Enable stack probes on aarch64 for LLVM 18
I tested this on `aarch64-unknown-linux-gnu` with LLVM main (~18).
cc #77071, to be closed once we upgrade our LLVM submodule.
Add `-Zfunction-return={keep,thunk-extern}` option
This is intended to be used for Linux kernel RETHUNK builds.
With this commit (optionally backported to Rust 1.73.0), plus a patched Linux kernel to pass the flag, I get a RETHUNK build with Rust enabled that is `objtool`-warning-free and is able to boot in QEMU and load a sample Rust kernel module.
Issue: https://github.com/rust-lang/rust/issues/116853.
This is intended to be used for Linux kernel RETHUNK builds.
With this commit (optionally backported to Rust 1.73.0), plus a
patched Linux kernel to pass the flag, I get a RETHUNK build with
Rust enabled that is `objtool`-warning-free and is able to boot in
QEMU and load a sample Rust kernel module.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Add thinlto support to codegen, assembly and coverage tests
Using `--emit=llvm-ir` with thinlto usually result in multiple IR files.
Resolve test case failure issue reported in #113923.
In the future Windows will enable Control-flow Enforcement Technology
(CET aka Shadow Stacks). To protect the path where the context is
updated during exception handling, the binary is required to enumerate
valid unwind entrypoints in a dedicated section which is validated when
the context is being set during exception handling.
The required support for EHCONT has already been merged into LLVM,
long ago. This change adds the Rust codegen option to enable it.
Reference:
* https://reviews.llvm.org/D40223
This also adds a new `ehcont-guard` option to the bootstrap config which
enables EHCont Guard when building std.
Add -Z llvm_module_flag
Allow adding values to the `!llvm.module.flags` metadata for a generated module. The syntax is
`-Z llvm_module_flag=<name>:<type>:<value>:<behavior>`
Currently only u32 values are supported but the type is required to be specified for forward compatibility. The `behavior` element must match one of the named LLVM metadata behaviors.viors.
This flag is expected to be perma-unstable.
This was broken by upstream
llvm/llvm-project@dc6d077396. It's easy
enough to use a regex match to support both, so we do that.
r? @nikic
@rustbot label: +llvm-main
Allow adding values to the `!llvm.module.flags` metadata for a generated
module. The syntax is
`-Z llvm_module_flag=<name>:<type>:<value>:<behavior>`
Currently only u32 values are supported but the type is required to be
specified for forward compatibility. The `behavior` element must match
one of the named LLVM metadata behaviors.viors.
This flag is expected to be perma-unstable.
Hint optimizer about try-reserved capacity
This is #116568, but limited only to the less-common `try_reserve` functions to reduce bloat in debug binaries from debug info, while still addressing the main use-case #116570
Clean up unchecked_math, separate out unchecked_shifts
Tracking issue: #85122
Changes:
1. Remove `const_inherent_unchecked_arith` flag and make const-stability flags the same as the method feature flags. Given the number of other unsafe const fns already stabilised, it makes sense to just stabilise these in const context when they're stabilised.
2. Move `unchecked_shl` and `unchecked_shr` into a separate `unchecked_shifts` flag, since the semantics for them are unclear and they'll likely be stabilised separately as a result.
3. Add an `unchecked_neg` method exclusively to signed integers, under the `unchecked_neg` flag. This is because it's a new API and probably needs some time to marinate before it's stabilised, and while it *would* make sense to have a similar version for unsigned integers since `checked_neg` also exists for those there is absolutely no case where that would be a good idea, IMQHO.
The longer-term goal here is to prepare the `unchecked_math` methods for an FCP and stabilisation since they've existed for a while, their semantics are clear, and people seem in favour of stabilising them.
Decompose singular `matches!` with or-patterns to individual `matches!`
statements to enable branchless code output. The following functions
were changed:
- `is_ascii_alphanumeric`
- `is_ascii_hexdigit`
- `is_ascii_punctuation`
Add codegen tests
Co-authored-by: George Bateman <george.bateman16@gmail.com>
Co-authored-by: scottmcm <scottmcm@users.noreply.github.com>
Copy 1-element arrays as scalars, not vectors
For `[T; 1]` it's silly to copy as `<1 x T>` when we can just copy as `T`.
