Cleaner assert_eq! & assert_ne! panic messages
This PR finishes refactoring of the assert messages per #94005. The panic message format change #112849 used to be part of this PR, but has been factored out and just merged. It might be better to keep both changes in the same release once FCP vote completes.
Modify panic message for `assert_eq!`, `assert_ne!`, the currently unstable `assert_matches!`, as well as the corresponding `debug_assert_*` macros.
```rust
assert_eq!(1 + 1, 3);
assert_eq!(1 + 1, 3, "my custom message value={}!", 42);
```
#### Old messages
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`: my custom message value=42!
```
#### New messages
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed
left: 2
right: 3
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed: my custom message value=42!
left: 2
right: 3
```
History of fixing #94005
* #94016 was a lengthy PR that was abandoned
* #111030 was similar, but it stringified left and right arguments, and thus caused compile time performance issues, thus closed
* #112849 factored out the two-line formatting of all panic messages
Fixes#94005
r? `@m-ou-se`
Modify panic message for `assert_eq!`, `assert_ne!`, the currently unstable `assert_matches!`, as well as the corresponding `debug_assert_*` macros.
```rust
assert_eq!(1 + 1, 3);
assert_eq!(1 + 1, 3, "my custom message value={}!", 42);
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion failed: `(left == right)`
left: `2`,
right: `3`: my custom message value=42!
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed
left: 2
right: 3
```
```plain
thread 'main' panicked at $DIR/main.rs:6:5:
assertion `left == right` failed: my custom message value=42!
left: 2
right: 3
```
This PR is a simpler subset of the #111030, but it does NOT stringify the original left and right source code assert expressions, thus should be faster to compile.
Point at return type when it influences non-first `match` arm
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type `!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
Deny `FnDef` in patterns
We can only see these via `const { .. }` patterns, which are unstable.
cc #76001 (tracking issue for inline const pats)
Fixes#114658Fixes#114659
Point out expectation even if we have `TypeError::RegionsInsufficientlyPolymorphic`
just a minor tweak, since saying "one type is more general than the other" kinda sucks if we don't actually point out two types.
Separate `consider_unsize_to_dyn_candidate` from other unsize candidates
Move the unsize candidate assembly *just for* `T -> dyn Trait` out of `assemble_candidates_via_self_ty` so that we only consider it once, instead of for every normalization step of the self ty. This makes sure that we don't assemble several candidates that are equal modulo normalization when we really don't care about normalizing the self type of an `T: Unsize<dyn Trait>` goal anyways.
Fixesrust-lang/trait-system-refactor-initiative#57
r? lcnr
Probe when assembling upcast candidates so they don't step on eachother's toes in new solver
Lack of a probe causes one candidate to disqualify the other due to inference side-effects.
r? lcnr
Upgrade std to gimli 0.28.0
Gimli 0.28 removed its `From<EndianSlice> for &[u8]` that was the root cause of #113238.
This dependency update mirrors rust-lang/backtrace-rs#557, but since that doesn't require any code changes in `backtrace`, we can also apply that right away for our nested `std/backtrace` feature.
Add test for unknown_lints from another file.
This adds a test for #84936 which was incidentally fixed via #97266. It is a strange issue where `#![allow(unknown_lints)]` at the crate root was not applying to unknown lints that fired in a non-inline-module. I did not dig further into how #97266 fixed it, but I did verify it. I couldn't find any existing tests which did anything similar.
Closes#84936
Warn on inductive cycle in coherence leading to impls being considered not overlapping
This PR implements a `coinductive_overlap_in_coherence` lint (#114040), which warns users against cases where two impls are considered **not** to overlap during coherence due to an inductive cycle disproving one of the predicates after unifying the two impls.
Cases where this lint fires will become an overlap error if we ever move to coinduction, so I'd like to make this a warning to avoid having more crates take advantage of this behavior in the mean time. Also, since the new trait solver treats inductive cycles as ambiguity, not an error, this is a blocker for landing the new trait solver in coherence.
add a csky-unknown-linux-gnuabiv2 target
This is the rustc side changes to support csky based Linux target(`csky-unknown-linux-gnuabiv2`).
