vulkano/examples/src/bin/tessellation.rs

502 lines
17 KiB
Rust
Raw Normal View History

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
2018-08-24 16:32:39 +00:00
// Some relevant documentation:
// * Tessellation overview https://www.khronos.org/opengl/wiki/Tessellation
// * Tessellation Control Shader https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
// * Tessellation Evaluation Shader https://www.khronos.org/opengl/wiki/Tessellation_Evaluation_Shader
// * Tessellation real-world usage 1 http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html
// * Tessellation real-world usage 2 https://prideout.net/blog/?p=48
2018-08-24 16:32:39 +00:00
// Notable elements of this example:
// * tessellation control shader and a tessellation evaluation shader
// * tessellation_shaders(..), patch_list(3) and polygon_mode_line() are called on the pipeline builder
use bytemuck::{Pod, Zeroable};
use std::sync::Arc;
use vulkano::{
buffer::{Buffer, BufferAllocateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
RenderPassBeginInfo, SubpassContents,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features,
QueueCreateInfo, QueueFlags,
},
image::{view::ImageView, ImageAccess, ImageUsage, SwapchainImage},
instance::{Instance, InstanceCreateInfo},
2022-10-26 14:25:01 +00:00
memory::allocator::StandardMemoryAllocator,
pipeline::{
graphics::{
input_assembly::{InputAssemblyState, PrimitiveTopology},
rasterization::{PolygonMode, RasterizationState},
tessellation::TessellationState,
vertex_input::Vertex,
viewport::{Viewport, ViewportState},
},
GraphicsPipeline,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{
acquire_next_image, AcquireError, Swapchain, SwapchainCreateInfo, SwapchainCreationError,
SwapchainPresentInfo,
},
sync::{self, FlushError, GpuFuture},
VulkanLibrary,
};
use vulkano_win::VkSurfaceBuild;
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::{Window, WindowBuilder},
};
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
"
}
}
mod tcs {
vulkano_shaders::shader! {
ty: "tess_ctrl",
src: "
#version 450
layout (vertices = 3) out; // a value of 3 means a patch consists of a single triangle
void main(void)
{
// save the position of the patch, so the tes can access it
// We could define our own output variables for this,
// but gl_out is handily provided.
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
gl_TessLevelInner[0] = 10; // many triangles are generated in the center
gl_TessLevelOuter[0] = 1; // no triangles are generated for this edge
gl_TessLevelOuter[1] = 10; // many triangles are generated for this edge
gl_TessLevelOuter[2] = 10; // many triangles are generated for this edge
// gl_TessLevelInner[1] = only used when tes uses layout(quads)
// gl_TessLevelOuter[3] = only used when tes uses layout(quads)
}
"
}
}
// PG
// There is a stage in between tcs and tes called Primitive Generation (PG)
// Shaders cannot be defined for it.
// It takes gl_TessLevelInner and gl_TessLevelOuter and uses them to generate positions within
// the patch and pass them to tes via gl_TessCoord.
//
// When tes uses layout(triangles) then gl_TessCoord is in barrycentric coordinates.
// if layout(quads) is used then gl_TessCoord is in cartesian coordinates.
// Barrycentric coordinates are of the form (x, y, z) where x + y + z = 1
// and the values x, y and z represent the distance from a vertex of the triangle.
