This new documentation tries to avoid to limit the impact of the
conceptual pitfall, that the if guard relaxes the constraint, when
really it tightens it. This is achieved by changing the text and
examples. The previous documentation also chose a rather weird and
non-representative example for the if guard, that made it needlessly
complicated to understand.
This PR stabilizes the `#[diagnostic]` attribute namespace and a minimal
option of the `#[diagnostic::on_unimplemented]` attribute.
The `#[diagnostic]` attribute namespace is meant to provide a home for
attributes that allow users to influence error messages emitted by the
compiler. The compiler is not guaranteed to use any of this hints,
however it should accept any (non-)existing attribute in this namespace
and potentially emit lint-warnings for unused attributes and options.
This is meant to allow discarding certain attributes/options in the
future to allow fundamental changes to the compiler without the need to
keep then non-meaningful options working.
The `#[diagnostic::on_unimplemented]` attribute is allowed to appear
on a trait definition. This allows crate authors to hint the compiler
to emit a specific error message if a certain trait is not implemented.
For the `#[diagnostic::on_unimplemented]` attribute the following
options are implemented:
* `message` which provides the text for the top level error message
* `label` which provides the text for the label shown inline in the
broken code in the error message
* `note` which provides additional notes.
The `note` option can appear several times, which results in several
note messages being emitted. If any of the other options appears several
times the first occurrence of the relevant option specifies the actually
used value. Any other occurrence generates an lint warning. For any
other non-existing option a lint-warning is generated.
All three options accept a text as argument. This text is allowed to
contain format parameters referring to generic argument or `Self` by
name via the `{Self}` or `{NameOfGenericArgument}` syntax. For any
non-existing argument a lint warning is generated.
Tracking issue: #111996
rename 'try' intrinsic to 'catch_unwind'
The intrinsic has nothing to do with `try` blocks, and corresponds to the stable `catch_unwind` function, so this makes a lot more sense IMO.
Also rename Miri's special function while we are at it, to reflect the level of abstraction it works on: it's an unwinding mechanism, on which Rust implements panics.
Operations such as starts_with, ends_with, strip_prefix and strip_suffix
can be either strict (do not consider a slice to be a prefix/suffix of
itself) or not. In Rust's case, they are not strict. Add a few phrases to
the documentation to clarify this.
Add `#[rustc_no_mir_inline]` for standard library UB checks
should help with #121110 and also with #120848
Because the MIR inliner cannot know whether the checks are enabled or not, so inlining is an unnecessary compile time pessimization when debug assertions are disabled. LLVM knows whether they are enabled or not, so it can optimize accordingly without wasting time.
r? `@saethlin`
Forbid use of `extern "C-unwind"` inside standard library
Those libraries are build with `-C panic=unwind` and is expected to be linkable to `-C panic=abort` library. To ensure unsoundness compiler needs to prevent a `C-unwind` call to exist, as doing so may leak foreign exceptions into `-C panic=abort`.
r? ``@RalfJung``
Add examples for some methods on slices
Adds some examples to some methods on slice.
`is_empty` didn't have an example for an empty slice, even though `str` and the collections all have one, so I added that in.
`first_mut` and `last_mut` didn't have an example for what happens when the slice is empty, whereas `first` and `last` do, so I added that too.
Those libraries are build with `-C panic=unwind` and is expected to
be linkable to `-C panic=abort` library. To ensure unsoundness
compiler needs to prevent a `C-unwind` call to exist, as doing so may leak
foreign exceptions into `-C panic=abort`.
Provide suggestions through `rustc_confusables` annotations
Help with common API confusion, like asking for `push` when the data structure really has `append`.
```
error[E0599]: no method named `size` found for struct `Vec<{integer}>` in the current scope
--> $DIR/rustc_confusables_std_cases.rs:17:7
|
LL | x.size();
| ^^^^
|
help: you might have meant to use `len`
|
LL | x.len();
| ~~~
help: there is a method with a similar name
|
LL | x.resize();
| ~~~~~~
```
Fix#59450 (we can open subsequent tickets for specific cases).
Fix#108437:
```
error[E0599]: `Option<{integer}>` is not an iterator
--> f101.rs:3:9
|
3 | opt.flat_map(|val| Some(val));
| ^^^^^^^^ `Option<{integer}>` is not an iterator
|
::: /home/gh-estebank/rust/library/core/src/option.rs:571:1
|
571 | pub enum Option<T> {
| ------------------ doesn't satisfy `Option<{integer}>: Iterator`
|
= note: the following trait bounds were not satisfied:
`Option<{integer}>: Iterator`
which is required by `&mut Option<{integer}>: Iterator`
help: you might have meant to use `and_then`
|
3 | opt.and_then(|val| Some(val));
| ~~~~~~~~
```
On type error of method call arguments, look at confusables for suggestion. Fix#87212:
```
error[E0308]: mismatched types
--> f101.rs:8:18
|
8 | stuff.append(Thing);
| ------ ^^^^^ expected `&mut Vec<Thing>`, found `Thing`
| |
| arguments to this method are incorrect
|
= note: expected mutable reference `&mut Vec<Thing>`
found struct `Thing`
note: method defined here
--> /home/gh-estebank/rust/library/alloc/src/vec/mod.rs:2025:12
|
2025 | pub fn append(&mut self, other: &mut Self) {
| ^^^^^^
help: you might have meant to use `push`
|
8 | stuff.push(Thing);
| ~~~~
```
Help with common API confusion, like asking for `push` when the data structure really has `append`.
```
error[E0599]: no method named `size` found for struct `Vec<{integer}>` in the current scope
--> $DIR/rustc_confusables_std_cases.rs:17:7
|
LL | x.size();
| ^^^^
|
help: you might have meant to use `len`
|
LL | x.len();
| ~~~
help: there is a method with a similar name
|
LL | x.resize();
| ~~~~~~
```
#59450
Make intrinsic fallback bodies cross-crate inlineable
This change was prompted by the stage1 compiler spending 4% of its time when compiling the polymorphic-recursion MIR opt test in `unlikely`.
Intrinsic fallback bodies like `unlikely` should always be inlined, it's very silly if they are not. To do this, we enable the fallback bodies to be cross-crate inlineable. Not that this matters for our workloads since the compiler never actually _uses_ the "fallback bodies", it just uses whatever was cfg(bootstrap)ped, so I've also added `#[inline]` to those.
See the comments for more information.
r? oli-obk
intrinsics::simd: add missing functions, avoid UB-triggering fast-math
Turns out stdarch declares a bunch more SIMD intrinsics that are still missing from libcore.
I hope I got the docs and in particular the safety requirements right for these "unordered" and "nanless" intrinsics.
Many of these are unused even in stdarch, but they are implemented in the codegen backend, so we may as well list them here.
r? `@Amanieu`
Cc `@calebzulawski` `@workingjubilee`
Add "algebraic" fast-math intrinsics, based on fast-math ops that cannot return poison
Setting all of LLVM's fast-math flags makes our fast-math intrinsics very dangerous, because some inputs are UB. This set of flags permits common algebraic transformations, but according to the [LangRef](https://llvm.org/docs/LangRef.html#fastmath), only the flags `nnan` (no nans) and `ninf` (no infs) can produce poison.
And this uses the algebraic float ops to fix https://github.com/rust-lang/rust/issues/120720
cc `@orlp`
Refactor trait implementations in `core::convert::num`.
Tracking issue: https://github.com/rust-lang/rust/issues/120257
Implement conversion traits using generic `NonZero` type, and refactor all macros to use a consistent format/order of parameters.
r? `@dtolnay`
Correct the simd_masked_{load,store} intrinsic docs
Explains the uniform pointer being used for these two operations and how elements are offset from it.
Always inline check in `assert_unsafe_precondition` with cfg(debug_assertions)
The current complexities in `assert_unsafe_precondition` are delicately balancing several concerns, among them compile times for the cases where there are no debug assertions. This comes at a large runtime cost when the assertions are enabled, making the debug assertion compiler a lot slower, which is very annoying.
To avoid this, we always inline the check when building with debug assertions.
Numbers (compiling stage1 library after touching core):
- master: 80s
- just adding `#[inline(always)]` to the `cfg(bootstrap)` `debug_assertions` (equivalent to a bootstrap bump (uhh, i just realized that i was on a slightly outdated master so this bump might have happened already), (#121112)): 67s
- this: 54s
So this seems like a good solution. I think we can still get the same run-time perf improvements for other users too by massaging this code further (see my other PR about adding `#[rustc_no_mir_inline]` #121114) but this is a simpler step that solves the imminent problem of "holy shit my rustc is sooo slow".
Funny consequence: This now means compiling the standard library with dbeug assertions makes it faster (than without, when using debug assertions downstream)!
r? ```@saethlin``` (or anyone else if someone wants to review this)
fixes#121110, supposedly
Use intrinsics::debug_assertions in debug_assert_nounwind
This is the first item in https://github.com/rust-lang/rust/issues/120848.
Based on the benchmarking in this PR, it looks like, for the programs in our benchmark suite, enabling all these additional checks does not introduce significant compile-time overhead, with the single exception of `Alignment::new_unchecked`. Therefore, I've added `#[cfg(debug_assertions)]` to that one call site, so that it remains compiled out in the distributed standard library.
The trailing commas in the previous calls to `debug_assert_nounwind!` were causing the macro to expand to `panic_nouwnind_fmt`, which requires more work to set up its arguments, and that overhead alone is measured between this perf run and the next: https://github.com/rust-lang/rust/pull/120863#issuecomment-1937423502
This change was prompted by the stage1 compiler spending 4% of its time
when compiling the polymorphic-recursion MIR opt test in `unlikely`.
