Track (partial) niche information in NaiveLayout

Still more complexity, but this allows computing exact `NaiveLayout`s
for null-optimized enums, and thus allows calls like
`transmute::<Option<&T>, &U>()` to work in generic contexts.
This commit is contained in:
Moulins 2023-07-21 03:26:14 +02:00
parent 39cfe70e4f
commit 7f109086ee
5 changed files with 185 additions and 47 deletions

View File

@ -1062,9 +1062,15 @@ impl WrappingRange {
/// Returns `true` if `size` completely fills the range.
#[inline]
pub fn is_full_for(&self, size: Size) -> bool {
debug_assert!(self.is_in_range_for(size));
self.start == (self.end.wrapping_add(1) & size.unsigned_int_max())
}
/// Returns `true` if the range is valid for `size`.
#[inline(always)]
pub fn is_in_range_for(&self, size: Size) -> bool {
let max_value = size.unsigned_int_max();
debug_assert!(self.start <= max_value && self.end <= max_value);
self.start == (self.end.wrapping_add(1) & max_value)
self.start <= max_value && self.end <= max_value
}
}

View File

@ -655,6 +655,8 @@ impl std::ops::DerefMut for TyAndNaiveLayout<'_> {
#[derive(Copy, Clone, Debug, HashStable)]
pub struct NaiveLayout {
pub abi: NaiveAbi,
/// Niche information, required for tracking non-null enum optimizations.
pub niches: NaiveNiches,
/// An underestimate of the layout's size.
pub size: Size,
/// An underestimate of the layout's required alignment.
@ -663,13 +665,20 @@ pub struct NaiveLayout {
pub exact: bool,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, HashStable)]
pub enum NaiveNiches {
None,
Some,
Maybe,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, HashStable)]
pub enum NaiveAbi {
/// A scalar layout, always implies `exact`.
/// A scalar layout, always implies `exact` and a non-zero `size`.
Scalar(Primitive),
/// An uninhabited layout. (needed to properly track `Scalar`)
/// An uninhabited layout. (needed to properly track `Scalar` and niches)
Uninhabited,
/// An unsized aggregate. (needed to properly track `Scalar`)
/// An unsized aggregate. (needed to properly track `Scalar` and niches)
Unsized,
/// Any other sized layout.
Sized,
@ -687,8 +696,13 @@ impl NaiveAbi {
impl NaiveLayout {
/// The layout of an empty aggregate, e.g. `()`.
pub const EMPTY: Self =
Self { size: Size::ZERO, align: Align::ONE, exact: true, abi: NaiveAbi::Sized };
pub const EMPTY: Self = Self {
size: Size::ZERO,
align: Align::ONE,
exact: true,
abi: NaiveAbi::Sized,
niches: NaiveNiches::None,
};
/// Returns whether `self` is a valid approximation of the given full `layout`.
///
@ -699,12 +713,20 @@ impl NaiveLayout {
}
if let NaiveAbi::Scalar(prim) = self.abi {
assert!(self.exact);
if !matches!(layout.abi(), Abi::Scalar(s) if s.primitive() == prim) {
if !self.exact
|| self.size == Size::ZERO
|| !matches!(layout.abi(), Abi::Scalar(s) if s.primitive() == prim)
{
return false;
}
}
match (self.niches, layout.largest_niche()) {
(NaiveNiches::None, Some(_)) => return false,
(NaiveNiches::Some, None) => return false,
_ => (),
}
!self.exact || (self.size, self.align) == (layout.size(), layout.align().abi)
}
@ -745,6 +767,15 @@ impl NaiveLayout {
self
}
/// Artificially makes this layout inexact.
#[must_use]
#[inline]
pub fn inexact(mut self) -> Self {
self.abi = self.abi.as_aggregate();
self.exact = false;
self
}
/// Pads this layout so that its size is a multiple of `align`.
#[must_use]
#[inline]
@ -777,11 +808,18 @@ impl NaiveLayout {
// Default case.
(_, _) => Sized,
};
Some(Self { abi, size, align, exact })
let niches = match (self.niches, other.niches) {
(NaiveNiches::Some, _) | (_, NaiveNiches::Some) => NaiveNiches::Some,
(NaiveNiches::None, NaiveNiches::None) => NaiveNiches::None,
(_, _) => NaiveNiches::Maybe,
};
Some(Self { abi, size, align, exact, niches })
}
/// Returns the layout of `self` superposed with `other`, as in an `enum`
/// or an `union`.
///
/// Note: This always ignore niche information from `other`.
#[must_use]
#[inline]
pub fn union(&self, other: &Self) -> Self {
@ -793,7 +831,7 @@ impl NaiveLayout {
let abi = match (self.abi, other.abi) {
// The unsized ABI overrides everything.
(Unsized, _) | (_, Unsized) => Unsized,
// A scalar union must have a single non ZST-field.
// A scalar union must have a single non ZST-field...
(_, s @ Scalar(_)) if exact && self.size == Size::ZERO => s,
(s @ Scalar(_), _) if exact && other.size == Size::ZERO => s,
// ...or identical scalar fields.
@ -802,7 +840,7 @@ impl NaiveLayout {
(Uninhabited, Uninhabited) => Uninhabited,
(_, _) => Sized,
};
Self { abi, size, align, exact }
Self { abi, size, align, exact, niches: self.niches }
}
}

