Install bidirectional outlives predicates for RPITITs (and RPITs) correctly

This commit is contained in:
Michael Goulet 2023-08-07 23:37:57 +00:00
parent 8dcb8e0759
commit 420ee167a8
4 changed files with 121 additions and 88 deletions

View File

@ -2,16 +2,16 @@ use crate::astconv::{AstConv, OnlySelfBounds, PredicateFilter};
use crate::bounds::Bounds;
use crate::collect::ItemCtxt;
use crate::constrained_generic_params as cgp;
use hir::{HirId, Lifetime, Node};
use hir::{HirId, Node};
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{self, Visitor};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{GenericPredicates, Generics, ImplTraitInTraitData, ToPredicate};
use rustc_middle::ty::{GenericPredicates, ImplTraitInTraitData, ToPredicate};
use rustc_span::symbol::Ident;
use rustc_span::{Span, Symbol, DUMMY_SP};
use rustc_span::{Span, DUMMY_SP};
/// Returns a list of all type predicates (explicit and implicit) for the definition with
/// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
@ -55,17 +55,7 @@ fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Gen
use rustc_hir::*;
match tcx.opt_rpitit_info(def_id.to_def_id()) {
Some(ImplTraitInTraitData::Trait { opaque_def_id, fn_def_id }) => {
let opaque_ty_id = tcx.hir().local_def_id_to_hir_id(opaque_def_id.expect_local());
let opaque_ty_node = tcx.hir().get(opaque_ty_id);
let Node::Item(&Item {
kind: ItemKind::OpaqueTy(OpaqueTy { lifetime_mapping, .. }),
..
}) = opaque_ty_node
else {
bug!("unexpected {opaque_ty_node:?}")
};
Some(ImplTraitInTraitData::Trait { fn_def_id, .. }) => {
let mut predicates = Vec::new();
// RPITITs should inherit the predicates of their parent. This is
@ -78,13 +68,12 @@ fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Gen
// We also install bidirectional outlives predicates for the RPITIT
// to keep the duplicates lifetimes from opaque lowering in sync.
// We only need to compute bidirectional outlives for the duplicated
// opaque lifetimes, which explains the slicing below.
compute_bidirectional_outlives_predicates(
tcx,
def_id,
lifetime_mapping.iter().map(|(lifetime, def_id)| {
(**lifetime, (*def_id, lifetime.ident.name, lifetime.ident.span))
}),
tcx.generics_of(def_id.to_def_id()),
&tcx.generics_of(def_id.to_def_id()).params
[tcx.generics_of(fn_def_id).params.len()..],
&mut predicates,
);
@ -351,21 +340,7 @@ fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Gen
};
debug!(?lifetimes);
let lifetime_mapping = std::iter::zip(lifetimes, ast_generics.params)
.map(|(arg, dup)| {
let hir::GenericArg::Lifetime(arg) = arg else { bug!() };
(**arg, dup)
})
.filter(|(_, dup)| matches!(dup.kind, hir::GenericParamKind::Lifetime { .. }))
.map(|(lifetime, dup)| (lifetime, (dup.def_id, dup.name.ident().name, dup.span)));
compute_bidirectional_outlives_predicates(
tcx,
def_id,
lifetime_mapping,
generics,
&mut predicates,
);
compute_bidirectional_outlives_predicates(tcx, &generics.params, &mut predicates);
debug!(?predicates);
}
@ -379,41 +354,28 @@ fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Gen
/// enforce that these lifetimes stay in sync.
fn compute_bidirectional_outlives_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
item_def_id: LocalDefId,
lifetime_mapping: impl Iterator<Item = (Lifetime, (LocalDefId, Symbol, Span))>,
generics: &Generics,
opaque_own_params: &[ty::GenericParamDef],
predicates: &mut Vec<(ty::Clause<'tcx>, Span)>,
) {
let icx = ItemCtxt::new(tcx, item_def_id);
for (arg, (dup_def, name, span)) in lifetime_mapping {
let orig_region = icx.astconv().ast_region_to_region(&arg, None);
if !matches!(orig_region.kind(), ty::ReEarlyBound(..)) {
// There is no late-bound lifetime to actually match up here, since the lifetime doesn't
// show up in the opaque's parent's args.
continue;
for param in opaque_own_params {
let orig_lifetime = tcx.map_rpit_lifetime_to_fn_lifetime(param.def_id.expect_local());
if let ty::ReEarlyBound(..) = *orig_lifetime {
let dup_lifetime = ty::Region::new_early_bound(
tcx,
ty::EarlyBoundRegion { def_id: param.def_id, index: param.index, name: param.name },
);
let span = tcx.def_span(param.def_id);
predicates.push((
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(orig_lifetime, dup_lifetime))
.to_predicate(tcx),
span,
));
predicates.push((
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(dup_lifetime, orig_lifetime))
.to_predicate(tcx),
span,
));
}
let Some(dup_index) = generics.param_def_id_to_index(icx.tcx, dup_def.to_def_id()) else {
bug!()
};
let dup_region = ty::Region::new_early_bound(
tcx,
ty::EarlyBoundRegion { def_id: dup_def.to_def_id(), index: dup_index, name },
);
predicates.push((
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(orig_region, dup_region))
.to_predicate(tcx),
span,
));
predicates.push((
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(dup_region, orig_region))
.to_predicate(tcx),
span,
));
}
}