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I pledge to do my best maintaining it.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
This `csky` section is the arch name and the `unknown-linux` section is the same as other linux target, and `gnuabiv2` is from the cross-compile toolchain of `gcc`
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I think the explanation in platform support doc is enough to make this aspect clear.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
It's using open source tools only.
> The target must not introduce license incompatibilities.
No new license
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
There are no new dependencies/features required.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
As previously said it's using open source tools only.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
There are no such terms present/
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
I'm not the reviewer here.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
I'm not the reviewer here.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
It supports for std
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
I have added the documentation, and I think it's clear.
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Understood.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
I believe I didn't break any other target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I think there are no such problems in this PR.
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type
`!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
fixed *const [type error] does not implement the Copy trait
Removes "error: arguments for inline assembly must be copyable" when moving an unknown type
Fixes: #113788
Select obligations before processing wf obligation in `compare_method_predicate_entailment`
We need to select obligations before processing the WF obligation for the `IMPLIED_BOUNDS_ENTAILMENT` lint, since it skips over type variables.
Fixes#114783
r? `@jackh726`
TAITs do not constrain generic params
Fixes#108425
Not sure if I should rework those two failing tests. I guess `tests/ui/type-alias-impl-trait/coherence.rs` could just have the type parameter removed from it? IDK what `tests/ui/type-alias-impl-trait/coherence_generalization.rs` is even testing, though.
r? `@aliemjay`
cc `@lcnr` `@oli-obk` (when he's back from 🌴)
Also consider `mem::transmute` with the `invalid_reference_casting` lint
This PR extend the `invalid_reference_casting` lint with regard to the `std::mem::transmute` function.
```
error: casting `&T` to `&mut T` is undefined behavior, even if the reference is unused, consider instead using an `UnsafeCell`
--> $DIR/reference_casting.rs:27:16
|
LL | let _num = &mut *std::mem::transmute::<_, *mut i32>(&num);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
*I encourage anyone reviewing this PR to do so [without whitespaces](https://github.blog/2011-10-21-github-secrets/#whitespace).*
normalize in `trait_ref_is_knowable` in new solver
fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/51
Alternatively we could avoid normalizing the self type and do this at the end of the `assemble_candidates_via_self_ty` stack by splitting candidates into:
- applicable without normalizing self type
- applicable for aliases, even if they can be normalized
- applicable for stuff which cannot get normalized further
I don't think this would have any significant benefits and it also seems non-trivial to avoid normalizing only the self type in `trait_ref_is_knowable`.
r? `@compiler-errors`
Rollup of 7 pull requests
Successful merges:
- #94455 (Partially stabilize `int_roundings`)
- #114132 (Better Debug for Vars and VarsOs)
- #114584 (E0277 nolonger points at phantom `.await`)
- #114667 (Record binder for bare trait object in LifetimeCollectVisitor)
- #114692 (downgrade `internal_features` to warn)
- #114703 (Cover ParamConst in smir)
- #114734 (Mark oli as "on vacation")
r? `@ghost`
`@rustbot` modify labels: rollup
Respect `#[expect]` the same way `#[allow]` is with the `dead_code` lint
This PR makes the `#[expect]` attribute being respected in the same way the `#[allow]` attribute is with the `dead_code` lint.
The fix is much more involved than I would have liked (and it's not because I didn't tried!), because the implementation took advantage of the fact that firing a lint in a allow context is a nop (for the user, as the lint is suppressed) to not fire-it at all.
And will it's fine for `#[allow]`, it definitively isn't for `#[expect]`, as the presence and absence of the lint is significant. So a big part of the PR is just adding the context information of whenever an item is on the worklist because of an `[allow]`/`#[expect]` or not.
Fixes https://github.com/rust-lang/rust/issues/114557
make `typeid::typeid_itanium_cxx_abi::transform_ty` evaluate length in array types
the ICE in https://github.com/rust-lang/rust/issues/114275 was caused by `transform_ty`
in compiler/rustc_symbol_mangling/src/typeid/typeid_itanium_cxx_abi.rs encountering an unevaluated const, while expecting it to already be evaluated.
