Rollup of 4 pull requests
Successful merges:
- #113887 (new solver: add a separate cache for coherence)
- #113910 (Add FnPtr ty to SMIR)
- #113913 (error/E0691: include alignment in error message)
- #113914 (rustc_target: drop duplicate code)
r? `@ghost`
`@rustbot` modify labels: rollup
Still more complexity, but this allows computing exact `NaiveLayout`s
for null-optimized enums, and thus allows calls like
`transmute::<Option<&T>, &U>()` to work in generic contexts.
THis significantly complicates `NaiveLayout` logic, but is necessary to
ensure that bounds like `NonNull<T>: PointerLike` hold in generic
contexts.
Also implement exact layout computation for structs.
Querify unused trait check.
This code transitively loads information for all bodies, and from resolutions. As it does not return a value, it should be beneficial to have it as a query.
Don't translate compiler-internal bug messages
These are not very useful to be translated, as
* translators would get really weird and bad english versions to start out from,
* compiler devs have to do some work for what is supposed to be dead code and just a sanity check,
* the target audience is other compiler devs.
r? `@davidtwco`
Make it clearer that edition functions are `>=`, not `==`
r? `@Nilstrieb`
We could also perhaps derive `Ord` on `Edition` and use comparison operators.
Add the `no-builtins` attribute to functions when `no_builtins` is applied at the crate level.
**When `no_builtins` is applied at the crate level, we should add the `no-builtins` attribute to each function to ensure it takes effect in LTO.**
This is also the reason why no_builtins does not take effect in LTO as mentioned in #35540.
Now, `#![no_builtins]` should be similar to `-fno-builtin` in clang/gcc, see https://clang.godbolt.org/z/z4j6Wsod5.
Next, we should make `#![no_builtins]` participate in LTO again. That makes sense, as LTO also takes into consideration function-level instruction optimizations, such as the MachineOutliner. More importantly, when a user writes a large `#![no_builtins]` crate, they would like this crate to participate in LTO as well.
We should also add a function-level no_builtins attribute to allow users to have more control over it. This is similar to Clang's `__attribute__((no_builtin))` feature, see https://clang.godbolt.org/z/Wod6KK6eq. Before implementing this feature, maybe we should discuss whether to support more fine-grained control, such as `__attribute__((no_builtin("memcpy")))`.
Related discussions:
- #109821
- #35540
Next (a separate pull request?):
- [ ] Revert #35637
- [ ] Add a function-level `no_builtin` attribute?
Safe Transmute: Fix ICE (due to UnevaluatedConst)
This patch updates the code that looks at the `Assume` type when evaluating if transmutation is possible. An ICE was being triggered in the case that the `Assume` parameter contained an unevaluated const (in this test case, due to a function with missing parameter names).
Fixes#110892
This patch updates the code that looks at the `Assume` type when evaluating if
transmutation is possible. An ICE was being triggered in the case that the
`Assume` parameter contained an unevaluated const (in this test case, due to a
function with missing parameter names).
Fixes#110892
Use u64 for incr comp allocation offsets
Fixes https://github.com/rust-lang/rust/issues/76037
Fixes https://github.com/rust-lang/rust/issues/95780
Fixes https://github.com/rust-lang/rust/issues/111613
These issues are all reporting ICEs caused by using `u32` to store offsets to allocations in the incremental compilation cache. This PR aims to lift that limitation by changing the offset type in question to `u64`.
There are two perf runs in this PR. The first reports a regression, and the second does not. The changes are the same in both. I rebased the PR then did the second perf run because I noticed that the primary regression in it was very commonly seen in spurious regression reports.
I do not know what the perf run will report when this is merged. I would not be surprised to see regression or neutral, but the cachegrind diffs for the regression point at `try_mark_previous_green` which is a common source of inexplicable regressions and I don't think should be perturbed by this PR.
I'm not opposed to adding a regression test such as
```rust
fn main() {
println!("{}", [37; 1 << 30].len());
}
```
But that program takes 1 minute to compile and consumes 4.6 GB of memory then writes that much to disk. Is that a concerning amount of resource use for a test?
r? `@nnethercote`
Streamline size estimates (take 2)
This was merged in #113684 but then [something happened](https://github.com/rust-lang/rust/pull/113684#issuecomment-1636811985):
> There has been a bors issue that lead to the merge commit of this PR getting purged from master.
> You'll have to make a new PR to reapply it.
So this is exactly the same changes.
`@bors` r=wesleywiser
Add support for inherent projections in new solver
Not hard to support these, and it cuts out a really big chunk of failing UI tests with `--compare-mode=next-solver`
r? `@lcnr` (feel free to reassign, anyone can review this)
This means we call `MonoItem::size_estimate` (which involves a query)
less often: just once per mono item, and then once more per inline item
placement. After that we can reuse the stored value as necessary. This
means `CodegenUnit::compute_size_estimate` is cheaper.
Resurrect: rustc_target: Add alignment to indirectly-passed by-value types, correcting the alignment of byval on x86 in the process.
Same as #111551, which I [accidentally closed](https://github.com/rust-lang/rust/pull/111551#issuecomment-1571222612) :/
---
This resurrects PR #103830, which has sat idle for a while.
Beyond #103830, this also:
- fixes byval alignment for types containing vectors on Darwin (see `tests/codegen/align-byval-vector.rs`)
- fixes byval alignment for overaligned types on x86 Windows (see `tests/codegen/align-byval.rs`)
- fixes ABI for types with 128bit requested alignment on ARM64 Linux (see `tests/codegen/aarch64-struct-align-128.rs`)
r? `@nikic`
---
`@pcwalton's` original PR description is reproduced below:
Commit 88e4d2c from five years ago removed
support for alignment on indirectly-passed arguments because of problems with
the `i686-pc-windows-msvc` target. Unfortunately, the `memcpy` optimizations I
recently added to LLVM 16 depend on this to forward `memcpy`s. This commit
attempts to fix the problems with `byval` parameters on that target and now
correctly adds the `align` attribute.
The problem is summarized in [this comment] by `@eddyb.` Briefly, 32-bit x86 has
special alignment rules for `byval` parameters: for the most part, their
alignment is forced to 4. This is not well-documented anywhere but in the Clang
source. I looked at the logic in Clang `TargetInfo.cpp` and tried to replicate
it here. The relevant methods in that file are
`X86_32ABIInfo::getIndirectResult()` and
`X86_32ABIInfo::getTypeStackAlignInBytes()`. The `align` parameter attribute
for `byval` parameters in LLVM must match the platform ABI, or miscompilations
will occur. Note that this doesn't use the approach suggested by eddyb, because
I felt it was overkill to store the alignment in `on_stack` when special
handling is really only needed for 32-bit x86.
As a side effect, this should fix#80127, because it will make the `align`
parameter attribute for `byval` parameters match the platform ABI on LLVM
x86-64.
[this comment]: #80822 (comment)
Make it clearer that we're just checking for an RPITIT
Tiny nit to use `is_impl_trait_in_trait` more, to make it clearer that we're just checking whether a def-id is an RPITIT, rather than doing something meaningful with the `opt_rpitit_info`.
r? `@spastorino`
Use maybe_body_owned_by for multiple suggestions
This is a continued work from https://github.com/rust-lang/rust/pull/113567
We have several other suggestions not working for closure, this PR use `maybe_body_owned_by` to fix them and add test cases for them.
Add a cache for `maybe_lint_level_root_bounded`
`maybe_lint_level_root_bounded` is called many times and traces node sub-paths many times. This PR adds a cache that lets many of these tracings be skipped, avoiding lots of calls to functions like `Map::attrs` and `Map::parent_id`.
r? `@cjgillot`
refactor proof tree formatting
mostly:
- handle indentation via a separate formatter
- change nested to use a closure
tested it after rebasing on top of #113536 and everything looks good.
r? `````@BoxyUwU`````
miri: protect Move() function arguments during the call
This gives `Move` operands a meaning specific to function calls:
- for the duration of the call, the place the operand comes from is protected, making all read and write accesses insta-UB.
- the contents of that place are reset to `Uninit`, so looking at them again after the function returns, we cannot observe their contents
Turns out we can replace the existing "retag return place" hack with the exact same sort of protection on the return place, which is nicely symmetric.
Fixes https://github.com/rust-lang/rust/issues/112564
Fixes https://github.com/rust-lang/miri/issues/2927
This starts with a Miri rustc-push, since we'd otherwise conflict with a PR that recently landed in Miri.
(The "miri tree borrows" commit is an unrelated cleanup I noticed while doing the PR. I can remove it if you prefer.)
r? `@oli-obk`
Introduce `trait DebugWithInfcx` to debug format types with universe info
Seeing universes of infer vars is valuable for debugging but currently we have no way of easily debug formatting a type with the universes of all the infer vars shown. In the future I hope to augment the new solver's proof tree output with a `DebugWithInfcx` impl so that it can show universes but I left that out of this PR as it would be non trivial and this is already large and complex enough.
The goal here is to make the various abstractions taking `T: Debug` able to use the codepath for printing out universes, that way we can do `debug!("{:?}", my_x)` and have `my_x` have universes shown, same for the `write!` macro. It's not possible to put the `Infcx: InferCtxtLike<I>` into the formatter argument to `Debug::fmt` so it has to go into the self ty. For this we introduce the type `OptWithInfcx<I: Interner, Infcx: InferCtxtLike<I>, T>` which has the data `T` optionally coupled with the infcx (more on why it's optional later).
Because of coherence/orphan rules it's not possible to write the impl `Debug for OptWithInfcx<..., MyType>` when `OptWithInfcx` is in a upstream crate. This necessitates a blanket impl in the crate defining `OptWithInfcx` like so: `impl<T: DebugWithInfcx> Debug for OptWithInfcx<..., T>`. It is not intended for people to manually call `DebugWithInfcx::fmt`, the `Debug` impl for `OptWithInfcx` should be preferred.
The infcx has to be optional in `OptWithInfcx` as otherwise we would end up with a large amount of code duplication. Almost all types that want to be used with `OptWithInfcx` do not themselves need access to the infcx so if we were to not optional we would end up with large `Debug` and `DebugWithInfcx` impls that were practically identical other than that when formatting their fields we wrap the field in `OptWithInfcx` instead of formatting it alone.
The only types that need access to the infcx themselves are ty/const/region infer vars, everything else is implemented by having the `Debug` impl defer to `OptWithInfcx` with no infcx available. The `DebugWithInfcx` impl is pretty much just the standard `Debug` impl except that instead of recursively formatting fields with `write!(f, "{x:?}")` we must do `write!(f, "{:?}", opt_infcx.wrap(x))`. This is some pretty rough boilerplate but I could not think of an alternative unfortunately.
`OptWithInfcx::wrap` is an eager `Option::map` because 99% of callsites were discarding the existing data in `OptWithInfcx` and did not need lazy evaluation.
A trait `InferCtxtLike` was added instead of using `InferCtxt<'tcx>` as we need to implement `DebugWithInfcx` for types living in `rustc_type_ir` which are generic over an interner and do not have access to `InferCtxt` since it lives in `rustc_infer`. Additionally I suspect that adding universe info to new solver proof tree output will require an implementation of `InferCtxtLike` for something that is not an `InferCtxt` although this is not the primary motivaton.
---
To summarize:
- There is a type `OptWithInfcx` which bundles some data optionally with an infcx with allows us to pass an infcx into a `Debug` impl. It's optional instead of being there unconditionally so that we can share code for `Debug` and `DebugWithInfcx` impls that don't care about whether there is an infcx available but have fields that might care.
- There is a trait `DebugWithInfcx` which allows downstream crates to add impls of the form `Debug for OptWithInfcx<...>` which would normally be forbidden by orphan rules/coherence.
- There is a trait `InferCtxtLike` to allow us to implement `DebugWithInfcx` for types that live in `rustc_type_ir`
This allows debug formatting various `ty::*` structures with universes shown by using the `Debug` impl for `OptWithInfcx::new(ty, infcx)`
---
This PR does not add `DebugWithInfcx` impls to absolutely _everything_ that should realistically have them, for example you cannot use `OptWithInfcx<Obligation<Predicate>>`. I am leaving this to a future PR to do so as it would likely be a lot more work to do.
Rename `adjustment::PointerCast` and variants using it to `PointerCoercion`
It makes it sounds like the `ExprKind` and `Rvalue` are supposed to represent all pointer related casts, when in reality their just used to share a little enum variants. Make it clear there these are only coercions and that people who see this and think "why are so many pointer related casts not in these variants" aren't insane.
This enum was added in #59987. I'm not sure whether the variant sharing is actually worth it, but this at least makes it less confusing.
r? oli-obk
It makes it sound like the `ExprKind` and `Rvalue` are supposed to represent all pointer related
casts, when in reality their just used to share a some enum variants. Make it clear there these
are only coercion to make it clear why only some pointer related "casts" are in the enum.
Move `TyCtxt::mk_x` to `Ty::new_x` where applicable
Part of rust-lang/compiler-team#616
turns out there's a lot of places we construct `Ty` this is a ridiculously huge PR :S
r? `@oli-obk`
Specialize `try_destructure_mir_constant` for its sole user (pretty printing)
We can't remove the query, as we need to invoke it from rustc_middle, but can only implement it in mir interpretation/const eval.
r? `@RalfJung` for a first round.