View File

@ -1931,6 +1931,75 @@ impl<'tcx> TyCtxt<'tcx> {
)
}
/// Given the def-id of an early-bound lifetime on an RPIT corresponding to
/// a duplicated captured lifetime, map it back to the early- or late-bound
/// lifetime of the function from which it originally as captured. If it is
/// a late-bound lifetime, this will represent the liberated (`ReFree`) lifetime
/// of the signature.
// FIXME(RPITIT): if we ever synthesize new lifetimes for RPITITs and not just
// re-use the generics of the opaque, this function will need to be tweaked slightly.
pub fn map_rpit_lifetime_to_fn_lifetime(
self,
mut rpit_lifetime_param_def_id: LocalDefId,
) -> ty::Region<'tcx> {
debug_assert!(
matches!(self.def_kind(rpit_lifetime_param_def_id), DefKind::LifetimeParam),
"{rpit_lifetime_param_def_id:?} is a {}",
self.def_descr(rpit_lifetime_param_def_id.to_def_id())
);
loop {
let parent = self.local_parent(rpit_lifetime_param_def_id);
let hir::OpaqueTy { lifetime_mapping, .. } =
self.hir().get_by_def_id(parent).expect_item().expect_opaque_ty();
let Some((lifetime, _)) = lifetime_mapping
.iter()
.find(|(_, duplicated_param)| *duplicated_param == rpit_lifetime_param_def_id)
else {
bug!("duplicated lifetime param should be present");
};
match self.named_bound_var(lifetime.hir_id) {
Some(resolve_bound_vars::ResolvedArg::EarlyBound(ebv)) => {
let new_parent = self.parent(ebv);
// If we map to another opaque, then it should be a parent
// of the opaque we mapped from. Continue mapping.
if matches!(self.def_kind(new_parent), DefKind::OpaqueTy) {
debug_assert_eq!(self.parent(parent.to_def_id()), new_parent);
rpit_lifetime_param_def_id = ebv.expect_local();
continue;
}
let generics = self.generics_of(new_parent);
return ty::Region::new_early_bound(
self,
ty::EarlyBoundRegion {
def_id: ebv,
index: generics
.param_def_id_to_index(self, ebv)
.expect("early-bound var should be present in fn generics"),
name: self.hir().name(self.local_def_id_to_hir_id(ebv.expect_local())),
},
);
}
Some(resolve_bound_vars::ResolvedArg::LateBound(_, _, lbv)) => {
let new_parent = self.parent(lbv);
return ty::Region::new_free(
self,
new_parent,
ty::BoundRegionKind::BrNamed(
lbv,
self.hir().name(self.local_def_id_to_hir_id(lbv.expect_local())),
),
);
}
_ => bug!(),
}
}
}
/// Whether the `def_id` counts as const fn in the current crate, considering all active
/// feature gates
pub fn is_const_fn(self, def_id: DefId) -> bool {

View File

@ -2,7 +2,6 @@ use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
use rustc_middle::middle::resolve_bound_vars as rbv;
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::Span;
@ -52,9 +51,7 @@ fn assumed_wf_types<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx [(Ty<'
tcx.arena.alloc_from_iter(tys.into_iter().map(|ty| (ty, impl_spans.next().unwrap())))
}
DefKind::AssocTy if let Some(data) = tcx.opt_rpitit_info(def_id.to_def_id()) => match data {
ty::ImplTraitInTraitData::Trait { fn_def_id, opaque_def_id } => {
let hir::OpaqueTy { lifetime_mapping, .. } =
*tcx.hir().expect_item(opaque_def_id.expect_local()).expect_opaque_ty();
ty::ImplTraitInTraitData::Trait { fn_def_id, .. } => {
// We need to remap all of the late-bound lifetimes in theassumed wf types
// of the fn (which are represented as ReFree) to the early-bound lifetimes
// of the RPITIT (which are represented by ReEarlyBound owned by the opaque).
@ -66,28 +63,22 @@ fn assumed_wf_types<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx [(Ty<'
// predicates we insert in the `explicit_predicates_of` query for RPITITs.
let mut mapping = FxHashMap::default();
let generics = tcx.generics_of(def_id);
for &(lifetime, new_early_bound_def_id) in
lifetime_mapping
{
if let Some(rbv::ResolvedArg::LateBound(_, _, def_id)) =
tcx.named_bound_var(lifetime.hir_id)
{
let name = tcx.hir().name(lifetime.hir_id);
let index = generics
.param_def_id_to_index(tcx, new_early_bound_def_id.to_def_id())
.unwrap();
// For each captured opaque lifetime, if it's late-bound (`ReFree` in this case,
// since it has been liberated), map it back to the early-bound lifetime of
// the GAT. Since RPITITs also have all of the fn's generics, we slice only
// the end of the list corresponding to the opaque's generics.
for param in &generics.params[tcx.generics_of(fn_def_id).params.len()..] {
let orig_lt = tcx.map_rpit_lifetime_to_fn_lifetime(param.def_id.expect_local());
if matches!(*orig_lt, ty::ReFree(..)) {
mapping.insert(
ty::Region::new_free(
tcx,
fn_def_id,
ty::BoundRegionKind::BrNamed(def_id, name),
),
orig_lt,
ty::Region::new_early_bound(
tcx,
ty::EarlyBoundRegion {
def_id: new_early_bound_def_id.to_def_id(),
index,
name,
def_id: param.def_id,
index: param.index,
name: param.name,
},
),
);

View File

@ -0,0 +1,11 @@
// check-pass
#![feature(return_position_impl_trait_in_trait)]
trait Foo {
fn early<'a, T: 'a>(x: &'a T) -> impl Iterator<Item = impl Into<&'a T>>;
fn late<'a, T>(x: &'a T) -> impl Iterator<Item = impl Into<&'a T>>;
}
fn main() {}