Inspired by https://github.com/rust-lang/rust/issues/101210#issuecomment-1732470941, which pointed out that `Option<[u8; 1]>` was codegenning worse than `Option<u8>`.
(I'm not sure *why* LLVM doesn't optimize out `<1 x u8>`, but might as well just not emit it in the first place in this codepath.)
---
I think I bit off too much in #116479; let me try just the scalar case first.
r? `@ghost`
Raise minimum supported Apple OS versions
This implements the proposal to raise the minimum supported Apple OS versions as laid out in the now-completed MCP (https://github.com/rust-lang/compiler-team/issues/556).
As of this PR, rustc and the stdlib now support these versions as the baseline:
- macOS: 10.12 Sierra
- iOS: 10
- tvOS: 10
- watchOS: 5 (Unchanged)
In addition to everything this breaks indirectly, these changes also erase the `armv7-apple-ios` target (currently tier 3) because the oldest supported iOS device now uses ARMv7s. Not sure what the policy around tier3 target removal is but shimming it is not an option due to the linker refusing.
[Per comment](https://github.com/rust-lang/compiler-team/issues/556#issuecomment-1297175073), this requires a FCP to merge. cc `@wesleywiser.`
Enable -Zdrop-tracking-mir by default
This PR enables the `drop-tracking-mir` flag by default. This flag was initially implemented in https://github.com/rust-lang/rust/pull/101692.
This flag computes auto-traits on generators based on their analysis MIR, instead of trying to compute on the HIR body. This removes the need for HIR-based drop-tracking, as we can now reuse the same code to compute generator witness types and to compute generator interior fields.
Add codegen test to guard against VecDeque optimization regression
Very small PR that adds a codegen test to guard against regression for the `VecDeque` optimization addressed in #80836. Ensures that Rustc optimizes away the panic when unwrapping the result of `.get(0)` because of the `!is_empty()` condition.
Use the same DISubprogram for each instance of the same inlined function within a caller
# Issue Details:
The call to `panic` within a function like `Option::unwrap` is translated to LLVM as a `tail call` (as it will never return), when multiple calls to the same function like this are inlined LLVM will notice the common `tail call` block (i.e., loading the same panic string + location info and then calling `panic`) and merge them together.
When merging these instructions together, LLVM will also attempt to merge the debug locations as well, but this fails (i.e., debug info is dropped) as Rust emits a new `DISubprogram` at each inline site thus LLVM doesn't recognize that these are actually the same function and so thinks that there isn't a common debug location.
As an example of this, consider the following program:
```rust
#[no_mangle]
fn add_numbers(x: &Option<i32>, y: &Option<i32>) -> i32 {
let x1 = x.unwrap();
let y1 = y.unwrap();
x1 + y1
}
```
When building for x86_64 Windows using 1.72 it generates (note the lack of `.cv_loc` before the call to `panic`, thus it will be attributed to the same line at the `addq` instruction):
```llvm
.cv_loc 0 1 3 0 # src\lib.rs:3:0
addq $40, %rsp
retq
leaq .Lalloc_f570dea0a53168780ce9a91e67646421(%rip), %rcx
leaq .Lalloc_629ace53b7e5b76aaa810d549cc84ea3(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17h12e60b9063f6dee8E
int3
```
# Fix Details:
Cache the `DISubprogram` emitted for each inlined function instance within a caller so that this can be reused if that instance is encountered again.
Ideally, we would also deduplicate child scopes and variables, however my attempt to do that with #114643 resulted in asserts when building for Linux (#115156) which would require some deep changes to Rust to fix (#115455).
Instead, when using an inlined function as a debug scope, we will also create a new child scope such that subsequent child scopes and variables do not collide (from LLVM's perspective).