While we could move all the logic into pretty printing, that would end up duplicating a bit of code with const eval, which doesn't seem great either.
Rollup of 8 pull requests
Successful merges:
- #113010 (rust-installer & rls: remove exclusion from rustfmt & tidy )
- #113317 ( -Ztrait-solver=next: stop depending on old solver)
- #113319 (`TypeParameterDefinition` always require a `DefId`)
- #113320 (Add some extra information to opaque type cycle errors)
- #113321 (Move `ty::ConstKind` to `rustc_type_ir`)
- #113337 (Winnow specialized impls during selection in new solver)
- #113355 (Move most coverage code out of `rustc_codegen_ssa`)
- #113356 (Add support for NetBSD/riscv64 aka. riscv64gc-unknown-netbsd.)
r? `@ghost`
`@rustbot` modify labels: rollup
Winnow specialized impls during selection in new solver
We need to be able to winnow impls that are specialized by more specific impls in order for codegen to be able to proceed.
r? ``@lcnr``
Move `ty::ConstKind` to `rustc_type_ir`
Needed this in another PR for custom debug impls, and this will also be required to move the new solver into a separate crate that does not use `TyCtxt` so that r-a and friends can depend on the trait solver.
Rebased on top of #113325, only the second and third commits needs reviewing
Add some extra information to opaque type cycle errors
Plus a bunch of cleanups.
This should help users debug query cycles due to auto trait checking. We'll probably want to fix cycle errors in most (or all?) cases by looking at the current item's hidden types (new solver does this), and by delaying the auto trait checks to after typeck.
Effects/keyword generics MVP
This adds `feature(effects)`, which adds `const host: bool` to the generics of const functions, const traits and const impls. This will be used to replace the current logic around const traits.
r? `@oli-obk`
Make simd_shuffle_indices use valtrees
This removes the second-to-last user of the `destructure_mir_constant` query. So in a follow-up we can remove the query and just move the query provider function directly into pretty printing (which is the last user).
cc `@rust-lang/clippy` there's a small functional change, but I think it is correct?
Make `UnwindAction::Continue` explicit in MIR dump
Makes it easier to spot unwinding related issues in MIR by making `UnwindAction::Continue` explicit, just like all other `UnwindAction`s.
Migrate `TyCtxt::predicates_of` and `ParamEnv::caller_bounds` to `Clause`
The last big change in the series.
I will follow-up with additional filed issues once this PR lands:
- [ ] Investigate making `TypeFoldable<TyCtxt<'tcx>> for ty::Clause<'tcx>` implementation less weird: 2efe091705/compiler/rustc_middle/src/ty/structural_impls.rs (L672)
- [ ] Clean up the elaborator since it should only be emitting child clauses, not predicates
- [ ] Rename identifiers like `pred` and `predicates` to `clause` if they're actually clauses around the codebase
- [ ] Validate that all of the `ToPredicate` impls are acutally still needed, or prune them if they're not
r? `@ghost` until the other branch lands
Various impl trait in assoc tys cleanups
r? `@compiler-errors`
All commits except for the last are pure refactorings. 274dab5bd658c97886a8987340bf50ae57900c39 allows struct fields to participate in deciding whether a function has an opaque in its signature.
best reviewed commit by commit
Migrate `item_bounds` to `ty::Clause`
Should be simpler than the next PR that's coming up. Last three commits are the relevant ones.
r? ``@oli-obk`` or ``@lcnr``
Don't ICE on unnormalized struct tail in layout computation
1. We try to compute a `SizeSkeleton` even if a layout error occurs, but we really only need to do this if we get `LayoutError::Unknown`, since that means our type is too polymorphic to actually compute the full layout. If we have other errors, like `LayoutError::NormalizationError` or `LayoutError::Cycle`, then we can't really make any progress, since this represents an actual error.
2. Avoid using `normalize_erasing_regions` and `struct_tail_erasing_lifetimes` since those ICE on normalization errors, and since we may call `layout_of` in HIR typeck, we don't know for certain that we're on the happy path.
Fixes#112736
Inline before merging cgus
Because CGU merging relies on CGU sizes, but the CGU sizes before inlining aren't accurate.
This change doesn't have much effect on compile perf, but it makes follow-on changes that involve more sophisticated reasoning about CGU sizes much easier.
r? `@wesleywiser`
- Rename `create_size_estimate` as `compute_size_estimate`, because that
makes more sense for the second and subsequent calls for each CGU.
- Change `CodegenUnit::size_estimate` from `Option<usize>` to `usize`.
We can still assert that `compute_size_estimate` is called first.
- Move the size estimation for `place_mono_items` inside the function,
for consistency with `merge_codegen_units`.
Because CGU merging relies on CGU sizes, but the CGU sizes before
inlining aren't accurate.
This requires tweaking how the sizes are updated during merging: if CGU
A and B both have an inlined function F, then `size(A + B)` will be a
little less than `size(A) + size(B)`, because `A + B` will only have one
copy of F. Also, the minimum CGU size is increased because it now has to
account for inlined functions.
This change doesn't have much effect on compile perf, but it makes
follow-on changes that involve more sophisticated reasoning about CGU
sizes much easier.
Add a fully fledged `Clause` type, rename old `Clause` to `ClauseKind`
Does two basic things before I put up a more delicate set of PRs (along the lines of #112714, but hopefully much cleaner) that migrate existing usages of `ty::Predicate` to `ty::Clause` (`predicates_of`/`item_bounds`/`ParamEnv::caller_bounds`).
1. Rename `Clause` to `ClauseKind`, so it's parallel with `PredicateKind`.
2. Add a new `Clause` type which is parallel to `Predicate`.
* This type exposes `Clause::kind(self) -> Binder<'tcx, ClauseKind<'tcx>>` which is parallel to `Predicate::kind` 😸
The new `Clause` type essentially acts as a newtype wrapper around `Predicate` that asserts that it is specifically a `PredicateKind::Clause`. Turns out from experimentation[^1] that this is not negative performance-wise, which is wonderful, since this a much simpler design than something that requires encoding the discriminant into the alignment bits of a predicate kind, or something else like that...
r? ``@lcnr`` or ``@oli-obk``
[^1]: https://github.com/rust-lang/rust/pull/112714#issuecomment-1595653910
Merge `BorrowKind::Unique` into `BorrowKind::Mut`
Fixes#112072
Might have conflict with #112070
r? `@lcnr`
I'm not sure what's the suitable change in a couple places.
Add `implement_via_object` to `rustc_deny_explicit_impl` to control object candidate assembly
Some built-in traits are special, since they are used to prove facts about the program that are important for later phases of compilation such as codegen and CTFE. For example, the `Unsize` trait is used to assert to the compiler that we are able to unsize a type into another type. It doesn't have any methods because it doesn't actually *instruct* the compiler how to do this unsizing, but this is later used (alongside an exhaustive match of combinations of unsizeable types) during codegen to generate unsize coercion code.
Due to this, these built-in traits are incompatible with the type erasure provided by object types. For example, the existence of `dyn Unsize<T>` does not mean that the compiler is able to unsize `Box<dyn Unsize<T>>` into `Box<T>`, since `Unsize` is a *witness* to the fact that a type can be unsized, and it doesn't actually encode that unsizing operation in its vtable as mentioned above.
The old trait solver gets around this fact by having complex control flow that never considers object bounds for certain built-in traits:
2f896da247/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs (L61-L132)
However, candidate assembly in the new solver is much more lovely, and I'd hate to add this list of opt-out cases into the new solver. Instead of maintaining this complex and hard-coded control flow, instead we can make this a property of the trait via a built-in attribute. We already have such a build attribute that's applied to every single trait that we care about: `rustc_deny_explicit_impl`. This PR adds `implement_via_object` as a meta-item to that attribute that allows us to opt a trait out of object-bound candidate assembly as well.
r? `@lcnr`
Switch the BB CFG cache from postorder to RPO
The `BasicBlocks` CFG cache is interesting:
- it stores a postorder, but `traversal::postorder` doesn't use it
- `traversal::reverse_postorder` does traverse the postorder cache backwards
- we do more RPO traversals than postorder traversals (around 20x on the perf.rlo benchmarks IIRC) but it's not cached
- a couple places here and there were manually reversing the non-cached postorder traversal
This PR switches the order of the cache, and makes a bit more use of it. This is a tiny win locally, but it's also for consistency and aesthetics.
r? `@ghost`
Make `Bound::predicates` use `Clause`
Part of #107250
`Bound::predicates` returns an iterator over `Binder<_, Clause>` instead of `Predicate`.
I tried updating `explicit_predicates_of` as well, but it seems that it needs a lot more change than I thought. Will do it in a separate PR instead.
Add `<meta charset="utf-8">` to `-Zdump-mir-spanview` output
Without an explicit `<meta charset>` declaration, some browsers (e.g. Safari) won't detect the page encoding as UTF-8, causing unicode characters in the dump output to display incorrectly.
Add `AliasKind::Weak` for type aliases.
`type Foo<T: Debug> = Bar<T>;` does not check `T: Debug` at use sites of `Foo<NotDebug>`, because in contrast to a
```rust
trait Identity {
type Identity;
}
impl<T: Debug> Identity for T {
type Identity = T;
}
<NotDebug as Identity>::Identity
```
type aliases do not exist in the type system, but are expanded to their aliased type immediately when going from HIR to the type layer.
Similarly:
* a private type alias for a public type is a completely fine thing, even though it makes it a bit hard to write out complex times sometimes
* rustdoc expands the type alias, even though often times users use them for documentation purposes
* diagnostics show the expanded type, which is confusing if the user wrote a type alias and the diagnostic talks about another type that they don't know about.
For type alias impl trait, these issues do not actually apply in most cases, but sometimes you have a type alias impl trait like `type Foo<T: Debug> = (impl Debug, Bar<T>);`, which only really checks it for `impl Debug`, but by accident prevents `Bar<T>` from only being instantiated after proving `T: Debug`. This PR makes sure that we always check these bounds explicitly and don't rely on an implementation accident.
To not break all the type aliases out there, we only use it when the type alias contains an opaque type. We can decide to do this for all type aliases over an edition.
Or we can later extend this to more types if we figure out the back-compat concerns with suddenly checking such bounds.
As a side effect, easily allows fixing https://github.com/rust-lang/rust/issues/108617, which I did.
fixes https://github.com/rust-lang/rust/issues/108617
Make assumption functions in new solver take `Binder<'tcx, Clause<'tcx>>`
We just use an if-let to match on an optional clause at all the places where we transition from `Predicate` -> `Clause`, but I assume that when things like item-bounds and param-env start to only store `Clause`s then those can just be trivially dropped.
r? ``@lcnr``
Opportunistically resolve regions in new solver
Use `opportunistic_resolve_var` during canonicalization to collapse some regions.
We have to start using `CanonicalVarValues::is_identity_modulo_regions`. We also have to modify that function to consider responses like `['static, ^0, '^1, ^2]` to be an "identity" response, since because we opportunistically resolve regions, there's no longer a 1:1 mapping between canonical var values and bound var indices in the response...
There's one nasty side-effect -- one test (`tests/ui/dyn-star/param-env-infer.rs`) starts to ICE because the certainty goes from `Yes` to `Maybe(Overflow)`... Not exactly sure why, though? Putting this up for discussion/investigation.
r? ```@lcnr```
This commit reverts a change made in #111425.
It was believed that this change was necessary for implementing type privacy lints, but #111801 showed that it was not necessary.
Quite opposite, the revert fixes some issues.
Remember names of `cfg`-ed out items to mention them in diagnostics
# Examples
## `serde::Deserialize` without the `derive` feature (a classic beginner mistake)
I had to slightly modify serde so that it uses explicit re-exports instead of a glob re-export. (Update: a serde PR was merged that adds the manual re-exports)
```
error[E0433]: failed to resolve: could not find `Serialize` in `serde`
--> src/main.rs:1:17
|
1 | #[derive(serde::Serialize)]
| ^^^^^^^^^ could not find `Serialize` in `serde`
|
note: crate `serde` has an item named `Serialize` but it is inactive because its cfg predicate evaluated to false
--> /home/gh-Nilstrieb/.cargo/registry/src/index.crates.io-6f17d22bba15001f/serde-1.0.160/src/lib.rs:343:1
|
343 | #[cfg(feature = "serde_derive")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
344 | pub use serde_derive::{Deserialize, Serialize};
| ^^^^^^^^^
= note: the item is gated behind the `serde_derive` feature
= note: see https://doc.rust-lang.org/cargo/reference/features.html for how to activate a crate's feature
```
(the suggestion is not ideal but that's serde's fault)
I already tested the metadata size impact locally by compiling the `windows` crate without any features. `800k` -> `809k`
r? `@ghost`
Add `-Ztrait-solver=next-coherence`
Flag that conditionally uses the trait solver *only* during coherence, for more testing and/or eventual partial-migration onto the trait solver (in the medium- to long-term).
* This still uses the selection context in some of the coherence methods I think, so it's not "complete". Putting this up for review and/or for further work in-tree.
* I probably need to spend a bit more time making sure that we don't sneakily create any other infcx's during coherence that also need the new solver enabled.
r? `@lcnr`
Emit an error when return-type-notation is used with type/const params
These are not intended to be supported initially, even though the compiler supports them internally...