Intrinsic fallback bodies like `unlikely` should always be inlined, it's
very silly if they are not. To do this, we enable the fallback bodies to
be cross-crate inlineable. Not that this matters for our workloads since
the compiler never actually _uses_ the "fallback bodies", it just uses
whatever was cfg(bootstrap)ped, so I've also added `#[inline]` to those.
The current complexities in `assert_unsafe_precondition` are delicately
balancing several concerns, among them compile times for the cases where
there are no debug assertions. This comes at a large runtime cost when
the assertions are enabled, making the debug assertion compiler a lot
slower, which is very annoying.
To avoid this, we always inline the check when building with debug
assertions.
Numbers (compiling stage1 library after touching core):
- master: 80s
- just adding `#[inline(always)]` to the `cfg(bootstrap)`
`debug_assertions`: 67s
- this: 54s
So this seems like a good solution. I think we can still get
the same run-time perf improvements for other users too by
massaging this code further (see my other PR about adding
`#[rustc_no_mir_inline]`) but this is a simpler step that
solves the imminent problem of "holy shit my rustc is sooo slow".
Funny consequence: This now means compiling the standard library with
dbeug assertions makes it faster (than without, when using debug
assertions downstream)!
Store core::str::CharSearcher::utf8_size as u8
This is already relied on being smaller than u8 due to the `safety invariant: utf8_size must be less than 5`, so this helps LLVM optimize and maybe improve copies due to padding instead of unused bytes.
Add examples to document the return type of quickselect functions
Currently, `select_nth_unstable`, `select_nth_unstable_by`, and `select_nth_unstable_by_key`'s examples do not show how to use the return values of the functions in an example, so this PR adds that in.
Note: I didn't know what to call the parameters, so I settled on lesser, median, greater because the example is used for median finding so I retained that naming for the pivot, but lesser and greater are poor names for the example that sorts in descending order, because lesser and greater are then flipped.
I think it's common to say "lo" and "hi" for low and high respectively, but that's also not great when the comparator flips the elements. Otherwise, "left" and "right" are also commonly used but I think that's poor naming because some languages read right to left so those names are also unintuitive.
Lesser and greater are also not that great but I found a test that used `less`, `equal`, `greater` so I took that: dfa88b328f/library/core/tests/slice.rs (L1962)
Make `io::BorrowedCursor::advance` safe
This also keeps the old `advance` method under `advance_unchecked` name.
This makes pattern like `std::io::default_read_buf` safe to write.
Rename MaybeUninit::write_slice
A step to push #79995 forward.
https://github.com/rust-lang/libs-team/issues/122 also suggested to make them inherent methods, but they can't be — they'd conflict with slice's regular methods.
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
doc: add note about panicking examples for strict_overflow_ops
The first commit adds a note before the panicking examples for strict_overflow_ops to make it clearer that the following examples should panic and why, without needing the reader to hover the mouse over the information icon.
The second commit adds panicking examples for division by zero operations for strict division operations on unsigned numbers. The signed numbers already have two panicking examples each: one for division by zero and one for overflowing division (`MIN/-1`); this commit includes the division by zero examples for the unsigned numbers.
Waker::will_wake: Compare vtable address instead of its content
Optimize will_wake implementation by comparing vtable address instead of its content.
The existing best practice to avoid false negatives from will_wake is to define a waker vtable as a static item. That approach continues to works with the new implementation.
While this potentially changes the observable behaviour, the function is documented to work on a best-effort basis. The PartialEq impl for RawWaker remains as it was.
I discovered that `impl Debug for str` is quite slow because it ends up doing a `unicode_data::grapheme_extend::lookup` for each char, which ends up doing a binary search.
This introduces a fast-path for ASCII chars which do not have this property.
The `lookup` is thus completely gone from profiles.
Clarified docs on non-atomic oprations on owned/mut refs to atomics
I originally misinterpreted the documentation to mean that the compiler can/will automatically optimise away atomic operations whenever the data is owned or mutably referenced.
On re-reading I think it is not technically incorrect, but specifically mentioning _how_ the atomic operations can be avoided also prevents this misunderstanding.
implement `Default` for `AsciiChar`
This implements `Default` for `AsciiChar` in order to match `char`'s implementation.
From all the different possible ways to do this I think the clearest one is to have both `char` and `AsciiChar` impls together.
I've also updated the doc-comment of the default variant since rustdoc doesn't seem to indicate it otherwise. Probably the text could be improved, though. I couldn't find any similar examples in the codebase and suggestions are welcomed.
r? `@scottmcm`
Clarify the lifetimes of allocations returned by the `Allocator` trait
The previous definition (accidentally) disallowed the implementation of stack-based allocators whose memory would become invalid once the lifetime of the allocator type ended.
This also ensures the validity of the following blanket implementation:
```rust
impl<A: Allocator> Allocator for &'_ A {}
```
Additional doc links and explanation of `Wake`.
This is intended to clarify:
* That `Wake` exists and can be used instead of `RawWaker`.
* How to construct a `Waker` when you are looking at `Wake` (which was previously only documented in the example).
The previous definition (accidentally) disallowed the implementation of
stack-based allocators whose memory would become invalid once the
lifetime of the allocator type ended.
This also ensures the validity of the following blanket implementation:
```rust
impl<A: Allocator> Allocator for &'_ A {}
```
assert_unsafe_precondition cleanup
I moved the polymorphic `is_nonoverlapping` into the `Cell` function that uses it and renamed `intrinsics::is_nonoverlapping_mono` to just `intrinsics::is_nonoverlapping`.
We now also have some docs for `intrinsics::debug_assertions`.
r? RalfJung
core: add Duration constructors
Add more `Duration` constructors.
Tracking issue: #120301.
These match similar convenience constructors available on both `chrono::Duration` and `time::Duration`.
What's the best ordering for these with respect to the existing constructors?
Suggest less bug-prone construction of Duration in docs
std::time::Duration has a well-known quirk: Duration::as_nanos() returns u128 [1], but Duration::from_nanos() takes u64 [2]. So these methods cannot easily roundtrip [3]. It is not possible to simply accept u128 in from_nanos [4], because it requires breaking other API [5].
It seems to me that callers have basically only two options:
1. `Duration::from_nanos(d.as_nanos() as u64)`, which is the "obvious" and buggy approach.
2. `Duration::new(d.as_secs(), d.subsecs_nanos())`, which only becomes apparent after reading and digesting the entire Duration struct documentation.
I suggest that the documentation of `from_nanos` is changed to make option 2 more easily discoverable.
There are two major usecases for this:
- "Weird math" operations that should not be supported directly by `Duration`, like squaring.
- "Disconnected roundtrips", where the u128 value is passed through various other stack frames, and perhaps reconstructed into a Duration on a different machine.
In both cases, it seems like a good idea to not tempt people into thinking "Eh, u64 is good enough, what could possibly go wrong!". That's why I want to add a note that points out the similarly-easy and *safe* way to reconstruct a Duration.
[1] https://doc.rust-lang.org/stable/std/time/struct.Duration.html#method.as_nanos
[2] https://doc.rust-lang.org/stable/std/time/struct.Duration.html#method.from_nanos
[3] https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=fa6bab2b6b72f20c14b5243610ea1dde
[4] https://github.com/rust-lang/rust/issues/103332
[5] https://github.com/rust-lang/rust/issues/51107#issuecomment-392353166
Remove an unneeded helper from the tuple library code
Thanks to https://github.com/rust-lang/rust/pull/107022, this is just what `==` does, so we don't need the helper here anymore.
This is intended to clarify:
* That `Wake` exists and can be used instead of `RawWaker`.
* How to construct a `Waker` when you are looking at `Wake`
(which was previously only documented in the example).
Clarify that atomic and regular integers can differ in alignment
The documentation for atomic integers says that they have the "same in-memory representation" as their underlying integers. This might be misconstrued as implying that they have the same layout. Therefore, clarify that atomic integers' alignment is equal to their size.
Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits
This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.
In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).
In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
Improve `Option::inspect` docs
* Refer to the function as "a function" instead of "the provided closure" since it is not necessarily a closure.
* State that the original Option/Result is returned.
* Adjust the example for `Option::inspect` to use chaining.
core/time: avoid divisions in Duration::new
In our (decently large) code base, we use `SystemTime::UNIX_EPOCH.elapsed()` in a lot of places & often in a loop or in the hot path. On [Unix](https://github.com/rust-lang/rust/blob/1.75.0/library/std/src/sys/unix/time.rs#L153-L162) at least, it seems we do calculations before hand to ensure that nanos is within the valid range, yet `Duration::new()` still checks it again, using 2 divisions. It seems like adding a branch can make this function 33% faster on ARM64 in the cases where nanos is already in the valid range & seems to have no effect in the other case.
