ty)));
}
let linear = repr.inhibit_struct_field_reordering_opt();
let pack = repr.pack.unwrap_or(Align::MAX);
let mut layout = NaiveLayout::EMPTY;
for field in fields {
let field = cx.naive_layout_of(field)?.packed(pack);
if linear {
layout = layout.pad_to_align(field.align);
}
layout = layout
.concat(&field, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
}
if let Some(align) = repr.align {
layout = layout.align_to(align);
}
if linear {
layout.abi = layout.abi.as_aggregate();
}
Ok(layout.pad_to_align(layout.align))
};
debug_assert!(!ty.has_non_region_infer());
Ok(match *ty.kind() {
// Basic scalars
ty::Bool => scalar(Int(I8, false)),
ty::Char => scalar(Int(I32, false)),
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
ty::Float(fty) => scalar(match fty {
ty::FloatTy::F32 => F32,
ty::FloatTy::F64 => F64,
}),
ty::FnPtr(_) => scalar(Pointer(dl.instruction_address_space)),
// The never type.
ty::Never => NaiveLayout { abi: NaiveAbi::Uninhabited, ..NaiveLayout::EMPTY },
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
let data_ptr = scalar(Pointer(AddressSpace::DATA));
if let Some(metadata) = ptr_metadata_scalar(cx, pointee)? {
// Effectively a (ptr, meta) tuple.
let l = data_ptr
.concat(&scalar(metadata.primitive()), dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
l.pad_to_align(l.align)
} else {
// No metadata, this is a thin pointer.
data_ptr
}
}
ty::Dynamic(_, _, ty::DynStar) => {
let ptr = scalar(Pointer(AddressSpace::DATA));
ptr.concat(&ptr, dl).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?
}
// Arrays and slices.
ty::Array(element, count) => {
let count = compute_array_count(cx, count)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
let element = cx.naive_layout_of(element)?;
NaiveLayout {
abi: element.abi.as_aggregate(),
size: element
.size
.checked_mul(count, cx)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?,
..*element
}
}
ty::Slice(element) => {
let element = cx.naive_layout_of(element)?;
NaiveLayout { abi: NaiveAbi::Unsized, size: Size::ZERO, ..*element }
}
ty::FnDef(..) => NaiveLayout::EMPTY,
// Unsized types.
ty::Str | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
NaiveLayout { abi: NaiveAbi::Unsized, ..NaiveLayout::EMPTY }
}
// FIXME(reference_niches): try to actually compute a reasonable layout estimate,
// without duplicating too much code from `generator_layout`.
ty::Generator(..) => NaiveLayout { exact: false, ..NaiveLayout::EMPTY },
ty::Closure(_, ref substs) => {
univariant(&mut substs.as_closure().upvar_tys(), &ReprOptions::default())?
}
ty::Tuple(tys) => univariant(&mut tys.iter(), &ReprOptions::default())?,
ty::Adt(def, substs) if def.is_union() => {
let repr = def.repr();
let pack = repr.pack.unwrap_or(Align::MAX);
if repr.pack.is_some() && repr.align.is_some() {
cx.tcx.sess.delay_span_bug(DUMMY_SP, "union cannot be packed and aligned");
return Err(error(cx, LayoutError::Unknown(ty)));
}
let mut layout = NaiveLayout::EMPTY;
for f in &def.variants()[FIRST_VARIANT].fields {
let field = cx.naive_layout_of(f.ty(tcx, substs))?;
layout = layout.union(&field.packed(pack));
}
// Unions are always inhabited, and never scalar if `repr(C)`.
if !matches!(layout.abi, NaiveAbi::Scalar(_)) || repr.inhibit_enum_layout_opt() {
layout.abi = NaiveAbi::Sized;
}
if let Some(align) = repr.align {
layout = layout.align_to(align);
}
layout.pad_to_align(layout.align)
}
ty::Adt(def, substs) => {
let repr = def.repr();
let base = NaiveLayout {
// For simplicity, assume that any enum has its discriminant field (if it exists)
// niched inside one of the variants; this will underestimate the size (and sometimes
// alignment) of enums. We also doesn't compute exact alignment for SIMD structs.
// FIXME(reference_niches): Be smarter here.
// Also consider adding a special case for null-optimized enums, so that we can have
// `Option<&T>: PointerLike` in generic contexts.
exact: !def.is_enum() && !repr.simd(),
// An ADT with no inhabited variants should have an uninhabited ABI.
abi: NaiveAbi::Uninhabited,
..NaiveLayout::EMPTY
};
let layout = def.variants().iter().try_fold(base, |layout, v| {
let mut fields = v.fields.iter().map(|f| f.ty(tcx, substs));
let vlayout = univariant(&mut fields, &repr)?;
Ok(layout.union(&vlayout))
})?;
layout.pad_to_align(layout.align)
}
// Types with no meaningful known layout.
ty::Alias(..) => {
// NOTE(eddyb) `layout_of` query should've normalized these away,
// if that was possible, so there's no reason to try again here.
return Err(error(cx, LayoutError::Unknown(ty)));
}
ty::Bound(..) | ty::GeneratorWitness(..) | ty::GeneratorWitnessMIR(..) | ty::Infer(_) => {
bug!("Layout::compute: unexpected type `{}`", ty)
}
ty::Placeholder(..) | ty::Param(_) | ty::Error(_) => {
return Err(error(cx, LayoutError::Unknown(ty)));
}
})
}

View File

@ -1,5 +1,5 @@
use rustc_middle::ty::{
layout::{LayoutCx, TyAndLayout},
layout::{LayoutCx, NaiveLayout, TyAndLayout},
TyCtxt,
};
use rustc_target::abi::*;
@ -10,6 +10,7 @@ use std::assert_matches::assert_matches;
pub(super) fn sanity_check_layout<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: &TyAndLayout<'tcx>,
naive: &NaiveLayout,
) {
// Type-level uninhabitedness should always imply ABI uninhabitedness.
if layout.ty.is_privately_uninhabited(cx.tcx, cx.param_env) {
@ -20,6 +21,10 @@ pub(super) fn sanity_check_layout<'tcx>(
bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
}
if !naive.is_refined_by(layout.layout) {
bug!("the naive layout isn't refined by the actual layout:\n{:#?}\n{:#?}", naive, layout);
}
if !cfg!(debug_assertions) {
// Stop here, the rest is kind of expensive.
return;

View File

@ -31,6 +31,7 @@ mod errors;
mod implied_bounds;
pub mod instance;
mod layout;
mod layout_naive;
mod layout_sanity_check;
mod needs_drop;
mod opaque_types;
@ -47,6 +48,7 @@ pub fn provide(providers: &mut Providers) {
consts::provide(providers);
implied_bounds::provide(providers);
layout::provide(providers);
layout_naive::provide(providers);
needs_drop::provide(providers);
opaque_types::provide(providers);
representability::provide(providers);