- Switch TypeId to 128 bits
- Hack around the fact that tracing-subscriber dislikes how TypeId is hashed
- Remove lowering of type_id128 from rustc_codegen_llvm
- Remove unnecessary `type_id128` intrinsic (just change return type of `type_id`)
- Only hash the lower 64 bits of the TypeId
- Reword comment
Normalize anon consts in new solver
We don't do any of that `expand_abstract_consts` stuff so this isn't sufficient to make GCE work, but it does allow, e.g. `[(); 1]: Default`, to solve.
r? `@BoxyUwU`
Require that const param tys implement `ConstParamTy`
1. Require that const param tys implement `ConstParamTy` instead of using `search_for_adt_const_param_violation`
2. Add `StructuralPartialEq` as a supertrait for `ConstParamTy`, since we need to make sure that we derive *both* `PartialEq` and `Eq`
3. Implement `ConstParamTy` for tuples up to 12 (or whatever the default for tuples is)
4. Add some custom diagnostics to `ConstParamTy` errors, to avoid regressions from (1.). It's still not as great as it could be -- will point out inline in comments.
r? `@BoxyUwU`
Use translatable diagnostics in `rustc_const_eval`
This PR:
* adds a `no_span` parameter to `note` / `help` attributes when using `Subdiagnostic` to allow adding notes/helps without using a span
* has minor tweaks and changes to error messages
`#[cfg]`s are frequently used to gate crate content behind cargo
features. This can lead to very confusing errors when features are
missing. For example, `serde` doesn't have the `derive` feature by
default. Therefore, `serde::Serialize` fails to resolve with a generic
error, even though the macro is present in the docs.
This commit adds a list of all stripped item names to metadata. This is
filled during macro expansion and then, through a fed query, persisted
in metadata. The downstream resolver can then access the metadata to
look at possible candidates for mentioning in the errors.
This slightly increases metadata (800k->809k for the feature-heavy
windows crate), but not enough to really matter.
Preserve substs in opaques recorded in typeck results
This means that we now prepopulate MIR with opaques with the right substs.
The first commit is a hack that I think we discussed, having to do with `DefiningAnchor::Bubble` basically being equivalent to `DefiningAnchor::Error` in the new solver, so having to use `DefiningAnchor::Bind` instead, lol.
r? `@lcnr`
Replace const eval limit by a lint and add an exponential backoff warning
The lint triggers at the first power of 2 that comes after 1 million function calls or traversed back-edges (takes less than a second on usual programs). After the first emission, an unsilenceable warning is repeated at every following power of 2 terminators, causing it to get reported less and less the longer the evaluation runs.
cc `@rust-lang/wg-const-eval`
fixes#93481closes#67217
Only rewrite valtree-constants to patterns and keep other constants opaque
Now that we can reliably fall back to comparing constants with `PartialEq::eq` to the match scrutinee, we can
1. eagerly try to convert constants to valtrees
2. then deeply convert the valtree to a pattern
3. if the to-valtree conversion failed, create an "opaque constant" pattern.
This PR specifically avoids any behavioral changes or major cleanups. What we can now do as follow ups is
* move the two remaining call sites to `destructure_mir_constant` off that query
* make valtree to pattern conversion infallible
* this needs to be done after careful analysis of the effects. There may be user visible changes from that.
based on https://github.com/rust-lang/rust/pull/111768
move `super_relate_consts` hack to `normalize_param_env_or_error`
`super_relate_consts` has as hack in it to work around the fact that `normalize_param_env_or_error` is broken. When relating two constants we attempt to evaluate them (aka normalize them). This is not an issue in any way specific to const generics, type aliases also have the same issue as demonstrated in [this code](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=84b6d3956a2c852a04b60782476b56c9).
Since the hack in `super_relate_consts` only exists to make `normalize_param_env_or_error` emit less errors move it to `normalize_param_env_or_error`. This makes `super_relate_consts` act more like the normal plain structural equality its supposed to and should help ensure that the hack doesnt accidentally affect other situations.
r? `@compiler-errors`
change `BorrowKind::Unique` to be a mutating `PlaceContext`
fixes#112056
I believe that `BorrowKind::Unique` is a footgun in general, so I added a FIXME and opened https://github.com/rust-lang/rust/issues/112072. This is a bit too involved for this PR though.
refactor and cleanup the leak check, add it to new solver
ended up being a bit more involved than I wanted but is hopefully still easy enough to review as a single PR, can split it into separate ones otherwise.
this can be reviewed commit by commit:
a473d55cdb9284aa2b01282d1b529a2a4d26547b 31a686646534ca006d906ec757ece4e771d6f973 949039c107852a5e36361c08b62821a0613656f5 242917bf5170d9a723c6c8e23e9d9d0c2fa8dc9d ed2b25a7aa28be3184be9e3022c2796a30eaad87 are all pretty straightforward.
03dd83b4c3f4ff27558f5c8ab859bd9f83db1d04 makes it easier to refactor coherence in a later commit, see the commit description, cc `@oli-obk`
4fe311d807a77b6270f384e41689bf5d58f46aec I don't quite remember what we wanted to test here, this definitely doesn't test that the occurs check doesn't cause incorrect errors in coherence, also cc `@oli-obk` here. I may end up writing a new test for this myself later.
5c200d88a91b75bd0875b973150655bd581ef97a is the main refactor of the leak check, changing it to take the `outer_universe` instead of getting it from a snapshot. Using a snapshot requires us to be in a probe which we aren't in the new solver, it also just feels dirty as snapshots don't really have anything to do with universes.
with all of this cfc230d54188d9c7ed867a9a0d1f51be77b485f9 is now kind of trivial.
r? `@nikomatsakis`
`EarlyBinder::new` -> `EarlyBinder::bind`
for consistency with `Binder::bind`. it may make sense to also add `EarlyBinder::dummy` in places where we know that no parameters exist, but I left that out of this PR.
r? `@jackh726` `@kylematsuda`
Make `TyKind: Debug` have less verbose output
Current `TyKind: Debug` impl is basically unusable for debugging, its too verbose even for verbose debugging 🤣 This PR replaces the debug logic for `TyKind` with a more manual debug impl instead of a hand expanded derived impl. This should help make #107084 more reasonable to land since the output of `Ty: Debug` will be better.
This isn't a fully completed change to the `Debug` impl of `TyKind` as there's still logic from the derive macro for some variants. Some of the variants are also not consisten with the `-Zverbose` printing of `Ty`, ideally `-Zverbose` printing of `Ty` would also just defer to the debug impl instead of having lots of checks in pretty printing. I plan on fixing this in follow up PRs since it seems tricky to do in this one and its already a large PR 😅
Use `Cow` in `{D,Subd}iagnosticMessage`.
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl From<&'static str>`, which involves a bunch of knock-on changes that require/result in call sites being a little more precise about exactly what kind of string they use to create errors, and not just `&str`. This will result in fewer unnecessary allocations, though this will not have any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to preserve the existing string imprecision. I could have used `impl Into<{D,Subd}iagnosticMessage>` in various places as is done in the compiler, but that would have required changes to *many* call sites (mostly changing `&format("...")` to `format!("...")`) which didn't seem worthwhile.
r? `@WaffleLapkin`
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most
compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl
From<&'static str>`, which involves a bunch of knock-on changes that
require/result in call sites being a little more precise about exactly
what kind of string they use to create errors, and not just `&str`. This
will result in fewer unnecessary allocations, though this will not have
any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to
preserve the existing string imprecision. I could have used `impl
Into<{D,Subd}iagnosticMessage>` in various places as is done in the
compiler, but that would have required changes to *many* call sites
(mostly changing `&format("...")` to `format!("...")`) which didn't seem
worthwhile.
MIR: opt-in normalization of `BasicBlock` and `Local` numbering
This doesn't matter at all for actual codegen, but after spending some time reading pre-codegen MIR, I was wishing I didn't have to jump around so much in reading post-inlining code.
So this add two passes that are off by default for every mir level, but can be enabled (`-Zmir-enable-passes=+ReorderBasicBlocks,+ReorderLocals`) for humans.
Add warn-by-default lint when local binding shadows exported glob re-export item
This PR introduces a warn-by-default rustc lint for when a local binding (a use statement, or a type declaration) produces a name which shadows an exported glob re-export item, causing the name from the exported glob re-export to be hidden (see #111336).
### Unresolved Questions
- [x] ~~Is this approach correct? While it passes the UI tests, I'm not entirely convinced it is correct.~~ Seems to be ok now.
- [x] ~~What should the lint be called / how should it be worded? I don't like calling `use x::*;` or `struct Foo;` a "local binding" but they are `NameBinding`s internally if I'm not mistaken.~~ ~~The lint is called `local_binding_shadows_glob_reexport` for now, unless a better name is suggested.~~ `hidden_glob_reexports`.
Fixes#111336.
Rollup of 5 pull requests
Successful merges:
- #111384 (Fix linking Mac Catalyst by including LC_BUILD_VERSION in object files)
- #111899 (CGU cleanups)
- #111940 (Clarify safety concern of `io::Read::read` is only relevant in unsafe code)
- #111947 (Add test for RPIT defined with different hidden types with different substs)
- #111951 (Correct comment on privately uninhabited pattern.)
Failed merges:
- #111954 (improve error message for calling a method on a raw pointer with an unknown pointee)
r? `@ghost`
`@rustbot` modify labels: rollup
Ensure Fluent messages are in alphabetical order
Fixes#111847
This adds a tidy check to ensure Fluent messages are in alphabetical order, as well as sorting all existing messages. I think the error could be worded better, would appreciate suggestions.
<details>
<summary>Script used to sort files</summary>
```py
import sys
import re
fn = sys.argv[1]
with open(fn, 'r') as f:
data = f.read().split("\n")
chunks = []
cur = ""
for line in data:
if re.match(r"^([a-zA-Z0-9_]+)\s*=\s*", line):
chunks.append(cur)
cur = ""
cur += line + "\n"
chunks.append(cur)
chunks.sort()
with open(fn, 'w') as f:
f.write(''.join(chunks).strip("\n\n") + "\n")
```
</details>
Handle opaques in the new solver (take 2?)
Implement a new strategy for handling opaques in the new solver.
First, queries now carry both their defining anchor and the opaques that were defined in the inference context at the time of canonicalization. These are both used to pre-populate the inference context used by the canonical query.
Second, use the normalizes-to goal to handle opaque types in the new solver. This means that opaques are handled like projection aliases, but with their own rules:
* Can only define opaques if they're "defining uses" (i.e. have unique params in all their substs).
* Can only define opaques that are from the anchor.
* Opaque type definitions are modulo regions. So that means `Opaque<'?0r> = HiddenTy1` and `Opaque<?'1r> = HiddenTy2` equate `HiddenTy1` and `HiddenTy2` instead of defining them as different opaque type keys.
Don't leak the function that is called on drop
It probably wasn't causing problems anyway, but still, a `// this leaks, please don't pass anything that owns memory` is not sustainable.
I could implement a version which does not require `Option`, but it would require `unsafe`, at which point it's probably not worth it.
Use `Option::is_some_and` and `Result::is_ok_and` in the compiler
`.is_some_and(..)`/`.is_ok_and(..)` replace `.map_or(false, ..)` and `.map(..).unwrap_or(false)`, making the code more readable.
This PR is a sibling of https://github.com/rust-lang/rust/pull/111873#issuecomment-1561316515
Preprocess and cache dominator tree
Preprocessing dominators has a very strong effect for https://github.com/rust-lang/rust/pull/111344.
That pass checks that assignments dominate their uses repeatedly. Using the unprocessed dominator tree caused a quadratic runtime (number of bbs x depth of the dominator tree).
This PR also caches the dominator tree and the pre-processed dominators in the MIR cfg cache.
Rebase of https://github.com/rust-lang/rust/pull/107157
cc `@tmiasko`
Pretty-print inherent projections correctly
Previously, we were trying to pretty-print inherent projections with `Printer::print_def_path` which is incorrect since
it expects the substitutions to be of a certain format (parents substs followed by own substs) which doesn't hold for
inherent projections (self type subst followed by own substs).
Now we print inherent projections manually.
Fixes#111390.
Fixes#111397.
Lacking tests! Is there a test suite / compiletest flags for the pretty-printer? In most if not all cases,
inherent projections are normalized away before they get the chance to appear in diagnostics.
If I were to create regression tests for linked issues, they would need to be `mir-opt` tests to exercise
`-Zdump-mir=all` (right?) which doesn't feel quite adequate to me.
`@rustbot` label F-inherent_associated_types
Check opaques for mismatch during writeback
Revive #111705.
I realized that we don't need to put any substs in the writeback results since all of the hidden types have already been remapped. See the comment in `compiler/rustc_middle/src/ty/typeck_results.rs`, which should make that clear for other explorers of the codebase.
Additionally, we need to do some diagnostic stashing because the diagnostics we produce during HIR typeck is very poor and we should prefer the diagnostic that comes from MIR, if we have one.
r? `@oli-obk`
fix recursion depth handling after confirmation
fixes#111729
I think having to use `Obligation::with_depth` correctly everywhere is very hard because e.g. the nested obligations from `eq` currently do not have the correct obligation depth.