Benchmarks:
M1 Pro (14-inch base model):
```
duration/current/checked
time: [1.5945 ns 1.6167 ns 1.6407 ns]
Found 5 outliers among 100 measurements (5.00%)
2 (2.00%) high mild
3 (3.00%) high severe
duration/current/unchecked
time: [1.5941 ns 1.6051 ns 1.6179 ns]
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) high mild
1 (1.00%) high severe
duration/branched/checked
time: [1.1997 ns 1.2048 ns 1.2104 ns]
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
duration/branched/unchecked
time: [1.5881 ns 1.5957 ns 1.6039 ns]
Found 6 outliers among 100 measurements (6.00%)
3 (3.00%) high mild
3 (3.00%) high severe
```
EC2 c7gd.16xlarge (Graviton 3):
```
duration/current/checked
time: [2.7996 ns 2.8000 ns 2.8003 ns]
Found 5 outliers among 100 measurements (5.00%)
2 (2.00%) low severe
3 (3.00%) low mild
duration/current/unchecked
time: [2.9922 ns 2.9925 ns 2.9928 ns]
Found 7 outliers among 100 measurements (7.00%)
4 (4.00%) low severe
1 (1.00%) low mild
2 (2.00%) high mild
duration/branched/checked
time: [2.0830 ns 2.0843 ns 2.0857 ns]
Found 3 outliers among 100 measurements (3.00%)
1 (1.00%) low severe
1 (1.00%) low mild
1 (1.00%) high mild
duration/branched/unchecked
time: [2.9879 ns 2.9886 ns 2.9893 ns]
Found 5 outliers among 100 measurements (5.00%)
3 (3.00%) low severe
2 (2.00%) low mild
```
EC2 r7iz.16xlarge (Intel Xeon Scalable-based (Sapphire Rapids)):
```
duration/current/checked
time: [980.60 ps 980.79 ps 980.99 ps]
Found 10 outliers among 100 measurements (10.00%)
4 (4.00%) low severe
2 (2.00%) low mild
3 (3.00%) high mild
1 (1.00%) high severe
duration/current/unchecked
time: [979.53 ps 979.74 ps 979.96 ps]
Found 6 outliers among 100 measurements (6.00%)
2 (2.00%) low severe
1 (1.00%) low mild
2 (2.00%) high mild
1 (1.00%) high severe
duration/branched/checked
time: [938.72 ps 938.96 ps 939.22 ps]
Found 4 outliers among 100 measurements (4.00%)
1 (1.00%) low mild
1 (1.00%) high mild
2 (2.00%) high severe
duration/branched/unchecked
time: [1.0103 ns 1.0110 ns 1.0118 ns]
Found 10 outliers among 100 measurements (10.00%)
2 (2.00%) low mild
7 (7.00%) high mild
1 (1.00%) high severe
```
Bench code (ran using stable 1.75.0 & criterion latest 0.5.1):
I couldn't find any benches for `Duration` in this repo, so I just copied the relevant types & recreated it.
```rust
use criterion::{black_box, criterion_group, criterion_main, Criterion};
pub fn duration_bench(c: &mut Criterion) {
const NANOS_PER_SEC: u32 = 1_000_000_000;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
struct Nanoseconds(u32);
impl Default for Nanoseconds {
#[inline]
fn default() -> Self {
// SAFETY: 0 is within the valid range
unsafe { Nanoseconds(0) }
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Duration {
secs: u64,
nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
}
impl Duration {
#[inline]
pub const fn new_current(secs: u64, nanos: u32) -> Duration {
let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) {
Some(secs) => secs,
None => panic!("overflow in Duration::new"),
};
let nanos = nanos % NANOS_PER_SEC;
// SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
}
#[inline]
pub const fn new_branched(secs: u64, nanos: u32) -> Duration {
if nanos < NANOS_PER_SEC {
// SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
} else {
let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) {
Some(secs) => secs,
None => panic!("overflow in Duration::new"),
};
let nanos = nanos % NANOS_PER_SEC;
// SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
}
}
}
let mut group = c.benchmark_group("duration/current");
group.bench_function("checked", |b| {
b.iter(|| black_box(Duration::new_current(black_box(1_000_000_000), black_box(1_000_000))));
});
group.bench_function("unchecked", |b| {
b.iter(|| {
black_box(Duration::new_current(black_box(1_000_000_000), black_box(2_000_000_000)))
});
});
drop(group);
let mut group = c.benchmark_group("duration/branched");
group.bench_function("checked", |b| {
b.iter(|| {
black_box(Duration::new_branched(black_box(1_000_000_000), black_box(1_000_000)))
});
});
group.bench_function("unchecked", |b| {
b.iter(|| {
black_box(Duration::new_branched(black_box(1_000_000_000), black_box(2_000_000_000)))
});
});
}
criterion_group!(duration_benches, duration_bench);
criterion_main!(duration_benches);
```
The documentation for atomic integers says that they have the "same
in-memory representation" as their underlying integers. This might be
misconstrued as implying that they have the same layout. Therefore,
clarify that atomic integers' alignment is equal to their size.
Stop bailing out from compilation just because there were incoherent traits
fixes#120343
but also has a lot of "type annotations needed" fallout. Some are fixed in the second commit.
Make `NonZero` constructors generic.
This makes `NonZero` constructors generic, so that `NonZero::new` can be used without turbofish syntax.
Tracking issue: https://github.com/rust-lang/rust/issues/120257
~~I cannot figure out how to make this work with `const` traits. Not sure if I'm using it wrong or whether there's a bug:~~
```rust
101 | if n == T::ZERO {
| ^^^^^^^^^^^^ expected `host`, found `true`
|
= note: expected constant `host`
found constant `true`
```
r? `@dtolnay`
Reconstify `Add`
r? project-const-traits
I'm not happy with the ui test changes (or failures because I did not bless them and include the diffs in this PR). There is at least some bugs I need to look and try fix:
1. A third duplicated diagnostic when a consumer crate that does not have `effects` enabled has a trait selection error for an upstream const_trait trait. See tests/ui/ufcs/ufcs-qpath-self-mismatch.rs.
2. For some reason, making `Add` a const trait would stop us from suggesting `T: Add` when we try to add two `T`s without that bound. See tests/ui/suggestions/issue-97677.rs
revert stabilization of const_intrinsic_copy
`@rust-lang/wg-const-eval` I don't know what we were thinking when we approved https://github.com/rust-lang/rust/pull/97276... const-eval isn't supposed to be able to mutate anything yet! It's also near impossible to actually call `copy` in const on stable since `&mut` expressions are generally unstable. However, there's one exception...
```rust
static mut INT: i32 = unsafe {
let val = &mut [1]; // `&mut` on arrays is allowed in `static mut`
(val as *mut [i32; 1]).copy_from(&[42], 1);
val[0]
};
fn main() { unsafe {
dbg!(INT);
} }
```
Inside `static mut`, we accept some `&mut` since ~forever, to make `static mut FOO: &mut [T] = &mut [...];` work. We reject any attempt to actually write to that mutable reference though... except for the `copy` functions.
I think we should revert stabilizing these functions that take `*mut`, and then re-stabilize them together with `ptr.write` once mutable references are stable.
(This will likely fail on PowerPC until https://github.com/rust-lang/stdarch/pull/1497 lands. But we'll need a crater run first anyway.)
PartialEq, PartialOrd: update and synchronize handling of transitive chains
It was brought up in https://internals.rust-lang.org/t/total-equality-relations-as-std-eq-rhs/19232 that we currently have a gap in our `PartialEq` rules, which this PR aims to close:
> For example, with PartialEq's conditions you may have a = b = c = d ≠ a (where a and c are of type A, b and d are of type B).
The second commit fixes https://github.com/rust-lang/rust/issues/87067 by updating PartialOrd to handle the requirements the same way PartialEq does.
Clarify ambiguity in select_nth_unstable docs
Original docs for `select_nth_unstable` family of functions were ambiguous as to whether "the element at `index`" was the element at `index` before the function reordered the elements or after the function reordered the elements.
The most helpful change in this PR is to change the given examples to make this absolutely clear. Before, "the element at `index`" was the same value before and after the reordering, so it didn't help disambiguate the meaning. I've changed the example for `select_nth_unstable` and `select_nth_unstable_by` so that "the element at `index`" is different before and after the reordering, which clears up the ambiguity. The function `select_nth_unstable_by_key` already had an example that was unambiguous.
In an attempt to clear up the ambiguity from the get-go, I've added a bit of redundancy to the text. Now the docs refer to "the element at `index` *after the reordering*".
raw pointer metadata API: data address -> data pointer
A pointer consists of [more than just an address](https://github.com/rust-lang/rfcs/pull/3559), so let's not equate "pointer" and "address" in these docs.
core: add `From<core::ascii::Char>` implementations
Introduce `From<core::ascii::Char>` implementations for all unsigned
numeric types and `char`. This matches the API of `char` type.
Issue: https://github.com/rust-lang/rust/issues/110998
Rename `pointer` field on `Pin`
A few days ago, I was helping another user create a self-referential type using `PhantomPinned`. However, I noticed an odd behavior when I tried to access one of the type's fields via `Pin`'s `Deref` impl:
```rust
use std::{marker::PhantomPinned, ptr};
struct Pinned {
data: i32,
pointer: *const i32,
_pin: PhantomPinned,
}
fn main() {
let mut b = Box::pin(Pinned {
data: 42,
pointer: ptr::null(),
_pin: PhantomPinned,
});
{
let pinned = unsafe { b.as_mut().get_unchecked_mut() };
pinned.pointer = &pinned.data;
}
println!("{}", unsafe { *b.pointer });
}
```
```rust
error[E0658]: use of unstable library feature 'unsafe_pin_internals'
--> <source>:19:30
|
19 | println!("{}", unsafe { *b.pointer });
| ^^^^^^^^^
error[E0277]: `Pinned` doesn't implement `std::fmt::Display`
--> <source>:19:20
|
19 | println!("{}", unsafe { *b.pointer });
| ^^^^^^^^^^^^^^^^^^^^^ `Pinned` cannot be formatted with the default formatter
|
= help: the trait `std::fmt::Display` is not implemented for `Pinned`
= note: in format strings you may be able to use `{:?}` (or {:#?} for pretty-print) instead
= note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)
```
Since the user named their field `pointer`, it conflicts with the `pointer` field on `Pin`, which is public but unstable since Rust 1.60.0 with #93176. On versions from 1.33.0 to 1.59.0, where the field on `Pin` is private, this program compiles and prints `42` as expected.