After this change the above assembly now (with <https://reviews.llvm.org/D159226> as well) shows the `panic!` was inlined from `unwrap` in `option.rs` at line 935 into the current function in `lib.rs` at line 0 (line 0 is emitted since it is ambiguous which line to use as there were two inline sites that lead to this same code):
```llvm
.cv_loc 0 1 3 0 # src\lib.rs:3:0
addq $40, %rsp
retq
.cv_inline_site_id 6 within 0 inlined_at 1 0 0
.cv_loc 6 2 935 0 # library\core\src\option.rs:935:0
leaq .Lalloc_5f55955de67e57c79064b537689facea(%rip), %rcx
leaq .Lalloc_e741d4de8cb5801e1fd7a6c6795c1559(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17hde1558f32d5b1c04E
int3
```
Use `preserve_mostcc` for `extern "rust-cold"`
As experimentation in #115242 has shown looks better than `coldcc`. Notably, clang exposes `preserve_most` (https://clang.llvm.org/docs/AttributeReference.html#preserve-most) but not `cold`, so this change should put us on a better-supported path.
And *don't* use a different convention for cold on Windows, because that actually ends up making things worse. (See comment in the code.)
cc tracking issue #97544
Remove some wasm/emscripten ignores
I'm planning on landing a few PRs like this that remove ignores that aren't required. This just covers mir-opt and codegen tests.
As experimentation in 115242 has shown looks better than `coldcc`.
And *don't* use a different convention for cold on Windows, because that actually ends up making things worse.
cc tracking issue 97544
Revert "Use the same DISubprogram for each instance of the same inline function within the caller"
This reverts commit 687bffa493.
Reverting to resolve ICEs reported on nightly.
cc `@dpaoliello`
Fixes#115156
Fix#115150 by encoding f32 and f64 correctly for cross-language CFI. I
missed changing the encoding for f32 and f64 when I introduced the
integer normalization option in #105452 as integer normalization does
not include floating point. `f32` and `f64` should be always encoded as
`f` and `d` since they are both FFI safe when their representation are
the same (i.e., IEEE 754) for both the Rust compiler and Clang.
Add regression test for not `memcpy`ing padding bytes
Closes#56297
See this comparison: https://rust.godbolt.org/z/jjzfonfcE
I don't have any experience with codegen tests, I hope this is correct
Use the same DISubprogram for each instance of the same inlined function within a caller
# Issue Details:
The call to `panic` within a function like `Option::unwrap` is translated to LLVM as a `tail call` (as it will never return), when multiple calls to the same function like this is inlined LLVM will notice the common `tail call` block (i.e., loading the same panic string + location info and then calling `panic`) and merge them together.
When merging these instructions together, LLVM will also attempt to merge the debug locations as well, but this fails (i.e., debug info is dropped) as Rust emits a new `DISubprogram` at each inline site thus LLVM doesn't recognize that these are actually the same function and so thinks that there isn't a common debug location.
As an example of this when building for x86_64 Windows (note the lack of `.cv_loc` before the call to `panic`, thus it will be attributed to the same line at the `addq` instruction):
```
.cv_loc 0 1 23 0 # src\lib.rs:23:0
addq $40, %rsp
retq
leaq .Lalloc_f570dea0a53168780ce9a91e67646421(%rip), %rcx
leaq .Lalloc_629ace53b7e5b76aaa810d549cc84ea3(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17h12e60b9063f6dee8E
int3
```
# Fix Details:
Cache the `DISubprogram` emitted for each inlined function instance within a caller so that this can be reused if that instance is encountered again, this also requires caching the `DILexicalBlock` and `DIVariable` objects to avoid creating duplicates.
After this change the above assembly now looks like:
```
.cv_loc 0 1 23 0 # src\lib.rs:23:0
addq $40, %rsp
retq
.cv_inline_site_id 5 within 0 inlined_at 1 0 0
.cv_inline_site_id 6 within 5 inlined_at 1 12 0
.cv_loc 6 2 935 0 # library\core\src\option.rs:935:0
leaq .Lalloc_5f55955de67e57c79064b537689facea(%rip), %rcx
leaq .Lalloc_e741d4de8cb5801e1fd7a6c6795c1559(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17hde1558f32d5b1c04E
int3
```