The new solver [completely removes `recursion_depth` from obligations](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/traits/solve/struct.Goal.html) and instead tracks the depth in the solver itself which is far easier to get right. Moving the old solver towards this shouldn't be that hard but is probably somewhat annoying.
r? `@matthewjasper`
Add extra debug assertions for equality for Adt/Variant/FieldDef
Would've made it easier to both catch and test https://github.com/rust-lang/rust/pull/111494. Maybe not worth it, since it does mean that the compiler is doing extra work when debug-assertions are enabled, but also that's what debug assertions are for :^)
This is a revival of #111523 because I think I pushed an empty branch and bors got a bit too excited it closed the PR.
Fix dependency tracking for debugger visualizers
This PR fixes dependency tracking for debugger visualizer files by changing the `debugger_visualizers` query to an `eval_always` query that scans the AST while it is still available. This way the set of visualizer files is already available when dep-info is emitted. Since the query is turned into an `eval_always` query, dependency tracking will now reliably detect changes to the visualizer script files themselves.
TODO:
- [x] perf.rlo
- [x] Needs a bit more documentation in some places
- [x] Needs regression test for the incr. comp. case
Fixes https://github.com/rust-lang/rust/issues/111226
Fixes https://github.com/rust-lang/rust/issues/111227
Fixes https://github.com/rust-lang/rust/issues/111295
r? `@wesleywiser`
cc `@gibbyfree`
Only depend on CFG_VERSION in rustc_interface
This avoids having to rebuild the whole compiler on each commit when `omit-git-hash = false`.
cc https://github.com/rust-lang/rust/issues/76720 - this won't fix it, and I'm not suggesting we turn this on by default, but it will make it less painful for people who do have `omit-git-hash` on as a workaround.
Merge query property modules into one
This merges all the query modules that defines types into a single module per query with a normal naming convention for type aliases.
r? ``@cjgillot``
debug format `Const`'s less verbosely
Not user visible change only visible to people debugging const generics.
Currently debug output for `ty::Const` is super verbose (even for `-Zverbose` lol), things like printing infer vars as `Infer(Var(?0c))` instead of just `?0c`, bound vars and placeholders not using `^0_1` or `!0_1` syntax respectively. With these changes its imo better but not perfect:
`Const { ty: usize, kind: ^0_1 }`
is still a lot for not much information. not entirely sure what to do about that so not dealing with it yet.
Need to do formatting for `ConstKind::Expr` at some point too since rn it sucks (doesn't even print anything with `Display`) not gonna do that in this PR either.
r? `@compiler-errors`
Erase `ReError` properly
Fixes#111341
Since we check whether a type has free regions before erasing (to short circuit unnecesary folding), we need to consider `ReError` as a free region, or else we'll skip it when erasing a type that only mentions `ReError`.
cc `@nnethercote`
Handle error body in generator layout
Fixes#111468
I feel like making this query return `Option<GeneratorLayout>` might be better but had some issues with that approach
Suppress "erroneous constant used" for constants tainted by errors
When constant evaluation fails because its MIR is tainted by errors,
suppress note indicating that erroneous constant was used, since those
errors have to be fixed regardless of the constant being used or not.
Fixes#110891.
Error message all end up passing into a function as an `impl
Into<{D,Subd}iagnosticMessage>`. If an error message is creatd as
`&format("...")` that means we allocate a string (in the `format!`
call), then take a reference, and then clone (allocating again) the
reference to produce the `{D,Subd}iagnosticMessage`, which is silly.
This commit removes the leading `&` from a lot of these cases. This
means the original `String` is moved into the
`{D,Subd}iagnosticMessage`, avoiding the double allocations. This
requires changing some function argument types from `&str` to `String`
(when all arguments are `String`) or `impl
Into<{D,Subd}iagnosticMessage>` (when some arguments are `String` and
some are `&str`).
Combine three generalizer implementations
Fixes#111092Fixes#109505
This code is a bit delicate and there were subtle changes between them, so I'll leave inline comments where further inspection is needed.
Regarding this comment from #109813 -- "add tests triggering all codepaths: at least the combine and the const generalizer", can't really do that now, and I don't really know how we'd get a higher-ranked const error since non-lifetime binders doesn't *really* support `for<const ..>` (it errors out when you try to use it).
r? `@lcnr`
Move expansion of query macros in rustc_middle to rustc_middle::query
This moves the expansion of `define_callbacks!` and `define_feedable!` from `rustc_middle::ty::query` to `rustc_middle::query`.
This means that types used in queries are both imported and used in `rustc_middle::query` instead of being split between these modules. It also decouples `rustc_middle::ty::query` further from `rustc_middle` which is helpful since we want to move `rustc_middle::ty::query` to the query system crates.
Rename const error methods for consistency
renames `ty::Const`'s methods for creating a `ConstKind::Error` to be in the same naming style as `ty::Ty`'s equivalent methods.
r? `@BoxyUwU`
When constant evaluation fails because its MIR is tainted by errors,
suppress note indicating that erroneous constant was used, since those
errors have to be fixed regardless of the constant being used or not.
Use dynamic dispatch for queries
This replaces most concrete query values `V` with `MaybeUninit<[u8; { size_of::<V>() }]>` reducing the code instantiated by queries. The compile time of `rustc_query_impl` is reduced by 27%. It is an alternative to https://github.com/rust-lang/rust/pull/107937 which uses unstable const generics while this uses a `EraseType` trait which maps query values to their erased variant.
This is achieved by introducing an `Erased` type which does sanity check with `cfg(debug_assertions)`. The query caches gets instantiated with these erased types leaving the code in `rustc_query_system` unaware of them. `rustc_query_system` is changed to use instances of `QueryConfig` so that `rustc_query_impl` can pass in `DynamicConfig` which holds a pointer to a virtual table.
<table><tr><td rowspan="2">Benchmark</td><td colspan="1"><b>Before</b></th><td colspan="2"><b>After</b></th></tr><tr><td align="right">Time</td><td align="right">Time</td><td align="right">%</th></tr><tr><td>🟣 <b>clap</b>:check</td><td align="right">1.7055s</td><td align="right">1.6949s</td><td align="right"> -0.62%</td></tr><tr><td>🟣 <b>hyper</b>:check</td><td align="right">0.2547s</td><td align="right">0.2528s</td><td align="right"> -0.73%</td></tr><tr><td>🟣 <b>regex</b>:check</td><td align="right">0.9590s</td><td align="right">0.9553s</td><td align="right"> -0.39%</td></tr><tr><td>🟣 <b>syn</b>:check</td><td align="right">1.5457s</td><td align="right">1.5440s</td><td align="right"> -0.11%</td></tr><tr><td>🟣 <b>syntex_syntax</b>:check</td><td align="right">5.9092s</td><td align="right">5.9009s</td><td align="right"> -0.14%</td></tr><tr><td>Total</td><td align="right">10.3741s</td><td align="right">10.3479s</td><td align="right"> -0.25%</td></tr><tr><td>Summary</td><td align="right">1.0000s</td><td align="right">0.9960s</td><td align="right"> -0.40%</td></tr></table>
<table><tr><td rowspan="2">Benchmark</td><td colspan="1"><b>Before</b></th><td colspan="2"><b>After</b></th></tr><tr><td align="right">Time</td><td align="right">Time</td><td align="right">%</th></tr><tr><td>🟣 <b>clap</b>:check:initial</td><td align="right">2.0605s</td><td align="right">2.0575s</td><td align="right"> -0.15%</td></tr><tr><td>🟣 <b>hyper</b>:check:initial</td><td align="right">0.3218s</td><td align="right">0.3216s</td><td align="right"> -0.07%</td></tr><tr><td>🟣 <b>regex</b>:check:initial</td><td align="right">1.1848s</td><td align="right">1.1839s</td><td align="right"> -0.07%</td></tr><tr><td>🟣 <b>syn</b>:check:initial</td><td align="right">1.9409s</td><td align="right">1.9376s</td><td align="right"> -0.17%</td></tr><tr><td>🟣 <b>syntex_syntax</b>:check:initial</td><td align="right">7.3105s</td><td align="right">7.2928s</td><td align="right"> -0.24%</td></tr><tr><td>Total</td><td align="right">12.8185s</td><td align="right">12.7935s</td><td align="right"> -0.20%</td></tr><tr><td>Summary</td><td align="right">1.0000s</td><td align="right">0.9986s</td><td align="right"> -0.14%</td></tr></table>
<table><tr><td rowspan="2">Benchmark</td><td colspan="1"><b>Before</b></th><td colspan="2"><b>After</b></th></tr><tr><td align="right">Time</td><td align="right">Time</td><td align="right">%</th></tr><tr><td>🟣 <b>clap</b>:check:unchanged</td><td align="right">0.4606s</td><td align="right">0.4617s</td><td align="right"> 0.24%</td></tr><tr><td>🟣 <b>hyper</b>:check:unchanged</td><td align="right">0.1335s</td><td align="right">0.1336s</td><td align="right"> 0.08%</td></tr><tr><td>🟣 <b>regex</b>:check:unchanged</td><td align="right">0.3324s</td><td align="right">0.3346s</td><td align="right"> 0.65%</td></tr><tr><td>🟣 <b>syn</b>:check:unchanged</td><td align="right">0.6268s</td><td align="right">0.6307s</td><td align="right"> 0.64%</td></tr><tr><td>🟣 <b>syntex_syntax</b>:check:unchanged</td><td align="right">1.8248s</td><td align="right">1.8508s</td><td align="right">💔 1.43%</td></tr><tr><td>Total</td><td align="right">3.3779s</td><td align="right">3.4113s</td><td align="right"> 0.99%</td></tr><tr><td>Summary</td><td align="right">1.0000s</td><td align="right">1.0061s</td><td align="right"> 0.61%</td></tr></table>
It's based on https://github.com/rust-lang/rust/pull/108167.
r? `@cjgillot`
Allow MIR debuginfo to point to a variable's address
MIR optimizations currently do not to operate on borrowed locals.
When enabling #106285, many borrows will be left as-is because they are used in debuginfo. This pass allows to replace this pattern directly in MIR debuginfo:
```rust
a => _1
_1 = &raw? mut? _2
```
becomes
```rust
a => &_2
// No statement to borrow _2.
```
This pass is implemented as a drive-by in ReferencePropagation MIR pass.
This transformation allows following following MIR opts to treat _2 as an unborrowed local, and optimize it as such, even in builds with debuginfo.
In codegen, when encountering `a => &..&_2`, we create a list of allocas:
```llvm
store ptr %_2.dbg.spill, ptr %a.ref0.dbg.spill
store ptr %a.ref0.dbg.spill, ptr %a.ref1.dbg.spill
...
call void `@llvm.dbg.declare(metadata` ptr %a.ref{n}.dbg.spill, /* ... */)
```
Caveat: this transformation looses the exact type, we do not differentiate `a` as a immutable, mutable reference or a raw pointer. Everything is declared to `*mut` to codegen. I'm not convinced this is a blocker.
Introduce `DynSend` and `DynSync` auto trait for parallel compiler
part of parallel-rustc #101566
This PR introduces `DynSend / DynSync` trait and `FromDyn / IntoDyn` structure in rustc_data_structure::marker. `FromDyn` can dynamically check data structures for thread safety when switching to parallel environments (such as calling `par_for_each_in`). This happens only when `-Z threads > 1` so it doesn't affect single-threaded mode's compile efficiency.
r? `@cjgillot`
Note user-facing types of coercion failure
When coercing, for example, `Box<A>` into `Box<dyn B>`, make sure that any failure notes mention *those* specific types, rather than mentioning inner types, like "the cast from `A` to `dyn B`".
I expect end-users are often confused when we skip layers of types and only mention the "innermost" part of a coercion, especially when other notes point at HIR, e.g. #111406.
Require impl Trait in associated types to appear in method signatures
This implements the limited version of TAIT that was proposed in https://github.com/rust-lang/rust/issues/107645#issuecomment-1477899536
Similar to `impl Trait` in return types, `impl Trait` in associated types may only be used within the impl block which it is a part of. To make everything simpler and forward compatible to getting desugared to a plain type alias impl trait in the future, we're requiring that any associated functions or constants that want to register hidden types must be using the associated type in their signature (type of the constant or argument/return type of the associated method. Where bounds mentioning the associated type are ignored).
We have preexisting tests checking that this works transitively across multiple associated types in situations like
```rust
impl Foo for Bar {
type A = impl Trait;
type B = impl Iterator<Item = Self::A>;
fn foo() -> Self::B { ...... }
}
```
Uplift `clippy::{drop,forget}_{ref,copy}` lints
This PR aims at uplifting the `clippy::drop_ref`, `clippy::drop_copy`, `clippy::forget_ref` and `clippy::forget_copy` lints.
Those lints are/were declared in the correctness category of clippy because they lint on useless and most probably is not what the developer wanted.
## `drop_ref` and `forget_ref`
The `drop_ref` and `forget_ref` lint checks for calls to `std::mem::drop` or `std::mem::forget` with a reference instead of an owned value.
### Example
```rust
let mut lock_guard = mutex.lock();
std::mem::drop(&lock_guard) // Should have been drop(lock_guard), mutex
// still locked
operation_that_requires_mutex_to_be_unlocked();
```
### Explanation
Calling `drop` or `forget` on a reference will only drop the reference itself, which is a no-op. It will not call the `drop` or `forget` method on the underlying referenced value, which is likely what was intended.