To avoid this confusing behavior, this PR renames `pointer` to `__pointer`, so that it's less likely to conflict with a `pointer` field on the underlying type, as accessed through the `Deref` impl. This is technically a breaking change for anyone who names their field `__pointer` on the inner type; if this is undesirable, it could be renamed to something more longwinded. It's also a nightly breaking change for any external users of `unsafe_pin_internals`.
stabilise array methods
Closes#76118
Stabilises the remaining array methods
FCP is yet to be carried out for this
There wasn't a clear consensus on the naming, but all the other alternatives had some flaws as discussed in the tracking issue and there was a silence on this issue for a year
Initial implementation of `str::from_raw_parts[_mut]`
ACP (accepted): rust-lang/libs-team#167
Tracking issue: #119206
Thanks to ``@Kixiron`` for previous work on this (#107207)
``@rustbot`` label +T-libs-api -T-libs
r? ``@thomcc``
Closes#107207.
remove StructuralEq trait
The documentation given for the trait is outdated: *all* function pointers implement `PartialEq` and `Eq` these days. So the `StructuralEq` trait doesn't really seem to have any reason to exist any more.
One side-effect of this PR is that we allow matching on some consts that do not implement `Eq`. However, we already allowed matching on floats and consts containing floats, so this is not new, it is just allowed in more cases now. IMO it makes no sense at all to allow float matching but also sometimes require an `Eq` instance. If we want to require `Eq` we should adjust https://github.com/rust-lang/rust/pull/115893 to check for `Eq`, and rule out float matching for good.
Fixes https://github.com/rust-lang/rust/issues/115881
Add `AsyncFn` family of traits
I'm proposing to add a new family of `async`hronous `Fn`-like traits to the standard library for experimentation purposes.
## Why do we need new traits?
On the user side, it is useful to be able to express `AsyncFn` trait bounds natively via the parenthesized sugar syntax, i.e. `x: impl AsyncFn(&str) -> String` when experimenting with async-closure code.
This also does not preclude `AsyncFn` becoming something else like a trait alias if a more fundamental desugaring (which can take many[^1] different[^2] forms) comes around. I think we should be able to play around with `AsyncFn` well before that, though.
I'm also not proposing stabilization of these trait names any time soon (we may even want to instead express them via new syntax, like `async Fn() -> ..`), but I also don't think we need to introduce an obtuse bikeshedding name, since `AsyncFn` just makes sense.
## The lending problem: why not add a more fundamental primitive of `LendingFn`/`LendingFnMut`?
Firstly, for `async` closures to be as flexible as possible, they must be allowed to return futures which borrow from the async closure's captures. This can be done by introducing `LendingFn`/`LendingFnMut` traits, or (equivalently) by adding a new generic associated type to `FnMut` which allows the return type to capture lifetimes from the `&mut self` argument of the trait. This was proposed in one of [Niko's blog posts](https://smallcultfollowing.com/babysteps/blog/2023/05/09/giving-lending-and-async-closures/).
Upon further experimentation, for the purposes of closure type- and borrow-checking, I've come to the conclusion that it's significantly harder to teach the compiler how to handle *general* lending closures which may borrow from their captures. This is, because unlike `Fn`/`FnMut`, the `LendingFn`/`LendingFnMut` traits don't form a simple "inheritance" hierarchy whose top trait is `FnOnce`.
```mermaid
flowchart LR
Fn
FnMut
FnOnce
LendingFn
LendingFnMut
Fn -- isa --> FnMut
FnMut -- isa --> FnOnce
LendingFn -- isa --> LendingFnMut
Fn -- isa --> LendingFn
FnMut -- isa --> LendingFnMut
```
For example:
```
fn main() {
let s = String::from("hello, world");
let f = move || &s;
let x = f(); // This borrows `f` for some lifetime `'1` and returns `&'1 String`.
```
That trait hierarchy means that in general for "lending" closures, like `f` above, there's not really a meaningful return type for `<typeof(f) as FnOnce>::Output` -- it can't return `&'static str`, for example.
### Special-casing this problem:
By splitting out these traits manually, and making sure that each trait has its own associated future type, we side-step the issue of having to answer the questions of a general `LendingFn`/`LendingFnMut` implementation, since the compiler knows how to generate built-in implementations for first-class constructs like async closures, including the required future types for the (by-move) `AsyncFnOnce` and (by-ref) `AsyncFnMut`/`AsyncFn` trait implementations.
[^1]: For example, with trait transformers, we may eventually be able to write: `trait AsyncFn = async Fn;`
[^2]: For example, via the introduction of a more fundamental "`LendingFn`" trait, plus a [special desugaring with augmented trait aliases](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Lending.20closures.20and.20Fn*.28.29.20-.3E.20impl.20Trait/near/408471480).
Replacement of #114390: Add new intrinsic `is_var_statically_known` and optimize pow for powers of two
This adds a new intrinsic `is_val_statically_known` that lowers to [``@llvm.is.constant.*`](https://llvm.org/docs/LangRef.html#llvm-is-constant-intrinsic).` It also applies the intrinsic in the int_pow methods to recognize and optimize the idiom `2isize.pow(x)`. See #114390 for more discussion.
While I have extended the scope of the power of two optimization from #114390, I haven't added any new uses for the intrinsic. That can be done in later pull requests.
Note: When testing or using the library, be sure to use `--stage 1` or higher. Otherwise, the intrinsic will be a noop and the doctests will be skipped. If you are trying out edits, you may be interested in [`--keep-stage 0`](https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage).
Fixes#47234Resolves#114390
`@Centri3`
Add `NonZero*::count_ones`
This PR adds the following APIs to the standard library:
```rust
impl NonZero* {
pub const fn count_ones(self) -> NonZeroU32;
}
```
This is potentially interesting, given that `count_ones` can't ever return 0.
r? libs-api
Rollup of 9 pull requests
Successful merges:
- #112806 (Small code improvements in `collect_intra_doc_links.rs`)
- #119766 (Split tait and impl trait in assoc items logic)
- #120139 (Do not normalize closure signature when building `FnOnce` shim)
- #120160 (Manually implement derived `NonZero` traits.)
- #120171 (Fix assume and assert in jump threading)
- #120183 (Add `#[coverage(off)]` to closures introduced by `#[test]` and `#[bench]`)
- #120195 (add several resolution test cases)
- #120259 (Split Diagnostics for Uncommon Codepoints: Add List to Display Characters Involved)
- #120261 (Provide structured suggestion to use trait objects in some cases of `if` arm type divergence)
r? `@ghost`
`@rustbot` modify labels: rollup
Add `#[coverage(off)]` to closures introduced by `#[test]` and `#[bench]`
These closures are an internal implementation detail of the `#[test]` and `#[bench]` attribute macros, so from a user perspective there is no reason to instrument them for coverage.
Skipping them makes coverage reports slightly cleaner, and will also allow other changes to span processing during coverage instrumentation, without having to worry about how they affect the `#[test]` macro.
The `#[coverage(off)]` attribute has no effect when `-Cinstrument-coverage` is not used.
Fixes#120046.
---
Note that this PR has no effect on the user-written function that has the `#[test]` attribute attached to it. That function will still be instrumented as normal.
Manually implement derived `NonZero` traits.
Step 3 as mentioned in https://github.com/rust-lang/rust/pull/100428#pullrequestreview-1767139731.
Manually implement the traits that would cause “borrow of layout constrained field with interior mutability” errors when switching to `NonZero<T>`.
r? ```@dtolnay```
Use `Self` in `NonZero*` implementations.
This slightly reduces the size of the eventual diff when making these generic, since this can be merged independently.
Use `assert_unchecked` instead of `assume` intrinsic in the standard library
Now that a public wrapper for the `assume` intrinsic exists, we can use it in the standard library.
CC #119131
Revert stabilization of trait_upcasting feature
Reverts #118133
This reverts commit 6d2b84b3ed, reversing changes made to 73bc12199e.
The feature has a soundness bug:
* #120222
It is unclear to me whether we'll actually want to destabilize, but I thought it was still prudent to open the PR for easy destabilization once we get there.
Consolidate logic around resolving built-in coroutine trait impls
Deduplicates a lot of code. Requires defining a new lang item for `Coroutine::resume` for consistency, but it seems not harmful at worst, and potentially later useful at best.
r? oli-obk
Rollup of 9 pull requests
Successful merges:
- #118714 ( Explanation that fields are being used when deriving `(Partial)Ord` on enums)
- #119710 (Improve `let_underscore_lock`)
- #119726 (Tweak Library Integer Division Docs)
- #119746 (rustdoc: hide modals when resizing the sidebar)
- #119986 (Fix error counting)
- #120194 (Shorten `#[must_use]` Diagnostic Message for `Option::is_none`)
- #120200 (Correct the anchor of an URL in an error message)
- #120203 (Replace `#!/bin/bash` with `#!/usr/bin/env bash` in rust-installer tests)
- #120212 (Give nnethercote more reviews)
r? `@ghost`
`@rustbot` modify labels: rollup
Shorten `#[must_use]` Diagnostic Message for `Option::is_none`
This shortens the `#[must_use]` diagnostics displayed, in light of the [review comment](https://github.com/rust-lang/rust/pull/62431/files#r300819839) on when this was originally added.
