vulkano/examples/src/bin/tessellation.rs

425 lines
14 KiB
Rust
Raw Normal View History

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
2018-08-24 16:32:39 +00:00
// Some relevant documentation:
// * Tessellation overview https://www.khronos.org/opengl/wiki/Tessellation
// * Tessellation Control Shader https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
// * Tessellation Evaluation Shader https://www.khronos.org/opengl/wiki/Tessellation_Evaluation_Shader
// * Tessellation real-world usage 1 http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html
// * Tessellation real-world usage 2 http://prideout.net/blog/?p=48
// Notable elements of this example:
// * tessellation control shader and a tessellation evaluation shader
// * tessellation_shaders(..), patch_list(3) and polygon_mode_line() are called on the pipeline builder
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::device::{Device, DeviceExtensions};
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, RenderPassAbstract, Subpass};
use vulkano::image::{ImageUsage, SwapchainImage};
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::pipeline::viewport::Viewport;
use vulkano::pipeline::GraphicsPipeline;
use vulkano::swapchain;
use vulkano::swapchain::{
AcquireError, ColorSpace, FullscreenExclusive, PresentMode, SurfaceTransform, Swapchain,
SwapchainCreationError,
};
use vulkano::sync;
use vulkano::sync::{FlushError, GpuFuture};
use vulkano_win::VkSurfaceBuild;
use winit::event::{Event, WindowEvent};
use winit::event_loop::{ControlFlow, EventLoop};
use winit::window::{Window, WindowBuilder};
use std::sync::Arc;
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
"
}
}
mod tcs {
vulkano_shaders::shader! {
ty: "tess_ctrl",
src: "
#version 450
layout (vertices = 3) out; // a value of 3 means a patch consists of a single triangle
void main(void)
{
// save the position of the patch, so the tes can access it
// We could define our own output variables for this,
// but gl_out is handily provided.
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
gl_TessLevelInner[0] = 10; // many triangles are generated in the center
gl_TessLevelOuter[0] = 1; // no triangles are generated for this edge
gl_TessLevelOuter[1] = 10; // many triangles are generated for this edge
gl_TessLevelOuter[2] = 10; // many triangles are generated for this edge
// gl_TessLevelInner[1] = only used when tes uses layout(quads)
// gl_TessLevelOuter[3] = only used when tes uses layout(quads)
}
"
}
}
// PG
// There is a stage in between tcs and tes called Primitive Generation (PG)
// Shaders cannot be defined for it.
// It takes gl_TessLevelInner and gl_TessLevelOuter and uses them to generate positions within
// the patch and pass them to tes via gl_TessCoord.
//
// When tes uses layout(triangles) then gl_TessCoord is in barrycentric coordinates.
// if layout(quads) is used then gl_TessCoord is in cartesian coordinates.
// Barrycentric coordinates are of the form (x, y, z) where x + y + z = 1
// and the values x, y and z represent the distance from a vertex of the triangle.
// http://mathworld.wolfram.com/BarycentricCoordinates.html
mod tes {
vulkano_shaders::shader! {
ty: "tess_eval",
src: "
#version 450
layout(triangles, equal_spacing, cw) in;
void main(void)
{
// retrieve the vertex positions set by the tcs
vec4 vert_x = gl_in[0].gl_Position;
vec4 vert_y = gl_in[1].gl_Position;
vec4 vert_z = gl_in[2].gl_Position;
// convert gl_TessCoord from barycentric coordinates to cartesian coordinates
gl_Position = vec4(
gl_TessCoord.x * vert_x.x + gl_TessCoord.y * vert_y.x + gl_TessCoord.z * vert_z.x,
gl_TessCoord.x * vert_x.y + gl_TessCoord.y * vert_y.y + gl_TessCoord.z * vert_z.y,
gl_TessCoord.x * vert_x.z + gl_TessCoord.y * vert_y.z + gl_TessCoord.z * vert_z.z,
1.0
);
}
"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 1.0, 1.0, 1.0);
}
"
}
}
fn main() {
let required_extensions = vulkano_win::required_extensions();
let instance = Instance::new(None, &required_extensions, None).unwrap();
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
println!(
"Using device: {} (type: {:?})",
physical.name(),
physical.ty()
);
let event_loop = EventLoop::new();
let surface = WindowBuilder::new()
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
let queue_family = physical
.queue_families()