## `drop_copy` and `forget_copy`
The `drop_copy` and `forget_copy` lint checks for calls to `std::mem::forget` or `std::mem::drop` with a value that derives the Copy trait.
### Example
```rust
let x: i32 = 42; // i32 implements Copy
std::mem::forget(x) // A copy of x is passed to the function, leaving the
// original unaffected
```
### Explanation
Calling `std::mem::forget` [does nothing for types that implement Copy](https://doc.rust-lang.org/std/mem/fn.drop.html) since the value will be copied and moved into the function on invocation.
-----
Followed the instructions for uplift a clippy describe here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
cc `@m-ou-se` (as T-libs-api leader because the uplifting was discussed in a recent meeting)
Shrink `SelectionError` a lot
`SelectionError` used to be 80 bytes (on 64 bit). That's quite big. Especially because the selection cache contained `Result<_, SelectionError>. The Ok type is only 32 bytes, so the 80 bytes significantly inflate the size of the cache.
Most variants of the `SelectionError` seem to be hard errors, only `Unimplemented` shows up in practice (for cranelift-codegen, it occupies 23.4% of all cache entries). We can just box away the biggest variant, `OutputTypeParameterMismatch`, to get the size down to 16 bytes, well within the size of the Ok type inside the cache.
Prevent ICE with broken borrow in closure
r? `@Nilstrieb`
Fixes#108683
This solution isn't ideal, I'm hoping to find a way to continue compilation without ICEing.
Switch to `EarlyBinder` for `thir_abstract_const` query
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `thir_abstract_const` query and removes `bound_abstract_const`.
r? `@compiler-errors`
Implement SSA-based reference propagation
Rust has a tendency to create a lot of short-lived borrows, in particular for method calls. This PR aims to remove those short-lived borrows with a const-propagation dedicated to pointers to local places.
This pass aims to transform the following pattern:
```
_1 = &raw? mut? PLACE;
_3 = *_1;
_4 = &raw? mut? *_1;
```
Into
```
_1 = &raw? mut? PLACE;
_3 = PLACE;
_4 = &raw? mut? PLACE;
```
where `PLACE` is a direct or an indirect place expression.
By removing indirection, this pass should help both dest-prop and const-prop to handle more cases.
This optimization is distinct from const-prop and dataflow const-prop since the borrow-reborrow patterns needs to preserve borrowck invariants, especially the uniqueness property of mutable references.
The pointed-to places are computed using a SSA analysis. We suppose that removable borrows are typically temporaries from autoref, so they are by construction assigned only once, and a SSA analysis is enough to catch them. For each local, we store both where and how it is used, in order to efficiently compute the all-or-nothing property. Thanks to `Derefer`, we only have to track locals, not places in general.
---
There are 3 properties that need to be upheld for this transformation to be legal:
- place constness: `PLACE` must refer to the same memory wherever it appears;
- pointer liveness: we must not introduce dereferences of dangling pointers;
- `&mut` borrow uniqueness.
## Constness
If `PLACE` is an indirect projection, if its of the form `(*LOCAL).PROJECTIONS` where:
- `LOCAL` is SSA;
- all projections in `PROJECTIONS` are constant (no dereference and no indexing).
If `PLACE` is a direct projection of a local, we consider it as constant if:
- the local is always live, or it has a single `StorageLive` that dominates all uses;
- all projections are constant.
# Liveness
When performing a substitution, we must take care not to introduce uses of dangling locals.
Using a dangling borrow is UB. Therefore, we assume that for any use of `*x`, where `x` is a borrow, the pointed-to memory is live.
Limitations:
- occurrences of `*x` in an `&raw mut? *x` are accepted;
- raw pointers are allowed to be dangling.
In those 2 case, we do not substitute anything, to be on the safe side.
**Open question:** we do not differentiate borrows of ZST and non-ZST. The UB rules may be
different depending on the layout. Having a different treatment would effectively prevent this
pass from running on polymorphic MIR, which defeats the purpose of MIR opts.
## Uniqueness
For `&mut` borrows, we also need to preserve the uniqueness property:
we must avoid creating a state where we interleave uses of `*_1` and `_2`.
To do it, we only perform full substitution of mutable borrows:
we replace either all or none of the occurrences of `*_1`.
Some care has to be taken when `_1` is copied in other locals.
```
_1 = &raw? mut? _2;
_3 = *_1;
_4 = _1
_5 = *_4
```
In such cases, fully substituting `_1` means fully substituting all of the copies.
For immutable borrows, we do not need to preserve such uniqueness property,
so we perform all the possible substitutions without removing the `_1 = &_2` statement.
Revert "Populate effective visibilities in `rustc_privacy`"
This reverts commit cff85f22f5, cc #110907. It needs to be fixed, but there are too many issues being reported that I wanted to put up a revert until a proper fix can be committed.
Fixes a ton of issues where private but still reachable impls were missing during codegen:
Fixes#111320Fixes#111321Fixes#111334Fixes#111357Fixes#111368Fixes#111373Fixes#111377Fixes#111386Fixes#111387
`@bors` p=1
r? `@petrochenkov`
`SelectionError` used to be 80 bytes (on 64 bit). That's quite big.
Especially because the selection cache contained `Result<_,
SelectionError>. The Ok type is only 32 bytes, so the 80 bytes
significantly inflate the size of the cache.
Most variants of the `SelectionError` seem to be hard errors, only
`Unimplemented` shows up in practice (for cranelift-codegen, it occupies
23.4% of all cache entries). We can just box away the biggest variant,
`OutputTypeParameterMismatch`, to get the size down to 16 bytes, well
within the size of the Ok type inside the cache.
Min specialization improvements
- Don't allow specialization impls with no items, such implementations are probably not correct and only occur as mistakes in the compiler and standard library
- Fix a missing normalization call
- Adds spans for lifetime errors from overly general specializations
Closes#79457Closes#109815
Introduce `AliasKind::Inherent` for inherent associated types
Allows us to check (possibly generic) inherent associated types for well-formedness.
Type inference now also works properly.
Follow-up to #105961. Supersedes #108430.
Fixes#106722.
Fixes#108957.
Fixes#109768.
Fixes#109789.
Fixes#109790.
~Not to be merged before #108860 (`AliasKind::Weak`).~
CC `@jackh726`
r? `@compiler-errors`
`@rustbot` label T-types F-inherent_associated_types
Fix lifetime suggestion for type aliases with objects in them
Fixes an issue identified in https://github.com/rust-lang/rust/issues/110761#issuecomment-1520678479
This suggestion, like many other borrowck suggestions, are very fragile and there are other ways to trigger strange behavior even after this PR, so this is just a small improvement and not a total rework 💀
Make `(try_)subst_and_normalize_erasing_regions` take `EarlyBinder`
Changes `subst_and_normalize_erasing_regions` and `try_subst_and_normalize_erasing_regions` to take `EarlyBinder<T>` instead of `T`.
(related to #105779)
This was suggested by `@BoxyUwU` in https://github.com/rust-lang/rust/pull/107753#discussion_r1105828139. After changing `type_of` to return `EarlyBinder`, there were several places where the binder was immediately skipped to call `tcx.subst_and_normalize_erasing_regions`, only for the binder to be reconstructed inside of that method.
r? `@BoxyUwU`
Support return-type bounds on associated methods from supertraits
Support `T: Trait<method(): Bound>` when `method` comes from a supertrait, aligning it with the behavior of associated type bounds (both equality and trait bounds).
The only wrinkle is that I have to extend `super_predicates_that_define_assoc_type` to look for *all* items, not just `AssocKind::Ty`. This will also be needed to support `feature(associated_const_equality)` as well, which is subtly broken when it comes to supertraits, though this PR does not fix those yet. There's a slight chance there's a perf regression here, in which case I guess I could split it out into a separate query.
More robust debug assertions for `Instance::resolve` on built-in traits with non-standard trait items
In #111264, a user added a new item to the `Future` trait, but the code in [`resolve_associated_item`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_ty_utils/instance/fn.resolve_associated_item.html) implicitly assumes that the `Future` trait is defined with only one method (`Future::poll`) and treats the generator body as the implementation of that method.
This PR adds some debug assertions to make sure that that new methods defined on `Future`/`Generator`/etc. don't accidentally resolve to the wrong item when they are added, and adds a helpful comment guiding a compiler dev (or curious `#![no_core]` user) to what must be done to support adding new associated items to these built-in implementations.
I am open to discuss whether a test should be added, but I chose against it because I opted to make these `bug!()`s instead of, e.g., diagnostics or fatal errors. Arguably it doesn't need a test because it's not a bug that can be triggered by an end user, and internal-facing misuses of core kind of touch on rust-lang/compiler-team#620 -- however, I think the assertions I added in this PR are still a very useful way to make sure this bug doesn't waste debugging resources down the line.
Fixes#111264
Use fulfillment to check `Drop` impl compatibility
Use an `ObligationCtxt` to ensure that a `Drop` impl does not have stricter requirements than the ADT that it's implemented for, rather than using a `SimpleEqRelation` to (more or less) syntactically equate predicates on an ADT with predicates on an impl.
r? types
### Some background
The old code reads:
```rust
// An earlier version of this code attempted to do this checking
// via the traits::fulfill machinery. However, it ran into trouble
// since the fulfill machinery merely turns outlives-predicates
// 'a:'b and T:'b into region inference constraints. It is simpler
// just to look for all the predicates directly.
```
I'm not sure what this means, but perhaps in the 8 years since that this comment was written (cc #23638) it's gotten easier to process region constraints after doing fulfillment? I don't know how this logic differs from anything we do in the `compare_impl_item` module. Ironically, later on it says:
```rust
// However, it may be more efficient in the future to batch
// the analysis together via the fulfill (see comment above regarding
// the usage of the fulfill machinery), rather than the
// repeated `.iter().any(..)` calls.
```
Also:
* Removes `SimpleEqRelation` which was far too syntactical in its relation.
* Fixes#110557
Such implementations are usually mistakes and are not used in the
compiler or standard library (after this commit) so forbid them with
`min_specialization`.
check array type of repeat exprs is wf
Fixes#111091
Also makes sure that we actually renumber regions in the length of repeat exprs which we previously weren't doing and would cause ICEs in `adt_const_params` + `generic_const_exprs` from attempting to prove the wf goals when the length was an unevaluated constant with `'erased` in the `ty` field of `Const`
The duplicate errors are caused by the fact that `const_arg_to_const`/`array_len_to_const` in `FnCtxt` adds a `WellFormed` goal for the created `Const` which is also checked by the added `WellFormed(array_ty)`. I don't want to change this to just emit a `T: Sized` goal for the element type since that would ignore `ConstArgHasType` wf requirements and generally uncomfortable with the idea of trying to sync up `wf::obligations` for arrays and the code in hir typeck for repeat exprs.
r? `@compiler-errors`
correctly recurse when expanding anon consts
recursing with `super_fold_with` is wrong in case `bac` is itself normalizable, the test that was supposed to test for this being wrong did not actually test for this in reality because of the usage of `{ (N) }` instead of `{{ N }}`. The former resulting in a simple `ConstKind::Param` instead of `ConstKind::Unevaluated`. Tbh generally this test seems very brittle and it will be a lot easier to test once we have normalization of assoc consts since then we can just test that `T::ASSOC` normalizes to some `U::OTHER` which normalizes to some third thing.
r? `@compiler-errors`
Explicitly reject negative and reservation drop impls
Fixes#110858
It doesn't really make sense for a type to have a `!Drop` impl. Or at least, I don't want us to implicitly assign a meaning to it by the way the compiler *currently* handles it (incompletely), and rather I would like to see a PR (or an RFC...) assign a meaning to `!Drop` if we actually wanted one for it.
In #110927 the encode/decode methods for `i8`, `char`, `bool`, and `str`
were made inherent. This commit removes some unnecessary implementations
of these methods that were missed in that PR.
Add cross-language LLVM CFI support to the Rust compiler
This PR adds cross-language LLVM Control Flow Integrity (CFI) support to the Rust compiler by adding the `-Zsanitizer-cfi-normalize-integers` option to be used with Clang `-fsanitize-cfi-icall-normalize-integers` for normalizing integer types (see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space). For more information about LLVM CFI and cross-language LLVM CFI support for the Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and -Zsanitizer-cfi-normalize-integers, and requires proper (i.e., non-rustc) LTO (i.e., -Clinker-plugin-lto).
Thank you again, ``@bjorn3,`` ``@nikic,`` ``@samitolvanen,`` and the Rust community for all the help!
This commit adds cross-language LLVM Control Flow Integrity (CFI)
support to the Rust compiler by adding the
`-Zsanitizer-cfi-normalize-integers` option to be used with Clang
`-fsanitize-cfi-icall-normalize-integers` for normalizing integer types
(see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust
-compiled code "mixed binaries" (i.e., for when C or C++ and Rust
-compiled code share the same virtual address space). For more
information about LLVM CFI and cross-language LLVM CFI support for the
Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and
-Zsanitizer-cfi-normalize-integers, and requires proper (i.e.,
non-rustc) LTO (i.e., -Clinker-plugin-lto).