// https://mathworld.wolfram.com/BarycentricCoordinates.html
mod tes {
vulkano_shaders::shader! {
ty: "tess_eval",
src: "
#version 450
layout(triangles, equal_spacing, cw) in;
void main(void)
{
// retrieve the vertex positions set by the tcs
vec4 vert_x = gl_in[0].gl_Position;
vec4 vert_y = gl_in[1].gl_Position;
vec4 vert_z = gl_in[2].gl_Position;
// convert gl_TessCoord from barycentric coordinates to cartesian coordinates
gl_Position = vec4(
gl_TessCoord.x * vert_x.x + gl_TessCoord.y * vert_y.x + gl_TessCoord.z * vert_z.x,
gl_TessCoord.x * vert_x.y + gl_TessCoord.y * vert_y.y + gl_TessCoord.z * vert_z.y,
gl_TessCoord.x * vert_x.z + gl_TessCoord.y * vert_y.z + gl_TessCoord.z * vert_z.z,
1.0
);
}
"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 1.0, 1.0, 1.0);
}
"
}
}
fn main() {
let library = VulkanLibrary::new().unwrap();
let required_extensions = vulkano_win::required_extensions(&library);
let instance = Instance::new(
library,
InstanceCreateInfo {
enabled_extensions: required_extensions,
// Enable enumerating devices that use non-conformant vulkan implementations. (ex. MoltenVK)
enumerate_portability: true,
..Default::default()
},
)
.unwrap();
let event_loop = EventLoop::new();
let surface = WindowBuilder::new()
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let features = Features {
tessellation_shader: true,
fill_mode_non_solid: true,
..Features::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter(|p| p.supported_features().contains(&features))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
enabled_features: features,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = Some(
device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0,
);
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count,
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
2022-10-26 14:25:01 +00:00
let memory_allocator = StandardMemoryAllocator::new_default(device.clone());
Refactor Vertex trait to allow user-defined formats (#2106) * Refactor Vertex trait to not rely on ShaderInterfaceEntryType::to_format and instead rely on Format provided by VertexMember trait. * Add test for impl_vertex macro, remove tuple implementations as they do not implement Pod, minor cleanups to impl_vertex macro. * #[derive(Vertex)] proc-macro implementation with support for format and name attributes. Tests are implemented for both attributes and inferral matching impl_vertex macro * Rename num_elements into num_locations to make purpose clear, add helper function to calculate num_components and check them properly in BufferDefinition's VertexDefinition implementation. * Rename num_locations back to num_elements to make distinction to locations clear. Updated VertexDefinition implementation for BuffersDefinition to support double precision formats exceeding a single location. * Add additional validation for vertex attributes with formats exceeding their location. * Collect unnecessary, using iterator in loop to avoid unnecessary allocations. * Use field type directly and avoid any form of unsafe blocks. * Match shader scalar type directly in GraphicsPipelineBuilder * Rename impl_vertex test to fit macro name * Add VertexMember implementatinos for nalgebra and cgmath (incl matrices). * Add missing copyright headers to new files in proc macro crate * Document derive vertex with field-attribute options on the Vertex trait * Add example for vertex derive approach. * Do not publish internal macros crate as it is re-exported by vulkano itself * Deprecate impl_vertex and VertexMember and update documentation for Vertex accordingly * Make format field-level attribute mandatory for derive vertex * Update all examples to derive Vertex trait instead of impl_vertex macro * Fix doctests by adding missing imports and re-exporting crate self as vulkano to workaround limitations of distinguishing doctests in proc-macros
2022-12-28 10:23:36 +00:00
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod, Vertex)]
2021-11-24 14:19:57 +00:00
#[repr(C)]
struct Vertex {
Refactor Vertex trait to allow user-defined formats (#2106) * Refactor Vertex trait to not rely on ShaderInterfaceEntryType::to_format and instead rely on Format provided by VertexMember trait. * Add test for impl_vertex macro, remove tuple implementations as they do not implement Pod, minor cleanups to impl_vertex macro. * #[derive(Vertex)] proc-macro implementation with support for format and name attributes. Tests are implemented for both attributes and inferral matching impl_vertex macro * Rename num_elements into num_locations to make purpose clear, add helper function to calculate num_components and check them properly in BufferDefinition's VertexDefinition implementation. * Rename num_locations back to num_elements