View File

@ -1,12 +1,14 @@
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
IntegerExt, LayoutCx, LayoutError, LayoutOf, NaiveAbi, NaiveLayout, TyAndNaiveLayout,
IntegerExt, LayoutCx, LayoutError, LayoutOf, NaiveAbi, NaiveLayout, NaiveNiches,
TyAndNaiveLayout,
};
use rustc_middle::ty::{self, ReprOptions, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::DUMMY_SP;
use rustc_target::abi::*;
use std::ops::Bound;
use crate::layout::{compute_array_count, ptr_metadata_scalar};
pub fn provide(providers: &mut Providers) {
@ -61,8 +63,9 @@ fn naive_layout_of_uncached<'tcx>(
let tcx = cx.tcx;
let dl = cx.data_layout();
let scalar = |value: Primitive| NaiveLayout {
let scalar = |niched: bool, value: Primitive| NaiveLayout {
abi: NaiveAbi::Scalar(value),
niches: if niched { NaiveNiches::Some } else { NaiveNiches::None },
size: value.size(dl),
align: value.align(dl).abi,
exact: true,
@ -105,26 +108,30 @@ fn naive_layout_of_uncached<'tcx>(
Ok(match *ty.kind() {
// Basic scalars
ty::Bool => scalar(Int(I8, false)),
ty::Char => scalar(Int(I32, false)),
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
ty::Float(fty) => scalar(match fty {
ty::FloatTy::F32 => F32,
ty::FloatTy::F64 => F64,
}),
ty::FnPtr(_) => scalar(Pointer(dl.instruction_address_space)),
ty::Bool => scalar(true, Int(I8, false)),
ty::Char => scalar(true, Int(I32, false)),
ty::Int(ity) => scalar(false, Int(Integer::from_int_ty(dl, ity), true)),
ty::Uint(ity) => scalar(false, Int(Integer::from_uint_ty(dl, ity), false)),
ty::Float(fty) => scalar(
false,
match fty {
ty::FloatTy::F32 => F32,
ty::FloatTy::F64 => F64,
},
),
ty::FnPtr(_) => scalar(true, Pointer(dl.instruction_address_space)),
// The never type.
ty::Never => NaiveLayout { abi: NaiveAbi::Uninhabited, ..NaiveLayout::EMPTY },
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
let data_ptr = scalar(Pointer(AddressSpace::DATA));
let data_ptr = scalar(!ty.is_unsafe_ptr(), Pointer(AddressSpace::DATA));
if let Some(metadata) = ptr_metadata_scalar(cx, pointee)? {
// Effectively a (ptr, meta) tuple.
let meta = scalar(!metadata.is_always_valid(dl), metadata.primitive());
let l = data_ptr
.concat(&scalar(metadata.primitive()), dl)
.concat(&meta, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
l.pad_to_align(l.align)
} else {
@ -134,8 +141,9 @@ fn naive_layout_of_uncached<'tcx>(
}
ty::Dynamic(_, _, ty::DynStar) => {
let ptr = scalar(Pointer(AddressSpace::DATA));
ptr.concat(&ptr, dl).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?
let ptr = scalar(false, Pointer(AddressSpace::DATA));
let vtable = scalar(true, Pointer(AddressSpace::DATA));
ptr.concat(&vtable, dl).ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?
}
// Arrays and slices.
@ -149,13 +157,16 @@ fn naive_layout_of_uncached<'tcx>(
.size
.checked_mul(count, cx)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?,
niches: if count == 0 { NaiveNiches::None } else { element.niches },
..*element
}
}
ty::Slice(element) => {
let element = cx.naive_layout_of(element)?;
NaiveLayout { abi: NaiveAbi::Unsized, size: Size::ZERO, ..*element }
}
ty::Slice(element) => NaiveLayout {
abi: NaiveAbi::Unsized,
size: Size::ZERO,
niches: NaiveNiches::None,
..*cx.naive_layout_of(element)?
},
ty::FnDef(..) => NaiveLayout::EMPTY,
@ -166,7 +177,9 @@ fn naive_layout_of_uncached<'tcx>(
// FIXME(reference_niches): try to actually compute a reasonable layout estimate,
// without duplicating too much code from `generator_layout`.
ty::Generator(..) => NaiveLayout { exact: false, ..NaiveLayout::EMPTY },
ty::Generator(..) => {
NaiveLayout { exact: false, niches: NaiveNiches::Maybe, ..NaiveLayout::EMPTY }
}
ty::Closure(_, ref substs) => {
univariant(&mut substs.as_closure().upvar_tys(), &ReprOptions::default())?
@ -175,6 +188,7 @@ fn naive_layout_of_uncached<'tcx>(
ty::Tuple(tys) => univariant(&mut tys.iter(), &ReprOptions::default())?,
ty::Adt(def, substs) if def.is_union() => {
assert_eq!(def.variants().len(), 1, "union should have a single variant");
let repr = def.repr();
let pack = repr.pack.unwrap_or(Align::MAX);
if repr.pack.is_some() && repr.align.is_some() {
@ -182,7 +196,12 @@ fn naive_layout_of_uncached<'tcx>(