Avoid ICEing miri on layout query cycles
Miri has special logic for catching panics during interpretation. Raising a fatal error in rustc uses unwinding to abort compilation. Thus miri ends up catching that fatal error and thinks it saw an ICE. While we should probably change that to ignore `Fatal` payloads, I think it's also neat to continue compilation after a layout query cycle 😆
Query cycles now (in addition to reporting an error just like before), return `Err(Cycle)` instead of raising a fatal error. This allows the interpreter to wind down via the regular error paths.
r? `@RalfJung` for a first round, feel free to reroll for the compiler team once the miri side looks good
Implement negative bounds for internal testing purposes
Implements partial support the `!` negative polarity on trait bounds. This is incomplete, but should allow us to at least be able to play with the feature.
Not even gonna consider them as a public-facing feature, but I'm implementing them because would've been nice to have in UI tests, for example in #110671.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
Make some simple queries no longer cache on disk
I don't think we need to cache queries with really simple local providers, like loading hir and accessing an attr
r? `@ghost`
Tweak await span to not contain dot
Fixes a discrepancy between method calls and await expressions where the latter are desugared to have a span that *contains* the dot (i.e. `.await`) but method call identifiers don't contain the dot. This leads to weird suggestions suggestions in borrowck -- see linked issue.
Fixes#110761
This mostly touches a bunch of tests to tighten their `await` span.
Remove `QueryEngine` trait
This removes the `QueryEngine` trait and `Queries` from `rustc_query_impl` and replaced them with function pointers and fields in `QuerySystem`. As a side effect `OnDiskCache` is moved back into `rustc_middle` and the `OnDiskCache` trait is also removed.
This has a couple of benefits.
- `TyCtxt` is used in the query system instead of the removed `QueryCtxt` which is larger.
- Function pointers are more flexible to work with. A variant of https://github.com/rust-lang/rust/pull/107802 is included which avoids the double indirection. For https://github.com/rust-lang/rust/pull/108938 we can name entry point `__rust_end_short_backtrace` to avoid some overhead. For https://github.com/rust-lang/rust/pull/108062 it avoids the duplicate `QueryEngine` structs.
- `QueryContext` now implements `DepContext` which avoids many `dep_context()` calls in `rustc_query_system`.
- The `rustc_driver` size is reduced by 0.33%, hopefully that means some bootstrap improvements.
- This avoids the unsafe code around the `QueryEngine` trait.
r? `@cjgillot`
I was curious about how many `Encodable`/`Decodable` derives we have.
Some grepping revealed that it's over 500 of each, but the number of
`Encodable` ones was higher, which was weird. Most of the
`Encodable`-only ones were in `hir.rs`. This commit removes them all,
plus some other unnecessary derives in that file and others that I found
via trial and error.
Rewrite MemDecoder around pointers not a slice
This is basically https://github.com/rust-lang/rust/pull/109910 but I'm being a lot more aggressive. The pointer-based structure means that it makes a lot more sense to absorb more complexity into `MemDecoder`, most of the diff is just complexity moving from one place to another.
The primary argument for this structure is that we only incur a single bounds check when doing multi-byte reads from a `MemDecoder`. With the slice-based implementation we need to do those with `data[position..position + len]` , which needs to account for `position + len` wrapping. It would be possible to dodge the first bounds check if we stored a slice that starts at `position`, but that would require updating the pointer and length on every read.
This PR also embeds the failure path in a separate function, which means that this PR should subsume all the perf wins observed in https://github.com/rust-lang/rust/pull/109867.
Use `?0` notation for ty/ct/int/float/region vars
Aligns the notation for infer vars that T-types and friends most often uses for inference variables with the notation in the compiler (which is kinda a sigil nightmare IMO: `_#`) by adopting `?0` style infer vars.
This mostly affects debug output since verbose infer vars shouldn't show up in user-facing places.
Does this need an MCP? It's debug output, so I'm thinking no, but happy to open one. 🤔
r? types
Consider polarity in new solver
It's kinda ugly to have a polarity check in all of the builtin impls -- I guess I could consider the polarity at the top of assemble-builtin but that would require adding a polarity fn to `GoalKind`...
🤷 putting this up just so i dont forget, since it's needed to bootstrap core during coherence (this alone does not allow core to bootstrap though, additional work is needed!)
r? ``@lcnr``
Add `impl_tag!` macro to implement `Tag` for tagged pointer easily
r? `@Nilstrieb`
This should also lifts the need to think about safety from the callers (`impl_tag!` is robust (ish, see the macro issue)) and removes the possibility of making a "weird" `Tag` impl.
Switch to `EarlyBinder` for `explicit_item_bounds`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `explicit_item_bounds` query and removes `bound_explicit_item_bounds`.
r? `@compiler-errors` (hope it's okay to request you, since you reviewed #110299 and #110498😃)
Add size asserts for MIR `SourceScopeData` & `VarDebugInfo`
There's vectors of both of these in `mir::Body`, so might as well track them.
(I was pondering adding something to one or the other, so wanted this to see the memory impact.)
Run various queries from other queries instead of explicitly in phases
These are just legacy leftovers from when rustc didn't have a query system. While there are more cleanups of this sort that can be done here, I want to land them in smaller steps.
This phased order of query invocations was already a lie, as any query that looks at types (e.g. the wf checks run before) can invoke e.g. const eval which invokes borrowck, which invokes typeck, ...
Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
Evaluate place expression in `PlaceMention`
https://github.com/rust-lang/rust/pull/102256 introduces a `PlaceMention(place)` MIR statement which keep trace of `let _ = place` statements from surface rust, but without semantics.
This PR proposes to change the behaviour of `let _ =` patterns with respect to the borrow-checker to verify that the bound place is live.
Specifically, consider this code:
```rust
let _ = {
let a = 5;
&a
};
```
This passes borrowck without error on stable. Meanwhile, replacing `_` by `_: _` or `_p` errors with "error[E0597]: `a` does not live long enough", [see playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=c448d25a7c205dc95a0967fe96bccce8).
This PR *does not* change how `_` patterns behave with respect to initializedness: it remains ok to bind a moved-from place to `_`.
The relevant test is `tests/ui/borrowck/let_underscore_temporary.rs`. Crater check found no regression.
For consistency, this PR changes miri to evaluate the place found in `PlaceMention`, and report eventual dangling pointers found within it.
r? `@RalfJung`
Print ty placeholders pretty
Makes anon placeholders print like `!0` instead of `Placeholder { ... }`.
```
rustc_trait_selection::solve::compute_well_formed_goal goal=Goal{
predicate: !0,
param_env: ParamEnv{
caller_bounds: [
Binder(TraitPredicate(<!0 as std::marker::Copy>, polarity: Positive), []),
Binder(TraitPredicate(<!0 as std::clone::Clone>, polarity: Positive), []),
Binder(TraitPredicate(<!0 as std::marker::Sized>, polarity: Positive), []),
],
reveal: UserFacing,
constness: NotConst,
}
}
```
cc `@BoxyUwU` who might care about this formatting decision
Stable hash tag (discriminant) of `GenericArg`
This is a continuation of my quest of removing `transmute` if generic args and types (#110496, #110599).
r? `@compiler-errors`
Add offset_of! macro (RFC 3308)
Implements https://github.com/rust-lang/rfcs/pull/3308 (tracking issue #106655) by adding the built in macro `core::mem::offset_of`. Two of the future possibilities are also implemented:
* Nested field accesses (without array indexing)
* DST support (for `Sized` fields)
I wrote this a few months ago, before the RFC merged. Now that it's merged, I decided to rebase and finish it.
cc `@thomcc` (RFC author)
instead of merging everything into a single bag.
If it's acceptable from performance point of view, then it's more clear to keep this stuff organized more in accordance with its use.
Allow to feed a value in another query's cache and remove `WithOptConstParam`
I used it to remove `WithOptConstParam` queries, as an example.
The idea is that a query (here `typeck(function)`) can write into another query's cache (here `type_of(anon const)`). The dependency node for `type_of` would depend on all the current dependencies of `typeck`.
There is still an issue with cycles: if `type_of(anon const)` is accessed before `typeck(function)`, we will still have the usual cycle. The way around this issue is to `ensure` that `typeck(function)` is called before accessing `type_of(anon const)`.
When replayed, we may the following cases:
- `typeck` is green, in that case `type_of` is green too, and all is right;
- `type_of` is green, `typeck` may still be marked as red (it depends on strictly more things than `type_of`) -> we verify that the saved value and the re-computed value of `type_of` have the same hash;
- `type_of` is red, then `typeck` is red -> it's the caller responsibility to ensure `typeck` is recomputed *before* `type_of`.
As `anon consts` have their own `DefPathData`, it's not possible to have the def-id of the anon-const point to something outside the original function, but the general case may have to be resolved before using this device more broadly.
There is an open question about loading from the on-disk cache. If `typeck` is loaded from the on-disk cache, the side-effect does not happen. The regular `type_of` implementation can go and fetch the correct value from the decoded `typeck` results, and the dep-graph will check that the hashes match, but I'm not sure we want to rely on this behaviour.
I specifically allowed to feed the value to `type_of` from inside a call to `type_of`. In that case, the dep-graph will check that the fingerprints of both values match.
This implementation is still very sensitive to cycles, and requires that we call `typeck(function)` before `typeck(anon const)`. The reason is that `typeck(anon const)` calls `type_of(anon const)`, which calls `typeck(function)`, which feeds `type_of(anon const)`, and needs to build the MIR so needs `typeck(anon const)`. The latter call would not cycle, since `type_of(anon const)` has been set, but I'd rather not remove the cycle check.
Don't transmute `&List<GenericArg>` <-> `&List<Ty>`
In #93505 we allowed safely transmuting between `&List<GenericArg<'_>>` and `&List<Ty<'_>>`. This was possible because `GenericArg` is a tagged pointer and the tag for types is `0b00`, such that a `GenericArg` with a type inside has the same layout as `Ty`.
While this was meant as an optimization, it doesn't look like it was actually any perf or max-rss win (see https://github.com/rust-lang/rust/pull/94799#issuecomment-1064340003, https://github.com/rust-lang/rust/pull/94841, https://github.com/rust-lang/rust/pull/110496#issuecomment-1513799140).
Additionally the way it was done is quite fragile — `unsafe` code was not properly documented or contained in a module, types were not marked as `repr(C)` (making the transmutes possibly unsound). All of this makes the code maintenance harder and blocks other possible optimizations (as an example I've found out about these `transmutes` when my change caused them to sigsegv compiler).
Thus, I think we can safely (pun intended) remove those transmutes, making maintenance easier, optimizations possible, code less cursed, etc.
r? `@compiler-errors`
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Switch to `EarlyBinder` for `collect_return_position_impl_trait_in_trait_tys`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `collect_return_position_impl_trait_in_trait_tys` query and removes `bound_return_position_impl_trait_in_trait_tys`.
r? `@lcnr`
Encode hashes as bytes, not varint
In a few places, we store hashes as `u64` or `u128` and then apply `derive(Decodable, Encodable)` to the enclosing struct/enum. It is more efficient to encode hashes directly than try to apply some varint encoding. This PR adds two new types `Hash64` and `Hash128` which are produced by `StableHasher` and replace every use of storing a `u64` or `u128` that represents a hash.
Distribution of the byte lengths of leb128 encodings, from `x build --stage 2` with `incremental = true`
Before:
```
( 1) 373418203 (53.7%, 53.7%): 1
( 2) 196240113 (28.2%, 81.9%): 3
( 3) 108157958 (15.6%, 97.5%): 2
( 4) 17213120 ( 2.5%, 99.9%): 4
( 5) 223614 ( 0.0%,100.0%): 9
( 6) 216262 ( 0.0%,100.0%): 10
( 7) 15447 ( 0.0%,100.0%): 5
( 8) 3633 ( 0.0%,100.0%): 19
( 9) 3030 ( 0.0%,100.0%): 8
( 10) 1167 ( 0.0%,100.0%): 18
( 11) 1032 ( 0.0%,100.0%): 7
( 12) 1003 ( 0.0%,100.0%): 6
( 13) 10 ( 0.0%,100.0%): 16
( 14) 10 ( 0.0%,100.0%): 17
( 15) 5 ( 0.0%,100.0%): 12
( 16) 4 ( 0.0%,100.0%): 14
```
After:
```
( 1) 372939136 (53.7%, 53.7%): 1
( 2) 196240140 (28.3%, 82.0%): 3
( 3) 108014969 (15.6%, 97.5%): 2
( 4) 17192375 ( 2.5%,100.0%): 4
( 5) 435 ( 0.0%,100.0%): 5
( 6) 83 ( 0.0%,100.0%): 18
( 7) 79 ( 0.0%,100.0%): 10
( 8) 50 ( 0.0%,100.0%): 9
( 9) 6 ( 0.0%,100.0%): 19
```
The remaining 9 or 10 and 18 or 19 are `u64` and `u128` respectively that have the high bits set. As far as I can tell these are coming primarily from `SwitchTargets`.
rustc_metadata: Remove `Span` from `ModChild`
It can be decoded on demand from regular `def_span` tables.
Partially mitigates perf regressions from https://github.com/rust-lang/rust/pull/109500.
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Spelling compiler
This is per https://github.com/rust-lang/rust/pull/110392#issuecomment-1510193656
I'm going to delay performing a squash because I really don't expect people to be perfectly happy w/ my changes, I really am a human and I really do make mistakes.
r? Nilstrieb
I'm going to be flying this evening, but I should be able to squash / respond to reviews w/in a day or two.