to make distinction to locations clear. Updated VertexDefinition implementation for BuffersDefinition to support double precision formats exceeding a single location. * Add additional validation for vertex attributes with formats exceeding their location. * Collect unnecessary, using iterator in loop to avoid unnecessary allocations. * Use field type directly and avoid any form of unsafe blocks. * Match shader scalar type directly in GraphicsPipelineBuilder * Rename impl_vertex test to fit macro name * Add VertexMember implementatinos for nalgebra and cgmath (incl matrices). * Add missing copyright headers to new files in proc macro crate * Document derive vertex with field-attribute options on the Vertex trait * Add example for vertex derive approach. * Do not publish internal macros crate as it is re-exported by vulkano itself * Deprecate impl_vertex and VertexMember and update documentation for Vertex accordingly * Make format field-level attribute mandatory for derive vertex * Update all examples to derive Vertex trait instead of impl_vertex macro * Fix doctests by adding missing imports and re-exporting crate self as vulkano to workaround limitations of distinguishing doctests in proc-macros
2022-12-28 10:23:36 +00:00
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
Vertex {
position: [0.9, 0.9],
},
Vertex {
position: [0.9, 0.8],
},
Vertex {
position: [0.8, 0.8],
},
Vertex {
position: [-0.9, 0.9],
},
Vertex {
position: [-0.7, 0.6],
},
Vertex {
position: [-0.5, 0.9],
},
];
let vertex_buffer = Buffer::from_iter(
2022-10-26 14:25:01 +00:00
&memory_allocator,
BufferAllocateInfo {
buffer_usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
vertices,
)
.unwrap();
let vs = vs::load(device.clone()).unwrap();
let tcs = tcs::load(device.clone()).unwrap();
let tes = tes::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.image_format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
)
.unwrap();
let pipeline = GraphicsPipeline::start()
.vertex_input_state(Vertex::per_vertex())
.vertex_shader(vs.entry_point("main").unwrap(), ())
// Actually use the tessellation shaders.
.tessellation_shaders(
tcs.entry_point("main").unwrap(),
(),
tes.entry_point("main").unwrap(),
(),
)
.input_assembly_state(InputAssemblyState::new().topology(PrimitiveTopology::PatchList))
.rasterization_state(RasterizationState::new().polygon_mode(PolygonMode::Line))
.tessellation_state(
TessellationState::new()
// Use a patch_control_points of 3, because we want to convert one triangle into
// lots of little ones. A value of 4 would convert a rectangle into lots of little
// triangles.
.patch_control_points(3),
)
.viewport_state(ViewportState::viewport_dynamic_scissor_irrelevant())
.fragment_shader(fs.entry_point("main").unwrap(), ())
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap();
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let mut viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [0.0, 0.0],
depth_range: 0.0..1.0,
};
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport);
let command_buffer_allocator =
StandardCommandBufferAllocator::new(device.clone(), Default::default());
event_loop.run(move |event, _, control_flow| match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::RedrawEventsCleared => {
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
let dimensions = window.inner_size();
if dimensions.width == 0 || dimensions.height == 0 {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = match swapchain.recreate(SwapchainCreateInfo {
image_extent: dimensions.into(),
..swapchain.create_info()
}) {
Ok(r) => r,
Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return,
Err(e) => panic!("Failed to recreate swapchain: {e:?}"),
};
swapchain = new_swapchain;
framebuffers =
window_size_dependent_setup(&new_images, render_pass.clone(), &mut viewport);
recreate_swapchain = false;
}
2022-09-24 06:45:06 +00:00
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("Failed to acquire next image: {e:?}"),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 0.0, 1.0].into())],
2022-09-24 06:45:06 +00:00
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
SubpassContents::Inline,
)
.unwrap()
.set_viewport(0, [viewport.clone()])
.bind_pipeline_graphics(pipeline.clone())
.bind_vertex_buffers(0, vertex_buffer.clone())
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
2022-09-24 06:45:06 +00:00
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("Failed to flush future: {e:?}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
});
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let dimensions = images[0].dimensions().width_height();
viewport.dimensions = [dimensions[0] as f32, dimensions[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}