Tweak Library Integer Division Docs
Improved the documentation and diagnostics related to panicking in the division-like methods in std:
* For signed methods that can overflow, clarified "results in overflow" to "self is -1 and rhs is Self::MIN." This is more concise than saying "results in overflow" and then explaining how it could overflow.
* For floor/ceil_div, corrected the documentation and made it more like the documentation in other methods.
* For signed methods that can overflow, explicitly mention that they are not affected by compiler flags.
* Removed all unused rustc_inherit_overflow_checks attributes. The non-division-like operations will never overflow.
* Added track_caller attributes to all methods that can panic. The panic messages will always be correct. For example, division methods all have / before %.
* Edited the saturating_div documentation to be consistent with similar methods.
Explanation that fields are being used when deriving `(Partial)Ord` on enums
When deriving `std::cmp::Ord` or `std::cmp::PartialOrd` on enums, their fields are compared if the variants are equal.
This means that the last assertion in the following snipped panics.
```rust
use std::cmp::{PartialEq, Eq, PartialOrd, Ord};
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum Sizes {
Small(usize),
Big(usize),
}
fn main() {
let a = Sizes::Big(3);
let b = Sizes::Big(5);
let c = Sizes::Small(10);
assert!( c < a);
assert_eq!(a, c);
}
```
This is more often expected behavior than not, and can be easily circumvented, as discussed in [this thread](https://users.rust-lang.org/t/how-to-sort-enum-variants/52291/4).
But it is addressed nowhere in the documentation, yet.
So I stumbled across this, as I personally did not expect fields being used in `PartialOrd`.
I added the explanation to the documentation.
Add `#[track_caller]` to the "From implies Into" impl
This pr implements what was mentioned in https://github.com/rust-lang/rust/issues/77474#issuecomment-1074480790
This follows from my URLO https://users.rust-lang.org/t/104497
```rust
#![allow(warnings)]
fn main() {
// Gives a good location
let _: Result<(), Loc> = dbg!(Err::<(), _>(()).map_err(|e| e.into()));
// still doesn't work, gives location of `FnOnce::call_once()`
let _: Result<(), Loc> = dbg!(Err::<(), _>(()).map_err(Into::into));
}
#[derive(Debug)]
pub struct Loc {
pub l: &'static std::panic::Location<'static>,
}
impl From<()> for Loc {
#[track_caller]
fn from(_: ()) -> Self {
Loc {
l: std::panic::Location::caller(),
}
}
}
```
Implement iterator specialization traits on more adapters
This adds
* `TrustedLen` to `Skip` and `StepBy`
* `TrustedRandomAccess` to `Skip`
* `InPlaceIterable` and `SourceIter` to `Copied` and `Cloned`
The first two might improve performance in the compiler itself since `skip` is used in several places. Constellations that would exercise the last point are probably rare since it would require an owning iterator that has references as Items somewhere in its iterator pipeline.
Improvements for `Skip`:
```
# old
test iter::bench_skip_trusted_random_access ... bench: 8,335 ns/iter (+/- 90)
# new
test iter::bench_skip_trusted_random_access ... bench: 2,753 ns/iter (+/- 27)
```
Add Ipv6Addr::is_ipv4_mapped
This change consists of cherry-picking the content from the original PR[1], which got closed due to inactivity, and applying the following changes:
* Resolving merge conflicts (obviously)
* Linked to to_ipv4_mapped instead of to_ipv4 in the documentation (seems more appropriate)
* Added the must_use and rustc_const_unstable attributes the original didn't have
I think it's a reasonably useful method to have.
[1] https://github.com/rust-lang/rust/pull/86490
Use `bool` instead of `PartiolOrd` as return value of the comparison closure in `{slice,Iteraotr}::is_sorted_by`
Changes the function signature of the closure given to `{slice,Iteraotr}::is_sorted_by` to return a `bool` instead of a `PartiolOrd` as suggested by the libs-api team here: https://github.com/rust-lang/rust/issues/53485#issuecomment-1766411980.
This means these functions now return true if the closure returns true for all the pairs of values.
Implement strict integer operations that panic on overflow
This PR implements the first part of the ACP for adding panic on overflow style arithmetic operations (https://github.com/rust-lang/libs-team/issues/270), mentioned in #116064.
It adds the following operations on both signed and unsigned integers:
- `strict_add`
- `strict_sub`
- `strict_mul`
- `strict_div`
- `strict_div_euclid`
- `strict_rem`
- `strict_rem_euclid`
- `strict_neg`
- `strict_shl`
- `strict_shr`
- `strict_pow`
Additionally, signed integers have:
- `strict_add_unsigned`
- `strict_sub_unsigned`
- `strict_abs`
And unsigned integers have:
- `strict_add_signed`
The `div` and `rem` operations are the same as normal division and remainder but are added for completeness similar to the corresponding `wrapping_*` operations.
I'm not sure if I missed any operations, I basically found them from the `wrapping_*` and `checked_*` operations on both integer types.
Tweak the threshold for chunked swapping
Thanks to `@AngelicosPhosphoros` for the tests here, which I copied from #98892.
This is an experiment as a simple alternative to that PR that just tweaks the existing threshold, since that PR showed that 3×Align (like `String`) currently doesn't work as well as it could.
Introduce split_at_checked and split_at_mut_checked methods to slices
types (including str) which are non-panicking versions of split_at and
split_at_mut respectively. This is analogous to get method being
non-panicking version of indexing.
This also removes
* impl From<&Context> for ContextBuilder
* Context::try_waker()
The from implementation is removed because now that
wakers are always supported, there are less incentives
to override the current context. Before, the incentive
was to add Waker support to a reactor that didn't have
any.
Stabilize single-field offset_of
This PR stabilizes offset_of for a single field. There has been some further discussion at https://github.com/rust-lang/rust/issues/106655 about whether this is advisable; I'm opening the PR anyway so that the code is available.
Fix overflow check
Make MIRI choose the path randomly and rename the intrinsic
Add back test
Add miri test and make it operate on `ptr`
Define `llvm.is.constant` for primitives
Update MIRI comment and fix test in stage2
Add const eval test
Clarify that both branches must have the same side effects
guaranteed non guarantee
use immediate type instead
Co-Authored-By: Ralf Jung <post@ralfj.de>
Change return type of unstable `Waker::noop()` from `Waker` to `&Waker`.
The advantage of this is that it does not need to be assigned to a variable to be used in a `Context` creation, which is the most common thing to want to do with a noop waker. It also avoids unnecessarily executing the dynamically dispatched drop function when the noop waker is dropped.
If an owned noop waker is desired, it can be created by cloning, but the reverse is harder to do since it requires declaring a constant. Alternatively, both versions could be provided, like `futures::task::noop_waker()` and `futures::task::noop_waker_ref()`, but that seems to me to be API clutter for a very small benefit, whereas having the `&'static` reference available is a large reduction in boilerplate.
[Previous discussion on the tracking issue starting here](https://github.com/rust-lang/rust/issues/98286#issuecomment-1862159766)
Stabilize `slice_first_last_chunk`
This PR does a few different things based around stabilizing `slice_first_last_chunk`. They are split up so this PR can be by-commit reviewed, I can move parts to a separate PR if desired.
This feature provides a very elegant API to extract arrays from either end of a slice, such as for parsing integers from binary data.
## Stabilize `slice_first_last_chunk`
ACP: https://github.com/rust-lang/libs-team/issues/69
Implementation: https://github.com/rust-lang/rust/issues/90091
Tracking issue: https://github.com/rust-lang/rust/issues/111774
This stabilizes the functionality from https://github.com/rust-lang/rust/issues/111774:
```rust
impl [T] {
pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>;
pub fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>;
pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>;
pub fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>;
pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>;
pub fn split_first_chunk_mut<const N: usize>(&mut self) -> Option<(&mut [T; N], &mut [T])>;
pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>;
pub fn split_last_chunk_mut<const N: usize>(&mut self) -> Option<(&mut [T], &mut [T; N])>;
}
```
Const stabilization is included for all non-mut methods, which are blocked on `const_mut_refs`. This change includes marking the trivial function `slice_split_at_unchecked` const-stable for internal use (but not fully stable).
## Remove `split_array` slice methods
Tracking issue: https://github.com/rust-lang/rust/issues/90091
Implementation: https://github.com/rust-lang/rust/pull/83233#pullrequestreview-780315524
This PR also removes the following unstable methods from the `split_array` feature, https://github.com/rust-lang/rust/issues/90091:
```rust
impl<T> [T] {
pub fn split_array_ref<const N: usize>(&self) -> (&[T; N], &[T]);
pub fn split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T]);
pub fn rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N]);
pub fn rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N]);
}
```
This is done because discussion at #90091 and its implementation PR indicate a strong preference for nonpanicking APIs that return `Option`. The only difference between functions under the `split_array` and `slice_first_last_chunk` features is `Option` vs. panic, so remove the duplicates as part of this stabilization.
This does not affect the array methods from `split_array`. We will want to revisit these once `generic_const_exprs` is further along.