I tried to be careful about dropping changes to `tests`, afaict only two files had changes that were likely related to the changes for a given commit (this is where not having eagerly squashed should have given me an advantage), but, that said, picking things apart can be error prone.
Tagged pointers, now with strict provenance!
This is a big refactor of tagged pointers in rustc, with three main goals:
1. Porting the code to the strict provenance
2. Cleanup the code
3. Document the code (and safety invariants) better
This PR has grown quite a bit (almost a complete rewrite at this point...), so I'm not sure what's the best way to review this, but reviewing commit-by-commit should be fine.
r? `@Nilstrieb`
Bypass the varint path when encoding InitMask
The data in a `InitMask` is stored as `u64` but it is a large bitmask (not numbers) so varint encoding doesn't make sense.
Various minor Idx-related tweaks
Nothing particularly exciting here, but a couple of things I noticed as I was looking for more index conversions to simplify.
cc https://github.com/rust-lang/compiler-team/issues/606
r? `@WaffleLapkin`
Remove some suspicious cast truncations
These truncations were added a long time ago, and as best I can tell without a perf justification. And with rust-lang/rust#110410 it has become perf-neutral to not truncate anymore. We worked hard for all these bits, let's use them.
Remove `TypeSuper{Foldable,Visitable}` impls for `Region`.
These traits exist so that folders/visitors can recurse into types of interest: binders, types, regions, predicates, and consts. But `Region` is non-recursive and cannot contain other types of interest, so its methods in these traits are trivial.
This commit inlines and removes those trivial methods.
r? `@compiler-errors`
Remove `remap_env_constness` in queries
This removes some of the complexities with const traits. #88119 used to be caused by this but was fixed by `param_env = param_env.without_const()`.
This allows us to get rid of the `rustc_const_eval->rustc_borrowck`
dependency edge which was delaying the compilation of borrowck.
The added utils in `rustc_middle` are small and should not affect
compile times there.
Don't `use rustc_hir as ast`(!)
It makes for confusing code.
This was introduced in a large commit in #67886 that rearranged a lot of `use` statements. I suspect it was an accident.
These traits exist so that folders/visitors can recurse into types of
interest: binders, types, regions, predicates, and consts. But `Region`
is non-recursive and cannot contain other types of interest, so its
methods in these traits are trivial.
This commit inlines and removes those trivial methods.
Switch to `EarlyBinder` for `impl_subject` query
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
Several queries `X` have a `bound_X` variant that wraps the output in `EarlyBinder`. This adds `EarlyBinder` to the return type of the `impl_subject` query and removes `bound_impl_subject`.
r? ```@lcnr```
resolve: Pre-compute non-reexport module children
Instead of repeating the same logic by walking HIR during metadata encoding.
The only difference is that we are no longer encoding `macro_rules` items, but we never currently need them as a part of this list. They can be encoded separately if this need ever arises.
`module_reexports` is also un-querified, because I don't see any reasons to make it a query, only overhead.
I'm surprised the compiler doesn't warn about these. It appears having
an `impl` on a struct is enough to avoid a warning about it never being
constructed.
Preserve argument indexes when inlining MIR
We store argument indexes on VarDebugInfo. Unlike the previous method of relying on the variable index to know whether a variable is an argument, this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope. When a function gets inlined, the arguments to the inner function will no longer be in the outermost scope. What we care about though is whether they were in the outermost scope prior to inlining, which we know by whether we assigned an argument index.
Fixes#83217
I considered using `Option<NonZeroU16>` instead of `Option<u16>` to store the index. I didn't because `TypeFoldable` isn't implemented for `NonZeroU16` and because it looks like due to padding, it currently wouldn't make any difference. But I indexed from 1 anyway because (a) it'll make it easier if later it becomes worthwhile to use a `NonZeroU16` and because the arguments were previously indexed from 1, so it made for a smaller change.
This is my first PR on rust-lang/rust, so apologies if I've gotten anything not quite right.
Instead of repeating the same logic by walking HIR during metadata encoding.
The only difference is that we are no longer encoding `macro_rules` items, but we never currently need them as a part of this list.
They can be encoded separately if this need ever arises.
`module_reexports` is also un-querified, because I don't see any reasons to make it a query, only overhead.
Split implied and super predicate queries, then allow elaborator to filter only supertraits
Split the `super_predicates_of` query into a new `implied_predicates_of` query. The former now only returns the *real* supertraits of a trait alias, and the latter now returns the implied predicates (which include all of the `where` clauses of the trait alias). The behavior of these queries is identical for regular traits.
Now that the two queries are split, we can add a new filter method to the elaborator, `filter_only_self()`, which can be used in instances that we need only the *supertrait* predicates, such as during the elaboration used in closure signature deduction. This toggles the usage of `super_predicates_of` instead of `implied_predicates_of` during elaboration of a trait predicate.
This supersedes #104745, and fixes the four independent bugs identified in that PR.
Fixes#104719Fixes#106238Fixes#110023Fixes#109514
r? types
Support safe transmute in new solver
Basically copies the same implementation as the old solver, but instead of looking for param types, we look for type or const placeholders.
We store argument indexes on VarDebugInfo. Unlike the previous method of
relying on the variable index to know whether a variable is an argument,
this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope.
When a function gets inlined, the arguments to the inner function will
no longer be in the outermost scope. What we care about though is
whether they were in the outermost scope prior to inlining, which we
know by whether we assigned an argument index.
rustc_middle: Document which exactly `DefId`s don't have `DefKind`s
I don't currently have time to investigate when and how to create these missing HIR nodes, but if someone else could do that it would be great.
resolve: Preserve reexport chains in `ModChild`ren
This may be potentially useful for
- avoiding uses of `hir::ItemKind::Use` (which usually lead to correctness issues)
- preserving documentation comments on all reexports, including those from other crates
- preserving and checking stability/deprecation info on reexports
- all kinds of diagnostics
The second commit then migrates some hacky logic from rustdoc to `module_reexports` to make it simpler and more correct.
Ideally rustdoc should use `module_reexports` immediately at the top level, so `hir::ItemKind::Use`s are never used.
The second commit also fixes issues with https://github.com/rust-lang/rust/pull/109330 and therefore
Fixes https://github.com/rust-lang/rust/issues/109631
Fixes https://github.com/rust-lang/rust/issues/109614
Fixes https://github.com/rust-lang/rust/issues/109424
Add ability to transmute (somewhat) with generic consts in arrays
Previously if the expression contained generic consts and did not have a directly equivalent type, transmuting the type in this way was forbidden, despite the two sizes being identical. Instead, we should be able to lazily tell if the two consts are identical, and if so allow them to be transmuted.
This is done by normalizing the forms of expressions into sorted order of multiplied terms, which is not generic over all expressions, but should handle most cases.
This allows for some _basic_ transmutations between types that are equivalent in size without requiring additional stack space at runtime.
I only see one other location at which `SizeSkeleton` is being used, and it checks for equality so this shouldn't affect anywhere else that I can tell.
See [this Stackoverflow post](https://stackoverflow.com/questions/73085012/transmute-nested-const-generic-array-rust) for what was previously necessary to convert between types. This PR makes converting nested `T -> [T; 1]` transmutes possible, and `[uB*2; N] -> [uB; N * 2]` possible as well.
I'm not sure whether this is something that would be wanted, and if it is it definitely should not be insta-stable, so I'd add a feature gate.
This may be potentially useful for
- avoiding uses of `hir::ItemKind::Use`
- preserving documentation comments on all reexports
- preserving and checking stability/deprecation info on reexports
- all kinds of diagnostics
Refactor unwind in MIR
This makes unwinding from current `Option<BasicBlock>` into
```rust
enum UnwindAction {
Continue,
Cleanup(BasicBlock),
Unreachable,
Terminate,
}
```
cc `@JakobDegen` `@RalfJung` `@Amanieu`
Rollup of 7 pull requests
Successful merges:
- #109395 (Fix issue when there are multiple candidates for edit_distance_with_substrings)
- #109755 (Implement support for `GeneratorWitnessMIR` in new solver)
- #109782 (Don't leave a comma at the start of argument list when removing arguments)
- #109977 (rustdoc: avoid including line numbers in Google SERP snippets)
- #109980 (Derive String's PartialEq implementation)
- #109984 (Remove f32 & f64 from MemDecoder/MemEncoder)
- #110004 (add `dont_check_failure_status` option in the compiler test)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Remove f32 & f64 from MemDecoder/MemEncoder
r? ```@Nilstrieb```
since they said (maybe joked) on discord that it's a bug if the compiler uses f32 anywhere 🙃
Check pattern refutability on THIR
The current `check_match` query is based on HIR, but partially re-lowers HIR into THIR.
This PR proposed to use the results of the `thir_body` query to check matches, instead of re-building THIR.
Most of the diagnostic changes are spans getting shorter, or commas/semicolons not getting removed.
This PR degrades the diagnostic for confusing constants in patterns (`let A = foo()` where `A` resolves to a `const A` somewhere): it does not point ot the definition of `const A` any more.
Unify terminology used in unwind action and terminator, and reflect
the fact that a nounwind panic is triggered instead of an immediate
abort is triggered for this terminator.
Tweak debug outputs to make debugging new solver easier
1. Move the fields that are "most important" (I know this is subjective) to the beginning of the structs.
For goals, I typically care more about the predicate than the param-env (which is significantly longer in debug output).
For canonicalized things, I typically care more about what is *being* canonicalized.
For a canonical response, I typically care about the response -- or at least, it's typically useful to put it first since it's short and affects the whether the solver recurses or not...
2. Add some more debug and instrument calls to functions to add more structure to tracing lines.
r? `@oli-obk` or `@BoxyUwU` (since I think `@lcnr` is on holiday)
Avoid a few locks
We can use atomics or datastructures tuned for specific access patterns instead of locks. This may be an improvement for parallel rustc, but it's mostly a cleanup making various datastructures only usable in the way they are used right now (append data, never mutate), instead of having a general purpose lock.
Move a const-prop-lint specific hack from mir interpret to const-prop-lint and make it fallible
fixes#109743
This hack didn't need to live in the mir interpreter. For const-prop-lint it is entirely correct to avoid doing any const prop if normalization fails at this stage. Most likely we couldn't const propagate anything anyway, and if revealing was needed (so opaque types were involved), we wouldn't want to be too smart and leak the hidden type anyway.
Previously if the expression contained generic consts and did not have a directly equivalent
type, transmuting the type in this way was forbidden, despite the two sizes being identical.
Instead, we should be able to lazily tell if the two consts are identical, and if so allow them
to be transmuted.
Use `&IndexSlice` instead of `&IndexVec` where possible
All the same reasons as for `[T]`: more general, less pointer chasing, and `&mut IndexSlice` emphasizes that it doesn't change *length*.
r? `@ghost`
Insert alignment checks for pointer dereferences when debug assertions are enabled
Closes https://github.com/rust-lang/rust/issues/54915
- [x] Jake tells me this sounds like a place to use `MirPatch`, but I can't figure out how to insert a new basic block with a new terminator in the middle of an existing basic block, using `MirPatch`. (if nobody else backs up this point I'm checking this as "not actually a good idea" because the code looks pretty clean to me after rearranging it a bit)
- [x] Using `CastKind::PointerExposeAddress` is definitely wrong, we don't want to expose. Calling a function to get the pointer address seems quite excessive. ~I'll see if I can add a new `CastKind`.~ `CastKind::Transmute` to the rescue!
- [x] Implement a more helpful panic message like slice bounds checking.
r? `@oli-obk`
Update `ty::VariantDef` to use `IndexVec<FieldIdx, FieldDef>`
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
numeric vars can only be unified with numerical types in deep reject
Don't consider numeric vars (int and float vars) to unify with non-numeric types during deep reject. This helps us reject incompatible impls sooner.
Don't ICE on placeholder consts in deep reject
Since we canonicalize const params into placeholder consts, we need to be able to handle them during deep reject.
r? `@lcnr` (though maybe `@oli-obk` can look at this one too, if he wants 😸)
Fixescompiler-errors/next-solver-hir-issues#10
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
Partial stabilization of `once_cell`
This PR aims to stabilize a portion of the `once_cell` feature:
- `core::cell::OnceCell`
- `std::cell::OnceCell` (re-export of the above)
- `std::sync::OnceLock`
This will leave `LazyCell` and `LazyLock` unstabilized, which have been moved to the `lazy_cell` feature flag.
Tracking issue: https://github.com/rust-lang/rust/issues/74465 (does not fully close, but it may make sense to move to a new issue)
Future steps for separate PRs:
- ~~Add `#[inline]` to many methods~~ #105651
- Update cranelift usage of the `once_cell` crate
- Update rust-analyzer usage of the `once_cell` crate
- Update error messages discussing once_cell
## To be stabilized API summary
```rust
// core::cell (in core/cell/once.rs)
pub struct OnceCell<T> { .. }
impl<T> OnceCell<T> {
pub const fn new() -> OnceCell<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceCell<T>;
impl<T: Debug> Debug for OnceCell<T>
impl<T> Default for OnceCell<T>;
impl<T> From<T> for OnceCell<T>;
impl<T: PartialEq> PartialEq for OnceCell<T>;
impl<T: Eq> Eq for OnceCell<T>;
```
```rust
// std::sync (in std/sync/once_lock.rs)
impl<T> OnceLock<T> {
pub const fn new() -> OnceLock<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceLock<T>;
impl<T: Debug> Debug for OnceLock<T>;
impl<T> Default for OnceLock<T>;
impl<#[may_dangle] T> Drop for OnceLock<T>;
impl<T> From<T> for OnceLock<T>;
impl<T: PartialEq> PartialEq for OnceLock<T>
impl<T: Eq> Eq for OnceLock<T>;
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceLock<T>;
unsafe impl<T: Send> Send for OnceLock<T>;
unsafe impl<T: Sync + Send> Sync for OnceLock<T>;
impl<T: UnwindSafe> UnwindSafe for OnceLock<T>;
```
No longer planned as part of this PR, and moved to the `rust_cell_try` feature gate:
```rust
impl<T> OnceCell<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
impl<T> OnceLock<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
```
I am new to this process so would appreciate mentorship wherever needed.