.find(|&q| q.supports_graphics() && surface.is_supported(q).unwrap_or(false))
.unwrap();
let device_ext = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::none()
};
let (device, mut queues) = Device::new(
physical,
physical.supported_features(),
&device_ext,
[(queue_family, 0.5)].iter().cloned(),
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let caps = surface.capabilities(physical).unwrap();
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
let format = caps.supported_formats[0].0;
let dimensions: [u32; 2] = surface.window().inner_size().into();
Swapchain::new(
device.clone(),
surface.clone(),
caps.min_image_count,
format,
dimensions,
1,
ImageUsage::color_attachment(),
&queue,
SurfaceTransform::Identity,
alpha,
PresentMode::Fifo,
FullscreenExclusive::Default,
true,
ColorSpace::SrgbNonLinear,
)
.unwrap()
};
let vertex_buffer = {
#[derive(Default, Debug, Clone)]
struct Vertex {
position: [f32; 2],
}
2018-12-07 12:35:19 +00:00
vulkano::impl_vertex!(Vertex, position);
CpuAccessibleBuffer::from_iter(
device.clone(),
BufferUsage::all(),
false,
[
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
Vertex {
position: [0.9, 0.9],
},
Vertex {
position: [0.9, 0.8],
},
Vertex {
position: [0.8, 0.8],
},
Vertex {
position: [-0.9, 0.9],
},
Vertex {
position: [-0.7, 0.6],
},
Vertex {
position: [-0.5, 0.9],
},
]
.iter()
.cloned(),
)
.unwrap()
};
let vs = vs::Shader::load(device.clone()).unwrap();
let tcs = tcs::Shader::load(device.clone()).unwrap();
let tes = tes::Shader::load(device.clone()).unwrap();
let fs = fs::Shader::load(device.clone()).unwrap();
let render_pass = Arc::new(
vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
)
.unwrap(),
);
let pipeline = Arc::new(
GraphicsPipeline::start()
.vertex_input_single_buffer()
.vertex_shader(vs.main_entry_point(), ())
// Actually use the tessellation shaders.
.tessellation_shaders(tcs.main_entry_point(), (), tes.main_entry_point(), ())
// use PrimitiveTopology::PathList(3)
// Use a vertices_per_patch of 3, because we want to convert one triangle into lots of
// little ones. A value of 4 would convert a rectangle into lots of little triangles.
.patch_list(3)
// Enable line mode so we can see the generated vertices.
.polygon_mode_line()
.viewports_dynamic_scissors_irrelevant(1)
.fragment_shader(fs.main_entry_point(), ())
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap(),
);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let mut dynamic_state = DynamicState {
line_width: None,
viewports: None,
scissors: None,
compare_mask: None,
write_mask: None,
reference: None,
};
let mut framebuffers =
window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
event_loop.run(move |event, _, control_flow| match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::RedrawEventsCleared => {
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let dimensions: [u32; 2] = surface.window().inner_size().into();
let (new_swapchain, new_images) =
match swapchain.recreate_with_dimensions(dimensions) {
Ok(r) => r,
Err(SwapchainCreationError::UnsupportedDimensions) => return,
Err(e) => panic!("Failed to recreate swapchain: {:?}", e),
};
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(
&new_images,
render_pass.clone(),
&mut dynamic_state,
);
recreate_swapchain = false;
}
let (image_num, suboptimal, acquire_future) =
match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("Failed to acquire next image: {:?}", e),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder =
AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
.unwrap();
builder
.begin_render_pass(
framebuffers[image_num].clone(),
false,
vec![[0.0, 0.0, 0.0, 1.0].into()],
)
.unwrap()
.draw(
pipeline.clone(),
&dynamic_state,
vertex_buffer.clone(),
(),
(),
)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("Failed to flush future: {:?}", e);
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
});
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
2019-07-02 08:25:58 +00:00
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState,
2019-07-02 08:25:58 +00:00
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0..1.0,
};
dynamic_state.viewports = Some(vec![viewport]);
images
.iter()
.map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone())
.unwrap()
.build()
.unwrap(),
) as Arc<dyn FramebufferAbstract + Send + Sync>
})
.collect::<Vec<_>>()
}