This test started failing on LLVM 18 after change
61118ffd04. As far as I can tell, it's
just good fortune that LLVM is able to sniff out the new noalias here,
and it's correct.
Remove an unneeded helper from the tuple library code
Thanks to https://github.com/rust-lang/rust/pull/107022, this is just what `==` does, so we don't need the helper here anymore.
Rollup of 8 pull requests
Successful merges:
- #120484 (Avoid ICE when is_val_statically_known is not of a supported type)
- #120516 (pattern_analysis: cleanup manual impls)
- #120517 (never patterns: It is correct to lower `!` to `_`.)
- #120523 (Improve `io::Read::read_buf_exact` error case)
- #120528 (Store SHOULD_CAPTURE as AtomicU8)
- #120529 (Update data layouts in custom target tests for LLVM 18)
- #120531 (Remove a bunch of `has_errors` checks that have no meaningful or the wrong effect)
- #120533 (Correct paths for hexagon-unknown-none-elf platform doc)
r? `@ghost`
`@rustbot` modify labels: rollup
Avoid ICE when is_val_statically_known is not of a supported type
2 ICE with 1 stone!
1. Implement `llvm.is.constant.ptr` to avoid first ICE in linked issue.
2. return `false` when the argument is not one of `i*`/`f*`/`ptr` to avoid second ICE.
fixes#120480
Replacement of #114390: Add new intrinsic `is_var_statically_known` and optimize pow for powers of two
This adds a new intrinsic `is_val_statically_known` that lowers to [``@llvm.is.constant.*`](https://llvm.org/docs/LangRef.html#llvm-is-constant-intrinsic).` It also applies the intrinsic in the int_pow methods to recognize and optimize the idiom `2isize.pow(x)`. See #114390 for more discussion.
While I have extended the scope of the power of two optimization from #114390, I haven't added any new uses for the intrinsic. That can be done in later pull requests.
Note: When testing or using the library, be sure to use `--stage 1` or higher. Otherwise, the intrinsic will be a noop and the doctests will be skipped. If you are trying out edits, you may be interested in [`--keep-stage 0`](https://rustc-dev-guide.rust-lang.org/building/suggested.html#faster-builds-with---keep-stage).
Fixes#47234Resolves#114390
`@Centri3`
Use `assert_unchecked` instead of `assume` intrinsic in the standard library
Now that a public wrapper for the `assume` intrinsic exists, we can use it in the standard library.
CC #119131
Fix overflow check
Make MIRI choose the path randomly and rename the intrinsic
Add back test
Add miri test and make it operate on `ptr`
Define `llvm.is.constant` for primitives
Update MIRI comment and fix test in stage2
Add const eval test
Clarify that both branches must have the same side effects
guaranteed non guarantee
use immediate type instead
Co-Authored-By: Ralf Jung <post@ralfj.de>
Tune the inlinability of `unwrap`
Fixes#115463
cc `@thomcc`
This tweaks `unwrap` on ~~`Option` &~~ `Result` to be two parts:
- `#[inline(always)]` for checking the discriminant
- `#[cold]` for actually panicking
The idea here is that checking the discriminant on a `Result` ~~or `Option`~~ should always be trivial enough to be worth inlining, even in `opt-level=z`, especially compared to passing it to a function.
As seen in the issue and codegen test, this will hopefully help particularly for things like `.try_into().unwrap()`s that are actually infallible, but in a way that's only visible with the inlining.
EDIT: I've restricted this to `Result` to avoid combining effects
Separate immediate and in-memory ScalarPair representation
Currently, we assume that ScalarPair is always represented using a two-element struct, both as an immediate value and when stored in memory.
This currently works fairly well, but runs into problems with https://github.com/rust-lang/rust/pull/116672, where a ScalarPair involving an i128 type can no longer be represented as a two-element struct in memory. For example, the tuple `(i32, i128)` needs to be represented in-memory as `{ i32, [3 x i32], i128 }` to satisfy alignment requirements. Using `{ i32, i128 }` instead will result in the second element being stored at the wrong offset (prior to LLVM 18).
Resolve this issue by no longer requiring that the immediate and in-memory type for ScalarPair are the same. The in-memory type will now look the same as for normal struct types (and will include padding filler and similar), while the immediate type stays a simple two-element struct type. This also means that booleans in immediate ScalarPair are now represented as i1 rather than i8, just like we do everywhere else.
The core change here is to llvm_type (which now treats ScalarPair as a normal struct) and immediate_llvm_type (which returns the two-element struct that llvm_type used to produce). The rest is fixing things up to no longer assume these are the same. In particular, this switches places that try to get pointers to the ScalarPair elements to use byte-geps instead of struct-geps.
llvm: Allow `noundef` in codegen tests
LLVM 18 will automatically infer `noundef` in some situations. Adjust codegen tests to accept this.
See llvm/llvm-project#76553 for why `noundef` is being generated now.
``@rustbot`` label:+llvm-main
LLVM 18 will automatically infer `noundef` in some situations.
Adjust codegen tests to accept this.
See llvm/llvm-project#76553 for why `noundef` is being generated now.
On LLVM 18 we get slightly different arguments here, so it's easier to
just regex those away. The important details are all still asserted as I
understand things.
Fixes#119193.
@rustbot label: +llvm-main
add more niches to rawvec
Previously RawVec only had a single niche in its `NonNull` pointer. With this change it now has `isize::MAX` niches since half the value-space of the capacity field is never needed, we can't have a capacity larger than isize::MAX.
Currently, we assume that ScalarPair is always represented using
a two-element struct, both as an immediate value and when stored
in memory.
This currently works fairly well, but runs into problems with
https://github.com/rust-lang/rust/pull/116672, where a ScalarPair
involving an i128 type can no longer be represented as a two-element
struct in memory. For example, the tuple `(i32, i128)` needs to be
represented in-memory as `{ i32, [3 x i32], i128 }` to satisfy
alignment requirement. Using `{ i32, i128 }` instead will result in
the second element being stored at the wrong offset (prior to
LLVM 18).
Resolve this issue by no longer requiring that the immediate and
in-memory type for ScalarPair are the same. The in-memory type
will now look the same as for normal struct types (and will include
padding filler and similar), while the immediate type stays a
simple two-element struct type. This also means that booleans in
immediate ScalarPair are now represented as i1 rather than i8,
just like we do everywhere else.
The core change here is to llvm_type (which now treats ScalarPair
as a normal struct) and immediate_llvm_type (which returns the
two-element struct that llvm_type used to produce). The rest is
fixing things up to no longer assume these are the same. In
particular, this switches places that try to get pointers to the
ScalarPair elements to use byte-geps instead of struct-geps.
Sets the accessibility of types and fields in DWARF using
`DW_AT_accessibility` attribute.
`DW_AT_accessibility` (public/protected/private) isn't exactly right for
Rust, but neither is `DW_AT_visibility` (local/exported/qualified), and
there's no way to set `DW_AT_visbility` in LLVM's API.
Signed-off-by: David Wood <david@davidtw.co>