Move `mir::Field` → `abi::FieldIdx`
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.
Support TLS access into dylibs on Windows
This allows access to `#[thread_local]` in upstream dylibs on Windows by introducing a MIR shim to return the address of the thread local. Accesses that go into an upstream dylib will call the MIR shim to get the address of it.
`convert_tls_rvalues` is introduced in `rustc_codegen_ssa` which rewrites MIR TLS accesses to dummy calls which are replaced with calls to the MIR shims when the dummy calls are lowered to backend calls.
A new `dll_tls_export` target option enables this behavior with a `false` value which is set for Windows platforms.
This fixes https://github.com/rust-lang/rust/issues/84933.
Make init mask lazy for fully initialized/uninitialized const allocations
There are a few optimization opportunities in the `InitMask` and related const `Allocation`s (e.g. by taking advantage of the fact that it's a bitset that represents initialization, which is often entirely initialized or uninitialized in a single call, or gradually built up, etc).
There's a few overwrites to the same state, multiple writes in a row to the same indices, the RLE scheme for `memcpy` doesn't always compress, etc.
Here, we start with:
- avoiding materializing the bitset's blocks if the allocation is fully initialized/uninitialized
- dealloc blocks when fully overwriting, including when participating in `memcpy`s
- take care of the fixme about allocating blocks of 0s before overwriting them to the expected value
- expanding unit test coverage of the init mask
This should be most visible on benchmarks and crates where const allocations dominate the runtime (like `ctfe-stress-5` of course), but I was especially looking at the worst cases from #93215.
This first change allows the majority of `set_range` calls to stay with a lazy init mask when bootstrapping rustc (not that the init mask is a big part of the process in cpu time or memory usage).
r? `@oli-obk`
I have another in-progress branch where I'll switch the singular initialized/uninitialized value to a watermark, recording the point after which everything is uninitialized. That will take care of cases where full initialization is monotonic and done in multiple steps (e.g. an array of a type without padding), which should then allow the vast majority of const allocations' init masks to stay lazy during bootstrapping (though interestingly I've seen such gradual initialization in both left-to-right and right-to-left directions, and I don't think a single watermark can handle both).
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big-and-bitrotty already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.
Rollup of 8 pull requests
Successful merges:
- #91793 (socket ancillary data implementation for FreeBSD (from 13 and above).)
- #92284 (Change advance(_back)_by to return the remainder instead of the number of processed elements)
- #102472 (stop special-casing `'static` in evaluation)
- #108480 (Use Rayon's TLV directly)
- #109321 (Erase impl regions when checking for impossible to eagerly monomorphize items)
- #109470 (Correctly substitute GAT's type used in `normalize_param_env` in `check_type_bounds`)
- #109562 (Update ar_archive_writer to 0.1.3)
- #109629 (remove obsolete `givens` from regionck)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Use Rayon's TLV directly
This accesses Rayon's `TLV` thread local directly avoiding wrapper functions. This makes rustc work with https://github.com/rust-lang/rustc-rayon/pull/10.
r? `@cuviper`
Avoid materializing bits in the InitMask bitset when a single value
would be enough: when the mask represents a fully initialized or fully
uninitialized const allocation.
Refactor: `VariantIdx::from_u32(0)` -> `FIRST_VARIANT`
Since structs are always `VariantIdx(0)`, there's a bunch of files where the only reason they had `VariantIdx` or `vec::Idx` imported at all was to get the first variant.
So this uses a constant for that, and adds some doc-comments to `VariantIdx` while I'm there, since [it doesn't have any today](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_target/abi/struct.VariantIdx.html).
Since structs are always `VariantIdx(0)`, there's a bunch of files where the only reason they had `VariantIdx` or `vec::Idx` imported at all was to get the first variant.
So this uses a constant for that, and adds some doc-comments to `VariantIdx` while I'm there, since it doesn't have any today.
Rollup of 9 pull requests
Successful merges:
- #108629 (rustdoc: add support for type filters in arguments and generics)
- #108924 (panic_immediate_abort requires abort as a panic strategy)
- #108961 (Refine error spans for const args in hir typeck)
- #108986 (sync LVI tests)
- #109142 (Add block-based mutex unlocking example)
- #109368 (fix typo in the creation of OpenOption for RustyHermit)
- #109493 (Return nested obligations from canonical response var unification)
- #109515 (Add AixLinker to support linking on AIX)
- #109536 (resolve: Rename some cstore methods to match queries and add comments)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Refine error spans for const args in hir typeck
Improve just a couple of error messages having to do with mismatched consts.
r? `@ghost` i'll put this up when the dependent commits are merged
rustc_interface: Add a new query `pre_configure`
It partially expands crate attributes before the main expansion pass (without modifying the crate), and the produced preliminary crate attribute list is used for querying a few attributes that are required very early.
Crate-level cfg attributes on the crate itself are then expanded normally during the main expansion pass, like attributes on any other nodes.
This is a continuation of https://github.com/rust-lang/rust/pull/92473 and one more step to very unstable crate-level proc macro attributes maybe actually working.
Previously crate attributes were pre-configured simultaneously with feature extraction, and then written directly into `ast::Crate`.
Rollup of 7 pull requests
Successful merges:
- #108541 (Suppress `opaque_hidden_inferred_bound` for nested RPITs)
- #109137 (resolve: Querify most cstore access methods (subset 2))
- #109380 (add `known-bug` test for unsoundness issue)
- #109462 (Make alias-eq have a relation direction (and rename it to alias-relate))
- #109475 (Simpler checked shifts in MIR building)
- #109504 (Stabilize `arc_into_inner` and `rc_into_inner`.)
- #109506 (make param bound vars visibly bound vars with -Zverbose)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
It partially expands crate attributes before the main expansion pass (without modifying the crate), and the produced preliminary crate attribute list is used for querying a few attributes that are required very early.
Crate-level cfg attributes are then expanded normally during the main expansion pass, like attributes on any other nodes.
make param bound vars visibly bound vars with -Zverbose
I was trying to debug some type/const bound var stuff and it was shockingly tricky due to the fact that even with `-Zverbose` enabled the `T` in `for<T> T: Trait` prints as `T` making it seem like its `TyKind::Param` when it is infact `TyKind::Bound`. This PR "fixes" this when `-Zverbose` is set to allow rendering it as `^T` or `^1_T` depending on binder depth.
r? ```@compiler-errors```
Make alias-eq have a relation direction (and rename it to alias-relate)
Emitting an "alias-eq" is too strict in some situations, since we don't always want strict equality between a projection and rigid ty. Adds a relation direction.
* I could probably just reuse this [`RelationDir`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/combine/enum.RelationDir.html) -- happy to uplift that struct into middle and use that instead, but I didn't feel compelled to... 🤷
* Some of the matching in `compute_alias_relate_goal` is a bit verbose -- I guess I could simplify it by using [`At::relate`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/at/struct.At.html#method.relate) and mapping the relation-dir to a variance.
* Alternatively, I coulld simplify things by making more helper functions on `EvalCtxt` (e.g. `EvalCtxt::relate_with_direction(T, T)` that also does the nested goal registration). No preference.
r? ```@lcnr``` cc ```@BoxyUwU``` though boxy can claim it if she wants
NOTE: first commit is all the changes, the second is just renaming stuff
Updates `interpret`, `codegen_ssa`, and `codegen_cranelift` to consume the new cast instead of the intrinsic.
Includes `CastTransmute` for custom MIR building, to be able to test the extra UB.
new solver cleanup + implement coherence
the cleanup:
- change `Certainty::unify_and` to consider ambig + overflow to be ambig
- rename `trait_candidate_should_be_dropped_in_favor_of` to `candidate_should_be_dropped_in_favor_of`
- remove outdated fixme
For coherence I mostly just add an ambiguous candidate if the current trait ref is unknowable. I am doing the same for reservation impl where I also just add an ambiguous candidate.
rustc: Remove unused `Session` argument from some attribute functions
(One auxiliary test file containing one of these functions was unused, so I removed it instead of updating.)
a general type system cleanup
removes the helper functions `traits::fully_solve_X` as they add more complexity then they are worth. It's confusing which of these helpers should be used in which context.
changes the way we deal with overflow to always add depth in `evaluate_predicates_recursively`. It may make sense to actually fully transition to not have `recursion_depth` on obligations but that's probably a bit too much for this PR.
also removes some other small - and imo unnecessary - helpers.
r? types
Rollup of 8 pull requests
Successful merges:
- #96391 (Windows: make `Command` prefer non-verbatim paths)
- #108164 (Drop all messages in bounded channel when destroying the last receiver)
- #108729 (fix: modify the condition that `resolve_imports` stops)
- #109336 (Constrain const vars to error if const types are mismatched)
- #109403 (Avoid ICE of attempt to add with overflow in emitter)
- #109415 (Refactor `handle_missing_lit`.)
- #109441 (Only implement Fn* traits for extern "Rust" safe function pointers and items)
- #109446 (Do not suggest bounds restrictions for synthesized RPITITs)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Only implement Fn* traits for extern "Rust" safe function pointers and items
Since calling the function via an `Fn` trait will assume `extern "Rust"` ABI and not do any safety checks, only safe `extern "Rust"` function can implement the `Fn` traits. This syncs the logic between the old solver and the new solver.
r? `@compiler-errors`
not *all* retags might be explicit in Runtime MIR
In https://github.com/rust-lang/rust/pull/105317 I made Miri treat `Rvalue::Ref/AddrOf` as implicit retagging sites. This updates the MIR docs accordingly.
For `Rvalue::Ref` I think this makes a lot more sense: creating a new reference is their entire point, so we can avoid bloating the MIR with retags. Also this seems to be the best way to handle cases like `*ptr = &[mut] ...`, where doing a retag is somewhat questionable since maybe `*ptr` points to another place now?
For `Rvalue::AddrOf`, Stacked Borrows needs this because even raw ptrs need some retagging, but Tree Borrows doesn't do ant retagging here and I hope we'll end up with a model where raw pointers don't get retagged.
Custom MIR: Support aggregate expressions
Add support for tuple, array and ADT expressions in custom mir
r? `````@oli-obk````` or `````@tmiasko````` or `````@JakobDegen`````
Walk un-shifted nested `impl Trait` in trait when setting up default trait method assumptions
Fixes a double subtraction in some binder math in return-position `impl Trait` in trait handling code.
Fixes#109239
Tweak implementation of overflow checking assertions
Extract and reuse logic controlling behaviour of overflow checking assertions instead of duplicating it three times.
r? `@cjgillot`
Install projection from RPITIT to default trait method opaque correctly
1. For new lowering strategy `-Zlower-impl-trait-in-trait-to-assoc-ty`, install the correct default trait method projection predicates (RPITIT -> opaque). This makes default trait body tests pass!
2. Fix two WF-checking bugs -- first, we want to make sure that we're always looking for an opaque type in `check_return_position_impl_trait_in_trait_bounds`. That's because the RPITIT projections are normalized to opaques during wfcheck. Second, fix RPITIT's param-envs by not adding the projection predicates that we install on trait methods to make default RPITITs work -- I left a comment why.
3. Also, just a small drive-by for `rustc_on_unimplemented`. Not sure if it affects any tests, but can't hurt.
r? ````@spastorino,```` based off of #109140
Remove box expressions from HIR
After #108516, `#[rustc_box]` is used at HIR->THIR lowering and this is no longer emitted, so it can be removed.
This is based on top of #108471 to help with conflicts, so 43490488ccacd1a822e9c621f5ed6fca99959a0b is the only relevant commit (sorry for all the duplicated pings!)
````@rustbot```` label +S-blocked
Wrap the whole LocalInfo in ClearCrossCrate.
MIR contains a lot of information about locals. The primary purpose of this information is the quality of borrowck diagnostics.
This PR aims to drop this information after MIR analyses are finished, ie. starting from post-cleanup runtime MIR.
Implement checked Shl/Shr at MIR building.
This does not require any special handling by codegen backends,
as the overflow behaviour is entirely determined by the rhs (shift amount).
This allows MIR ConstProp to remove the overflow check for constant shifts.
~There is an existing different behaviour between cg_llvm and cg_clif (cc `@bjorn3).`
I took cg_llvm's one as reference: overflow if `rhs < 0 || rhs > number_of_bits_in_lhs_ty`.~
EDIT: `cg_llvm` and `cg_clif` implement the overflow check differently. This PR uses `cg_llvm`'s implementation based on a `BitAnd` instead of `cg_clif`'s one based on an unsigned comparison.