// Copyright (c) 2016 The vulkano developers // Licensed under the Apache License, Version 2.0 // or the MIT // license , // at your option. All files in the project carrying such // notice may not be copied, modified, or distributed except // according to those terms. // Some relevant documentation: // * Tessellation overview https://www.khronos.org/opengl/wiki/Tessellation // * Tessellation Control Shader https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader // * Tessellation Evaluation Shader https://www.khronos.org/opengl/wiki/Tessellation_Evaluation_Shader // * Tessellation real-world usage 1 http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html // * Tessellation real-world usage 2 https://prideout.net/blog/?p=48 // Notable elements of this example: // * tessellation control shader and a tessellation evaluation shader // * tessellation_shaders(..), patch_list(3) and polygon_mode_line() are called on the pipeline builder use bytemuck::{Pod, Zeroable}; use std::sync::Arc; use vulkano::{ buffer::{Buffer, BufferAllocateInfo, BufferUsage}, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, SubpassContents, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features, QueueCreateInfo, QueueFlags, }, image::{view::ImageView, ImageAccess, ImageUsage, SwapchainImage}, instance::{Instance, InstanceCreateInfo}, memory::allocator::StandardMemoryAllocator, pipeline::{ graphics::{ input_assembly::{InputAssemblyState, PrimitiveTopology}, rasterization::{PolygonMode, RasterizationState}, tessellation::TessellationState, vertex_input::Vertex, viewport::{Viewport, ViewportState}, }, GraphicsPipeline, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, swapchain::{ acquire_next_image, AcquireError, Swapchain, SwapchainCreateInfo, SwapchainCreationError, SwapchainPresentInfo, }, sync::{self, FlushError, GpuFuture}, VulkanLibrary, }; use vulkano_win::VkSurfaceBuild; use winit::{ event::{Event, WindowEvent}, event_loop::{ControlFlow, EventLoop}, window::{Window, WindowBuilder}, }; mod vs { vulkano_shaders::shader! { ty: "vertex", src: " #version 450 layout(location = 0) in vec2 position; void main() { gl_Position = vec4(position, 0.0, 1.0); } " } } mod tcs { vulkano_shaders::shader! { ty: "tess_ctrl", src: " #version 450 layout (vertices = 3) out; // a value of 3 means a patch consists of a single triangle void main(void) { // save the position of the patch, so the tes can access it // We could define our own output variables for this, // but gl_out is handily provided. gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position; gl_TessLevelInner[0] = 10; // many triangles are generated in the center gl_TessLevelOuter[0] = 1; // no triangles are generated for this edge gl_TessLevelOuter[1] = 10; // many triangles are generated for this edge gl_TessLevelOuter[2] = 10; // many triangles are generated for this edge // gl_TessLevelInner[1] = only used when tes uses layout(quads) // gl_TessLevelOuter[3] = only used when tes uses layout(quads) } " } } // PG // There is a stage in between tcs and tes called Primitive Generation (PG) // Shaders cannot be defined for it. // It takes gl_TessLevelInner and gl_TessLevelOuter and uses them to generate positions within // the patch and pass them to tes via gl_TessCoord. // // When tes uses layout(triangles) then gl_TessCoord is in barrycentric coordinates. // if layout(quads) is used then gl_TessCoord is in cartesian coordinates. // Barrycentric coordinates are of the form (x, y, z) where x + y + z = 1 // and the values x, y and z represent the distance from a vertex of the triangle. // https://mathworld.wolfram.com/BarycentricCoordinates.html mod tes { vulkano_shaders::shader! { ty: "tess_eval", src: " #version 450 layout(triangles, equal_spacing, cw) in; void main(void) { // retrieve the vertex positions set by the tcs vec4 vert_x = gl_in[0].gl_Position; vec4 vert_y = gl_in[1].gl_Position; vec4 vert_z = gl_in[2].gl_Position; // convert gl_TessCoord from barycentric coordinates to cartesian coordinates gl_Position = vec4( gl_TessCoord.x * vert_x.x + gl_TessCoord.y * vert_y.x + gl_TessCoord.z * vert_z.x, gl_TessCoord.x * vert_x.y + gl_TessCoord.y * vert_y.y + gl_TessCoord.z * vert_z.y, gl_TessCoord.x * vert_x.z + gl_TessCoord.y * vert_y.z + gl_TessCoord.z * vert_z.z, 1.0 ); } " } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: " #version 450 layout(location = 0) out vec4 f_color; void main() { f_color = vec4(1.0, 1.0, 1.0, 1.0); } " } } fn main() { let library = VulkanLibrary::new().unwrap(); let required_extensions = vulkano_win::required_extensions(&library); let instance = Instance::new( library, InstanceCreateInfo { enabled_extensions: required_extensions, // Enable enumerating devices that use non-conformant vulkan implementations. (ex. MoltenVK) enumerate_portability: true, ..Default::default() }, ) .unwrap(); let event_loop = EventLoop::new(); let surface = WindowBuilder::new() .build_vk_surface(&event_loop, instance.clone()) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let features = Features { tessellation_shader: true, fill_mode_non_solid: true, ..Features::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter(|p| p.supported_features().contains(&features)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, enabled_features: features, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let (mut swapchain, images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = Some( device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0, ); let window = surface.object().unwrap().downcast_ref::().unwrap(); Swapchain::new( device.clone(), surface.clone(), SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count, image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let memory_allocator = StandardMemoryAllocator::new_default(device.clone()); #[derive(Clone, Copy, Debug, Default, Zeroable, Pod, Vertex)] #[repr(C)] struct Vertex { #[format(R32G32_SFLOAT)] position: [f32; 2], } let vertices = [ Vertex { position: [-0.5, -0.25], }, Vertex { position: [0.0, 0.5], }, Vertex { position: [0.25, -0.1], }, Vertex { position: [0.9, 0.9], }, Vertex { position: [0.9, 0.8], }, Vertex { position: [0.8, 0.8], }, Vertex { position: [-0.9, 0.9], }, Vertex { position: [-0.7, 0.6], }, Vertex { position: [-0.5, 0.9], }, ]; let vertex_buffer = Buffer::from_iter( &memory_allocator, BufferAllocateInfo { buffer_usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, vertices, ) .unwrap(); let vs = vs::load(device.clone()).unwrap(); let tcs = tcs::load(device.clone()).unwrap(); let tes = tes::load(device.clone()).unwrap(); let fs = fs::load(device.clone()).unwrap(); let render_pass = vulkano::single_pass_renderpass!( device.clone(), attachments: { color: { load: Clear, store: Store, format: swapchain.image_format(), samples: 1, } }, pass: { color: [color], depth_stencil: {} } ) .unwrap(); let pipeline = GraphicsPipeline::start() .vertex_input_state(Vertex::per_vertex()) .vertex_shader(vs.entry_point("main").unwrap(), ()) // Actually use the tessellation shaders. .tessellation_shaders( tcs.entry_point("main").unwrap(), (), tes.entry_point("main").unwrap(), (), ) .input_assembly_state(InputAssemblyState::new().topology(PrimitiveTopology::PatchList)) .rasterization_state(RasterizationState::new().polygon_mode(PolygonMode::Line)) .tessellation_state( TessellationState::new() // Use a patch_control_points of 3, because we want to convert one triangle into // lots of little ones. A value of 4 would convert a rectangle into lots of little // triangles. .patch_control_points(3), ) .viewport_state(ViewportState::viewport_dynamic_scissor_irrelevant()) .fragment_shader(fs.entry_point("main").unwrap(), ()) .render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) .build(device.clone()) .unwrap(); let mut recreate_swapchain = false; let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); let mut viewport = Viewport { origin: [0.0, 0.0], dimensions: [0.0, 0.0], depth_range: 0.0..1.0, }; let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport); let command_buffer_allocator = StandardCommandBufferAllocator::new(device.clone(), Default::default()); event_loop.run(move |event, _, control_flow| match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { *control_flow = ControlFlow::Exit; } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::RedrawEventsCleared => { let window = surface.object().unwrap().downcast_ref::().unwrap(); let dimensions = window.inner_size(); if dimensions.width == 0 || dimensions.height == 0 { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = match swapchain.recreate(SwapchainCreateInfo { image_extent: dimensions.into(), ..swapchain.create_info() }) { Ok(r) => r, Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return, Err(e) => panic!("Failed to recreate swapchain: {e:?}"), }; swapchain = new_swapchain; framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut viewport); recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("Failed to acquire next image: {e:?}"), }; if suboptimal { recreate_swapchain = true; } let mut builder = AutoCommandBufferBuilder::primary( &command_buffer_allocator, queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![Some([0.0, 0.0, 0.0, 1.0].into())], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, SubpassContents::Inline, ) .unwrap() .set_viewport(0, [viewport.clone()]) .bind_pipeline_graphics(pipeline.clone()) .bind_vertex_buffers(0, vertex_buffer.clone()) .draw(vertex_buffer.len() as u32, 1, 0, 0) .unwrap() .end_render_pass() .unwrap(); let command_buffer = builder.build().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future { Ok(future) => { previous_frame_end = Some(future.boxed()); } Err(FlushError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("Failed to flush future: {e:?}"); previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } _ => (), }); } /// This method is called once during initialization, then again whenever the window is resized fn window_size_dependent_setup( images: &[Arc], render_pass: Arc, viewport: &mut Viewport, ) -> Vec> { let dimensions = images[0].dimensions().width_height(); viewport.dimensions = [dimensions[0] as f32, dimensions[1] as f32]; images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view], ..Default::default() }, ) .unwrap() }) .collect::>() }