return Err(error(cx, LayoutError::Unknown(ty)));
}
let mut layout = NaiveLayout::EMPTY;
let mut layout = NaiveLayout {
// Unions never have niches.
niches: NaiveNiches::None,
..NaiveLayout::EMPTY
};
for f in &def.variants()[FIRST_VARIANT].fields {
let field = cx.naive_layout_of(f.ty(tcx, substs))?;
layout = layout.union(&field.packed(pack));
@ -201,24 +220,87 @@ fn naive_layout_of_uncached<'tcx>(
ty::Adt(def, substs) => {
let repr = def.repr();
let base = NaiveLayout {
// For simplicity, assume that any enum has its discriminant field (if it exists)
// niched inside one of the variants; this will underestimate the size (and sometimes
// alignment) of enums. We also doesn't compute exact alignment for SIMD structs.
// FIXME(reference_niches): Be smarter here.
// Also consider adding a special case for null-optimized enums, so that we can have
// `Option<&T>: PointerLike` in generic contexts.
exact: !def.is_enum() && !repr.simd(),
let mut layout = NaiveLayout {
// An ADT with no inhabited variants should have an uninhabited ABI.
abi: NaiveAbi::Uninhabited,
..NaiveLayout::EMPTY
};
let layout = def.variants().iter().try_fold(base, |layout, v| {
let mut empty_variants = 0;
for v in def.variants() {
let mut fields = v.fields.iter().map(|f| f.ty(tcx, substs));
let vlayout = univariant(&mut fields, &repr)?;
Ok(layout.union(&vlayout))
})?;
if vlayout.size == Size::ZERO && vlayout.exact {
empty_variants += 1;
} else {
// Remember the niches of the last seen variant.
layout.niches = vlayout.niches;
}
layout = layout.union(&vlayout);
}
if def.is_enum() {
let may_need_discr = match def.variants().len() {
0 | 1 => false,
// Simple Option-like niche optimization.
// Handling this special case allows enums like `Option<&T>`
// to be recognized as `PointerLike` and to be transmutable
// in generic contexts.
2 if empty_variants == 1 && layout.niches == NaiveNiches::Some => {
layout.niches = NaiveNiches::Maybe; // fill up the niche.
false
}
_ => true,
};
if may_need_discr || repr.inhibit_enum_layout_opt() {
// For simplicity, assume that the discriminant always get niched.
// This will be wrong in many cases, which will cause the size (and
// sometimes the alignment) to be underestimated.
// FIXME(reference_niches): Be smarter here.
layout.niches = NaiveNiches::Maybe;
layout = layout.inexact();
}
} else {
assert_eq!(def.variants().len(), 1, "struct should have a single variant");
// We don't compute exact alignment for SIMD structs.
if repr.simd() {
layout = layout.inexact();
}
// `UnsafeCell` hides all niches.
if def.is_unsafe_cell() {
layout.niches = NaiveNiches::None;
}
}
let valid_range = tcx.layout_scalar_valid_range(def.did());
if valid_range != (Bound::Unbounded, Bound::Unbounded) {
let get = |bound, default| match bound {
Bound::Unbounded => default,
Bound::Included(v) => v,
Bound::Excluded(_) => bug!("exclusive `layout_scalar_valid_range` bound"),
};
let valid_range = WrappingRange {
start: get(valid_range.0, 0),
// FIXME: this is wrong for scalar-pair ABIs. Fortunately, the
// only type this could currently affect is`NonNull<T: !Sized>`,
// and the `NaiveNiches` result still ends up correct.
end: get(valid_range.1, layout.size.unsigned_int_max()),
};
assert!(
valid_range.is_in_range_for(layout.size),
"`layout_scalar_valid_range` values are out of bounds",
);
if !valid_range.is_full_for(layout.size) {
layout.niches = NaiveNiches::Some;
}
}
layout.pad_to_align(layout.align)
}

View File

@ -1,6 +1,6 @@
error: the compiler unexpectedly panicked. this is a bug.
query stack during panic:
#0 [layout_of] computing layout of `Foo`
#1 [eval_to_allocation_raw] const-evaluating + checking `FOO`
#0 [naive_layout_of] computing layout (naive) of `Foo`
#1 [layout_of] computing layout of `Foo`
end of query stack

View File

@ -30,4 +30,16 @@ fn f<T, U: ?Sized>(x: &T) -> &U {
unsafe { transmute(x) } //~ ERROR cannot transmute between types of different sizes
}
fn g<T, U>(x: &T) -> Option<&U> {
unsafe { transmute(x) }
}
fn h<T>(x: &[T]) -> Option<&dyn Send> {
unsafe { transmute(x) }
}
fn i<T>(x: [usize; 1]) -> Option<&'static T> {
unsafe { transmute(x) }
}
fn main() { }