## Reverse order of return tuple for `split_last_chunk{,_mut}`
An unresolved question for #111774 is whether to return `(preceding_slice, last_chunk)` (`(&[T], &[T; N])`) or the reverse (`(&[T; N], &[T])`), from `split_last_chunk` and `split_last_chunk_mut`. It is currently implemented as `(last_chunk, preceding_slice)` which matches `split_last -> (&T, &[T])`. The first commit changes these to `(&[T], &[T; N])` for these reasons:
- More consistent with other splitting methods that return multiple values: `str::rsplit_once`, `slice::split_at{,_mut}`, `slice::align_to` all return tuples with the items in order
- More intuitive (arguably opinion, but it is consistent with other language elements like pattern matching `let [a, b, rest @ ..] ...`
- If we ever added a varidic way to obtain multiple chunks, it would likely return something in order: `.split_many_last::<(2, 4)>() -> (&[T], &[T; 2], &[T; 4])`
- It is the ordering used in the `rsplit_array` methods
I think the inconsistency with `split_last` could be acceptable in this case, since for `split_last` the scalar `&T` doesn't have any internal order to maintain with the other items.
## Unresolved questions
Do we want to reserve the same names on `[u8; N]` to avoid inference confusion? https://github.com/rust-lang/rust/pull/117561#issuecomment-1793388647
---
`slice_first_last_chunk` has only been around since early 2023, but `split_array` has been around since 2021.
`@rustbot` label -T-libs +T-libs-api -T-libs +needs-fcp
cc `@rust-lang/wg-const-eval,` `@scottmcm` who raised this topic, `@clarfonthey` implementer of `slice_first_last_chunk` `@jethrogb` implementer of `split_array`
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Stabilizing.20array-from-slice.20*something*.3FFixes: #111774
Update `fn()` trait implementation docs
Fixes#119903
This was FCP'd and approved for the 1.70.0 release, this is just a docs update to match that change.
Docs: Use non-SeqCst in module example of atomics
I done this for this reasons:
1. The example now shows that there is more Orderings than just SeqCst.
2. People who would copy from example would now have more suitable orderings for the job.
3. SeqCst is both much harder to reason about and not needed in most situations.
IMHO, we should encourage people to think and use memory orderings that is suitable to task instead of blindly defaulting to SeqCst.
r? `@m-ou-se`
Consolidate all associated items on the NonZero integer types into a single impl block per type
**Before:**
```rust
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
pub struct NonZeroI8(i8);
impl NonZeroI8 {
pub const fn new(n: i8) -> Option<Self> ...
pub const fn get(self) -> i8 ...
}
impl NonZeroI8 {
pub const fn leading_zeros(self) -> u32 ...
pub const fn trailing_zeros(self) -> u32 ...
}
impl NonZeroI8 {
pub const fn abs(self) -> NonZeroI8 ...
}
...
```
**After:**
```rust
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
pub struct NonZeroI8(i8);
impl NonZeroI8 {
pub const fn new(n: i8) -> Option<Self> ...
pub const fn get(self) -> i8 ...
pub const fn leading_zeros(self) -> u32 ...
pub const fn trailing_zeros(self) -> u32 ...
pub const fn abs(self) -> NonZeroI8 ...
...
}
```
Having 6-7 different impl blocks per type is not such a problem in today's implementation, but becomes awful upon the switch to a generic `NonZero<T>` type (context: https://github.com/rust-lang/rust/issues/82363#issuecomment-921513910).
In the implementation from https://github.com/rust-lang/rust/pull/100428, there end up being **67** impl blocks on that type.
<img src="https://github.com/rust-lang/rust/assets/1940490/5b68bd6f-8a36-4922-baa3-348e30dbfcc1" width="200"><img src="https://github.com/rust-lang/rust/assets/1940490/2cfec71e-c2cd-4361-a542-487f13f435d9" width="200"><img src="https://github.com/rust-lang/rust/assets/1940490/2fe00337-7307-405d-9036-6fe1e58b2627" width="200">
Without the refactor to a single impl block first, introducing `NonZero<T>` would be a usability regression compared to today's separate pages per type. With all those blocks expanded, Ctrl+F is obnoxious because you need to skip 12× past every match you don't care about. With all the blocks collapsed, Ctrl+F is useless. Getting to a state in which exactly one type's (e.g. `NonZero<u32>`) impl blocks are expanded while the rest are collapsed is annoying.
After this refactor to a single impl block, we can move forward with making `NonZero<T>` a generic struct whose docs all go on the same rustdoc page. The rustdoc will have 12 impl blocks, one per choice of `T` supported by the standard library. The reader can expand a single one of those impl blocks e.g. `NonZero<u32>` to understand the entire API of that type.
Note that moving the API into a generic `impl<T> NonZero<T> { ... }` is not going to be an option until after `NonZero<T>` has been stabilized, which may be months or years after its introduction. During the period while generic `NonZero` is unstable, it will be extra important to offer good documentation on all methods demonstrating the API being used through the stable aliases such as `NonZeroI8`.
This PR follows a `key = $value` syntax for the macros which is similar to the macros we already use for producing a single large impl block on the integer primitives.
1dd4db5062/library/core/src/num/mod.rs (L288-L309)
Best reviewed one commit at a time.
The advantage of this is that it does not need to be assigned to a
variable to be used in a `Context` creation, which is the most common
thing to want to do with a noop waker.
If an owned noop waker is desired, it can be created by cloning, but the
reverse is harder. Alternatively, both versions could be provided, like
`futures::task::noop_waker()` and `futures::task::noop_waker_ref()`, but
that seems to me to be API clutter for a very small benefit, whereas
having the `&'static` reference available is a large benefit.
Previous discussion on the tracking issue starting here:
https://github.com/rust-lang/rust/issues/98286#issuecomment-1862159766
The internal, unstable field of `Pin` can conflict with fields from the
inner type accessed via the `Deref` impl. Rename it from `pointer` to
`__pointer`, to make it less likely to conflict with anything else.
Add private `NonZero<T>` type alias.
According to step 2 suggested in https://github.com/rust-lang/rust/pull/100428#pullrequestreview-1767139731.
This adds a private type alias for `NonZero<T>` so that some parts of the code can already start using `NonZero<T>` syntax.
Using `NonZero<T>` for `convert` and other parts which implement `From` doesn't work while it is a type alias, since this results in conflicting implementations.
Tune the inlinability of `unwrap`
Fixes#115463
cc `@thomcc`
This tweaks `unwrap` on ~~`Option` &~~ `Result` to be two parts:
- `#[inline(always)]` for checking the discriminant
- `#[cold]` for actually panicking
The idea here is that checking the discriminant on a `Result` ~~or `Option`~~ should always be trivial enough to be worth inlining, even in `opt-level=z`, especially compared to passing it to a function.
As seen in the issue and codegen test, this will hopefully help particularly for things like `.try_into().unwrap()`s that are actually infallible, but in a way that's only visible with the inlining.
EDIT: I've restricted this to `Result` to avoid combining effects
Later in this stack, as the nonzero_integers macro is going to be
responsible for producing a larger fraction of the API for the NonZero
integer types, it will need to receive a number of additional arguments
beyond the ones currently seen here.
Additional arguments, especially named arguments across multiple lines,
will turn out clearer if everything in one macro call is for the same
NonZero type.
This commit adopts a similar arrangement to what we do for generating
the API of the integer primitives (`impl u8` etc), which also generate a
single type's API per top-level macro call, rather than generating all
12 impl blocks for the 12 types from one macro call.
This way all the other macros defined in this module, such as
nonzero_leading_trailing_zeros, are available to call within the expansion of
nonzero_integers.
(Macros defined by macro_rules cannot be called from the same module above the
location of the macro_rules.)
In this commit the ability to call things like nonzero_leading_trailing_zeros is
not immediately used, but later commits in this stack will be consolidating the
entire API of NonZeroT to be generated through nonzero_integers, and will need
to make use of some of the other macros to do that.
Add Benchmarks for int_pow Methods.
There is quite a bit of room for improvement in performance of the `int_pow` family of methods. I added benchmarks for those functions. In particular, there are benchmarks for small compile-time bases to measure the effect of #114390. ~~I added a lot (245), but all but 22 of them are marked with `#[ignore]`. There are a lot of macros, and I would appreciate feedback on how to simplify them.~~
~~To run benches relevant to #114390, use `./x bench core --stage 1 -- pow_base_const --include-ignored`.~~
Optimize will_wake implementation by comparing vtable address instead
of its content.
The existing best practice to avoid false negatives from will_wake is
to define a waker vtable as a static item. That approach continues to
works with the new implementation.
While this potentially changes the observable behaviour, the function is
documented to work on a best-effort basis. The PartialEq impl for
RawWaker remains as it was.
This stabilizes all methods under `slice_first_last_chunk`.
Additionally, it const stabilizes the non-mut functions and moves the `_mut`
functions under `const_slice_first_last_chunk`. These are blocked on
`const_mut_refs`.
As part of this change, `slice_split_at_unchecked` was marked const-stable for
internal use (but not fully stable).
A more efficient slice comparison implementation for T: !BytewiseEq
(This is a follow up PR on #113654)
This PR changes the implementation for `[T]` slice comparison when `T: !BytewiseEq`. The previous implementation using zip was not optimized properly by the compiler, which didn't leverage the fact that both length were equal. Performance improvements are for example 20% when testing that `[Some(0_u64); 4096].as_slice() == [Some(0_u64); 4096].as_slice()`.
Use `assert_unsafe_precondition` for `char::from_u32_unchecked`
Use `assert_unsafe_precondition` in `char::from_u32_unchecked` so that it can be stabilized as `const`.
Rewrite `pin` module documentation to clarify usage and invariants
The documentation of `pin` today does not give a complete treatment of pinning from first principles, nor does it adequately help build intuition and understanding for how the different elements of the pinning story fit together.
This rewrite attempts to address these in a way that makes the concept more approachable while also making the documentation more normative.
This PR picks up where `@mcy` left off in #88500 (thanks to him for the original work and `@Manishearth` for mentioning it such that I originally found it). I've directly incorporated much of the feedback left on the original PR and have rewritten and changed some of the main conceits of the prose to better adhere to the feedback from the reviewers on that PR or just explain something in (hopefully) a better way.
The documentation today does not give a complete treatment of pinning
from first principles, which appropriately describes how to design types
that use it, nor does it provide formal statements of the guarantees
users need to be aware of.
This rewrite attempts to address these in a way that makes the concept
more approachable while also making the documentation more normative.
Fix typo in docs for slice::split_once, slice::rsplit_once
This fixes a typo in the doc comments for these methods, which I tripped over while reading the docs: "If any matching elements are **resent** in the slice [...]", which is presumably meant to read **present**.
I mentioned this in #112811, the tracking issue for `slice_split_once`, and was encouraged to open a PR.
document rounding behavior of rint/nearbyint for ties
It's not possible to change the rounding mode in Rust, so these intrinsics will always behave like `roundeven`.
Rewrite Iterator::position default impl
Storing the accumulating value outside the fold in an attempt to improve code generation has shown speedups on various handwritten benchmarks, see discussion at #119551.
rustc_span: More consistent span combination operations
Also add more tests for using `tt` in addition to `ident`, and some other minor tweaks, see individual commits.
This is a part of https://github.com/rust-lang/rust/pull/119412 that doesn't yet add side tables for metavariable spans.
merge core_panic feature into panic_internals
I don't know why those are two separate features, but it does not seem intentional. This merge is useful because with https://github.com/rust-lang/rust/pull/118123, panic_internals is recognized as an internal feature, but core_panic is not -- but core_panic definitely should be internal.
Use diagnostic namespace in stdlib
This required a minor fix to have the diagnostics shown in third party crates when the `diagnostic_namespace` feature is not enabled. See 5d63f5d8d1 for details. I've opted for having a single PR for both changes as it's really not that much code. If it is required it should be easy to split up the change into several PR's.
r? `@compiler-errors`
`#[diagnostic::on_unimplemented]`
This commit replaces those `#[rustc_on_unimplemented]` attributes with
their equivalent `#[diagnostic::on_unimplemented]` where this is
supported (So no filter or any extended option)
Make offset_of field parsing use metavariable which handles any spacing
As discussed at and around comments https://github.com/rust-lang/rust/issues/106655#issuecomment-1793485081 and https://github.com/rust-lang/rust/issues/106655#issuecomment-1793774183, the current arguments to offset_of do not accept all the whitespace combinations: `0. 1.1.1` and `0.1.1. 1` are currently treated specially in `tests/ui/offset-of/offset-of-tuple-nested.rs`.
They also do not allow [forwarding individual fields as in](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=444cdf0ec02b99e8fd5fd8d8ecb312ca)
```rust
macro_rules! off {
($a:expr) => {
offset_of!(m::S, 0. $a)
}
}
```
This PR replaces the macro arguments with `($Container:ty, $($fields:expr)+ $(,)?)` which does allow any arrangement of whitespace that I could come up with and the forwarding of fields example above.
This also allows for array indexing in the future, which I think is the last future extension to the syntax suggested in the offset_of RFC.
Tracking issue for offset_of: #106655
``@rustbot`` label F-offset_of
``@est31``
custom mir: make it clear what the return block is
Custom MIR recently got support for specifying the "unwind action", so now there's two things coming after the actual call part of `Call` terminators. That's not very self-explaining so I propose we change the syntax to imitate keyword arguments:
```
Call(popped = Vec::pop(v), ReturnTo(drop), UnwindContinue())
```
Also fix some outdated docs and add some docs to `Call` and `Drop`.
Primitive docs: fix confusing `Send` in `&T`'s list
The two lists in this document describe what traits are implemented on references when their underlying `T` also implements them. However, while it is true that `T: Send + Sync` implies `&T: Send` (which is what the sentence is trying to explain), it is confusing to have `Send` in the list because `T: Send` is not needed for that. In particular, the "also require" part may be interpreted as "both `T: Send` and `T: Sync` are required".
Instead, move `Send` back to where it was before commit 7a477869b7 ("Makes docs for references a little less confusing"), i.e. to the `&mut` list (where no extra nota is needed, i.e. it fits naturally) and move the `Sync` definition/note to the bottom as something independent.
The two lists in this document describe what traits are implemented on
references when their underlying `T` also implements them. However,
while it is true that `T: Send + Sync` implies `&T: Send` (which is
what the sentence is trying to explain), it is confusing to have `Send`
in the list because `T: Send` is not needed for that. In particular,
the "also require" part may be interpreted as "both `T: Send` and
`T: Sync` are required".
Instead, move `Send` back to where it was before commit 7a477869b7
("Makes docs for references a little less confusing"), i.e. to the `&mut`
list (where no extra nota is needed, i.e. it fits naturally) and move the
`Sync` definition/note to the bottom as something independent.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Add `IntoAsyncIterator`
This introduces the `IntoAsyncIterator` trait and uses it in the desugaring of the unstable `for await` loop syntax. This is mostly added for symmetry with `Iterator` and `IntoIterator`.
r? `@compiler-errors`
cc `@rust-lang/libs-api,` `@rust-lang/wg-async`
Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
do not allow ABI mismatches inside repr(C) types
In https://github.com/rust-lang/rust/pull/115476 we allowed ABI mismatches inside `repr(C)` types. This wasn't really discussed much; I added it because from how I understand calling conventions, this should actually be safe in practice. However I entirely forgot to actually allow this in Miri, and in the mean time I have learned that too much ABI compatibility can be a problem for CFI (it can reject fewer calls so that gives an attacker more room to play with).
So I propose we take back that part about ABI compatibility in `repr(C)`. It is anyway something that C and C++ do not allow, as far as I understand.
In the future we might want to introduce a class of ABI compatibilities where we say "this is a bug and it may lead to aborting the process, but it won't lead to arbitrary misbehavior -- worst case it'll just transmute the arguments from the caller type to the callee type". That would give CFI leeway to reject such calls without introducing the risk of arbitrary UB. (The UB can still happen if the transmute leads to bad results, of course, but it wouldn't be due to ABI weirdness.)
#115476 hasn't reached beta yet so if we land this before Dec 22nd we can just pretend this all never happened. ;) Otherwise we should do a beta backport (of the docs change at least).
Cc `@rust-lang/opsem` `@rust-lang/types`
I done this for this reasons:
1. The example now shows that there is more Orderings than just SeqCst.
2. People who would copy from example would now have more suitable orderings for the job.
3. SeqCst is both much harder to reason about and not needed in most situations.
IMHO, we should encourage people to think and use memory orderings that is suitable to task instead of blindly defaulting to SeqCst.
This change consists of cherry-picking the content from the original
PR[1], which got closed due to inactivity, and applying the following
changes:
* Resolving merge conflicts (obviously)
* Linked to to_ipv4_mapped instead of to_ipv4 in the documentation (seems
more appropriate)
* Added the must_use and rustc_const_unstable attributes the original
didn't have
I think it's a reasonably useful method.
[1] https://github.com/rust-lang/rust/pull/86490
Add ASCII whitespace trimming functions to `&str`
- Add `trim_ascii_start`, `trim_ascii_end`, and `trim_ascii` functions to `&str` for trimming ASCII whitespace
- Add `#[inline]` to `[u8]` `trim_ascii` functions
These functions are feature-gated by `#![feature(byte_slice_trim_ascii)]` #94035
Link to is_benchmark from the Ipv6Addr::is_global documentation
All other relevant is_* methods are mentioned in the list of addresses here, is_benchmarking has been the only one missing.
Make CStr documentation consistent ("nul" instead of "null")
"nul" is used in method names and appears more often in the documentation than "null", so make all instances "nul" to keep it consistent.
Stabilize `type_name_of_val`
Make the following API stable:
```rust
// in core::any
pub fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str
```
This is a convenience method to get the type name of a value, as opposed to `type_name` that takes a type as a generic.
Const stability is not added because this relies on `type_name` which is also not const. That has a blocking issue https://github.com/rust-lang/rust/issues/97156.
Wording was also changed to direct most of the details to `type_name` so we don't have as much duplicated documentation.
Fixes tracking issue #66359.
There were two main concerns in the tracking issue:
1. Naming: `type_name_of` and `type_name_of_val` seem like the only mentioned options. Differences in opinion here come from `std::mem::{size_of, align_of, size_of_val, align_of_val}`. This PR leaves the name as `type_name_of_val`, but I can change if desired since it is pretty verbose.
2. What this displays for `&dyn`: I don't think that having `type_name_of_val` function resolve those is worth the headache it would be, see https://github.com/rust-lang/rust/issues/66359#issuecomment-1718480774 for some workarounds. I also amended the docs wording to leave it open-ended, in case we have means to change that behavior in the future.
``@rustbot`` label -T-libs +T-libs-api +needs-fcp
r? libs-api
[`RFC 3086`] Attempt to try to resolve blocking concerns
Implements what is described at https://github.com/rust-lang/rust/issues/83527#issuecomment-1744822345 to hopefully make some progress.
It is unknown if such approach is or isn't desired due to the lack of further feedback, as such, it is probably best to nominate this PR to the official entities.
`@rustbot` labels +I-compiler-nominated
Add `trim_ascii_start`, `trim_ascii_end`, and `trim_ascii` functions to
`&str` for trimming ASCII whitespace under the `byte_slice_trim_ascii`
feature gate.
Add `inline` to `[u8]` `trim_ascii` functions
Add lint against ambiguous wide pointer comparisons
This PR is the resolution of https://github.com/rust-lang/rust/issues/106447 decided in https://github.com/rust-lang/rust/issues/117717 by T-lang.
## `ambiguous_wide_pointer_comparisons`
*warn-by-default*
The `ambiguous_wide_pointer_comparisons` lint checks comparison of `*const/*mut ?Sized` as the operands.
### Example
```rust
let ab = (A, B);
let a = &ab.0 as *const dyn T;
let b = &ab.1 as *const dyn T;
let _ = a == b;
```
### Explanation
The comparison includes metadata which may not be expected.
-------
This PR also drops `clippy::vtable_address_comparisons` which is superseded by this one.
~~One thing: is the current naming right? `invalid` seems a bit too much.~~
Fixes https://github.com/rust-lang/rust/issues/117717
guarantee that char and u32 are ABI-compatible
In https://github.com/rust-lang/rust/pull/116894 we added a guarantee that `char` has the same alignment as `u32`, but there is still one axis where these types could differ: function call ABI. So let's nail that down as well: in a function signature, `char` and `u32` are completely equivalent.
This is a new stable guarantee, so it will need t-lang approval.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Elaborate on ip_addr bit conversion endianness
Adds explanation of how endianness is handled when converting `Ipv4Addr` and `Ipv6Addr` to and from bits. This is intended to unblock stabilization of the affected methods.
Addresses #113744
Use OnceCell in cell module documentation
The spanning tree example in the std cell module implementation was created before `OnceCell` was added to Rust so it uses `RefCell`. However, in this case using `OnceCell` seems more appropriate and produces simpler code. As a bonus, this also means that all three cell types are presented in the examples of std cell module.
Add support for making lib features internal
We have the notion of an "internal" lang feature: a feature that is never intended to be stabilized, and using which can cause ICEs and other issues without that being considered a bug.
This extends that idea to lib features as well. It is an alternative to https://github.com/rust-lang/rust/pull/115623: instead of using an attribute to declare lib features internal, we simply do this based on the name. Everything ending in `_internals` or `_internal` is considered internal.
Then we rename `core_intrinsics` to `core_intrinsics_internal`, which fixes https://github.com/rust-lang/rust/issues/115597.
Make the following API stable:
// in core::any
pub fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str
Const stability is not added because this relies on `type_name` which is also
not const. That has a blocking issue.
Fixes#66359
move exposed-provenance APIs into separate feature gate
We have already stated explicitly for all the 'exposed' functions that
> Using this method means that code is *not* following strict provenance rules.
However, they were part of the same feature gate and still described as part of the strict provenance experiment. Unfortunately, their semantics are much less clear and certainly nowhere near stabilization, so in preparation for an attempt to stabilize the strict provenance APIs, I suggest we split the things related to "exposed" into their own feature gate. I also used this opportunity to better explain how Exposed Provenance fits into the larger plan here: this is *one possible candidate* for `as` semantics, but we don't know if it is actually viable, so we can't really promise that it is equivalent to `as`. If it works out we probably want to make `as` equivalent to the 'exposed' APIs; if it doesn't, we will remove them again and try to find some other semantics for `as`.
The functionality of these methods from `split_array` has been absorbed by the
`slice_first_last_chunk` feature. This only affects the methods on slices,
not those with the same name that are implemented on array types.
Also adjusts testing to reflect this change.
Use `usize::repeat_u8` instead of implementing `repeat_byte` in `memchr.rs`
It's simpler that way and the tricks don't actually make a difference: https://godbolt.org/z/zrvYY1dGx
remove the memcpy-on-equal-ptrs assumption
One of the libc we support, musl, [defines `memcpy` with `restrict` pointers](https://git.musl-libc.org/cgit/musl/tree/src/string/memcpy.c#n5). This in fact matches the definition in the C standard. Calling that `memcpy` with overlapping pointers is clearly UB, who knows what the compiler did when optimizing this `memcpy` -- it certainly assumed source and destination to be disjoint.
Lucky enough, it does not seem like we actually need this assumption that `memcpy(p, p, n)` is always allowed. clang and GCC need it since they use `memcpy` to compile C assignments, but [we use memmove for similar code](https://godbolt.org/z/bcW85WYcM). There are no known cases where LLVM introduces calls to memcpy on equal pointers itself. (And if there were, that would be a soundness bug in rustc due to the musl issue mentioned above.)
This does mean we must make sure to never call the LLVM `memcpy` builtin on equal ranges even though the LangRef says that is allowed. Currently that is the case so we just need to make sure it remains the case. :) Cc `@rust-lang/opsem` `@rust-lang/wg-llvm`
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
Fix comments for unsigned non-zero `checked_add`, `saturating_add`
While looking at #118313, I happened to notice that two of the expanded comments appear to be slightly inaccurate.
For these two methods, `other` is an ordinary unsigned integer, so it can be zero.
Since the sum of non-zero and zero is always non-zero, the safety argument holds even when `other` is zero.
Update mod comment
The comment of `ASCII_CASE_MASK` on line 477 is `If 6th bit is set ascii is lower case.` but the original comment of `*self ^ ((self.is_ascii_lowercase() as u8) * ASCII_CASE_MASK)` was `Toggle the fifth bit if this is a lowercase letter`
For these two methods, `other` is an ordinary unsigned integer, so it can be zero.
Since the sum of non-zero and zero is always non-zero, the safety argument
holds even when `other` is zero.
rustdoc: Remove space from fake-variadic fn ptr impls
before: `for fn (T₁, T₂, …, Tₙ) -> Ret`
after: `for fn(T₁, T₂, …, Tₙ) -> Ret`
I don't think we usually have spaces there, so it looks weird.
cc `@notriddle` since you added the space in https://github.com/rust-lang/rust/pull/98180 (or rather, added the feature with a space included).
Add `debug_assert_nounwind` and convert `assert_unsafe_precondition`
`assert_unsafe_precondition` checks non-CTFE-evaluable conditions in runtime and performs no-op in compile time, while many of its current usage can be checked during const eval.
Fixes error count display is different when there's only one error left
Supersedes #114759
### What did I do?
I did the small change in `rustc_errors` by hand. Then I did the other changes in `/compiler` by hand, those were just find replace on `*.rs` in the workspace. The changes in run-make are find replace for `run-make` in the workspace.
All other changes are blessed using `x test TEST --bless`. I blessed the tests that were blessed in #114759.
### how to review this nightmare
ping bors with an `r+`. You should check that my logic is sound and maybe quickly scroll through the diff, but fully verifying it seems fairly hard to impossible. I did my best to do this correctly.
Thank you `@adrianEffe` for bringing this up and your initial implementation.
cc `@flip1995,` you said you want to do a subtree sync asap
cc `@RalfJung` maybe you want to do a quick subtree sync afterwards as well for Miri
r? `@WaffleLapkin`
Indicate that multiplication in Layout::array cannot overflow
Since https://github.com/rust-lang/rust/pull/113113, we have added a check that skips calling into the allocator at all if `capacity == 0`. The global, default allocator will not actually try to allocate though; it returns a dangling pointer explicitly. However, these two checks are not merged/deduplicated by LLVM and so we're comparing to zero twice whenever vectors are allocated/grown. Probably cheap, but also potentially expensive in code size and seems like an unfortunate miss.
This removes that extra check by telling LLVM that the multiplication as part of Layout::array can't overflow, turning the original non-zero value into a zero value afterwards. In my checks locally this successfully drops the duplicate comparisons.
See https://rust.godbolt.org/z/b6nPP9dcK for a code example.
```rust
pub fn foo(elements: usize) -> Vec<u32> {
Vec::with_capacity(elements)
}
```
r? `@scottmcm` since you touched this in a32305a80f - curious if you have thoughts on doing this / can confirm my model of this being correct.
This allows LLVM to optimize comparisons to zero before & after the
multiplication into one, saving on code size and eliminating an (always
true) branch from most Vec allocations.
Remove option_payload_ptr; redundant to offset_of
The `option_payload_ptr` intrinsic is no longer required as `offset_of` supports traversing enums (#114208). This PR removes it in order to dogfood offset_of (as suggested at https://github.com/rust-lang/rust/issues/106655#issuecomment-1790907626). However, it will not build until those changes reach beta (which I think is within the next 8 days?) so I've opened it as a draft.
Expose tests for {f32,f64}.total_cmp in docs
Expose tests for {f32,f64}.total_cmp in docs
Uncomment the helpful `assert_eq!` line, which is stripped out completely in docs, and leaves the reader to mentally play through the algorithm, or go to the playground and add a println!, to see what the result will be.
(If these tests are known to fail on some platforms, is there some mechanism to conditionalize this or escape the test so the `assert_eq!` source will be visible on the web? I am a newbie, which is why I was reading docs ;)
impl more traits for ptr::Alignment, add mask method
Changes:
* Adds `rustc_const_unstable` attributes where missing
* Makes `log2` method const
* Adds `mask` method
* Implements `Default`, which is equivalent to `Alignment::MIN`
No longer included in PR:
* Removes indirection of `AlignmentEnum` type alias (this was intentional)
* Implements `Display`, `Binary`, `Octal`, `LowerHex`, and `UpperHex` (should go through libs-api instead)
* Controversially implements `LowerExp` and `UpperExp` using `p` instead of `e` to indicate a power of 2 (also should go through libs-api)
Tracking issue for `ptr::Alignment`: #102070