Rollup of 7 pull requests
Successful merges:
- #114599 (Add impl trait declarations to SMIR)
- #114622 (rustc: Move `crate_types` and `stable_crate_id` from `Session` to `GlobalCtxt`)
- #114662 (Unlock trailing where-clauses for lazy type aliases)
- #114693 (Remove myself from the review rotation)
- #114694 (make the provisional cache slightly less broken)
- #114705 (Add spastorino to mailmap)
- #114712 (Fix a couple of bad comments)
r? `@ghost`
`@rustbot` modify labels: rollup
make the provisional cache slightly less broken
It is still broken for the following cycles:
```mermaid
graph LR
R["R: coinductive"] --> A["A: inductive"]
R --> B["B: coinductive"]
A --> B
B --> R
```
the `R -> A -> B -> R` cycle should be considered to not hold, as it is mixed, but because we first put `B` into the cache from the `R -> B -> R` cycle which is coinductive, it does hold.
This issue will also affect our new coinduction approach. Longterm cycles are coinductive as long as one step goes through an impl where-clause, see f4fc5bae36/crates/formality-prove/src/prove/prove_wc.rs (L51-L62). Here we would first have a fully inductive cycle `R -> B -> R` which is then entered by a cycle with a coinductive step `R -> A -coinductive-> B -> R`.
I don't know how to soundly implement a provisional cache for goals not on the stack without tracking all cycles the goal was involved in and whether they were inductive or not. We could then only use goals from the cache if the *inductivity?* of every cycle remained the same. This is a mess to implement. I therefore want to rip out the provisional cache entirely, but will wait with this until I talked about it with `@nikomatsakis.`
r? `@compiler-errors`
Unlock trailing where-clauses for lazy type aliases
Allows trailing where-clauses on lazy type aliases and forbids[^1] leading ones.
Completes #89122 (see section *Top-level type aliases*).
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
[^1]: This is absolutely fine since lazy type aliases are only meant to be stabilized as part of a new edition.
`Expr::can_have_side_effects()` is incorrect for struct/enum/array/tuple literals
It would return 'false' unless *all* sub-expressions had side effects. This would easily allow side effects to slip through, and also wrongly label empty literals as having side effects. Add some tests for the last point
The function is only used for simple lints and error messages, so not a serious bug.
this ICE was caused by `transform_ty`
in compiler/rustc_symbol_mangling/src/typeid/typeid_itanium_cxx_abi.rs
encountering an unevaluated const, while expecting it to already be evaluated.
add a regression test
Update tests/ui/sanitize/issue-114275-cfi-const-expr-in-arry-len.rs
Co-authored-by: Michael Goulet <michael@errs.io>
Update tests/ui/sanitize/issue-114275-cfi-const-expr-in-arry-len.rs
Co-authored-by: Michael Goulet <michael@errs.io>
fix test compiling for targets with -crt-static and failing
this was causign https://github.com/rust-lang/rust/pull/114686 to fail
Don't use `type_of` to determine if item has intrinsic shim
When we're calling `resolve_instance` on an inline const, we were previously looking at the `type_of` for that const, seeing that it was an `extern "intrinsic"` fn def, and treating it as if we were computing the instance of that intrinsic itself. This is incorrect.
Instead, we should be using the def-id of the item we're computing to determine if it's an intrinsic.
Fixes#114660
Detect method not found on arbitrary self type with different mutability
```
error[E0599]: no method named `x` found for struct `Pin<&S>` in the current scope
--> $DIR/arbitrary_self_type_mut_difference.rs:11:18
|
LL | Pin::new(&S).x();
| ^ help: there is a method with a similar name: `y`
|
note: method is available for `Pin<&mut S>`
--> $DIR/arbitrary_self_type_mut_difference.rs:6:5
|
LL | fn x(self: Pin<&mut Self>) {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Related to #57994, as one of the presented cases can lead to code like this.
feat: `riscv-interrupt-{m,s}` calling conventions
Similar to prior support added for the mips430, avr, and x86 targets this change implements the rough equivalent of clang's [`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking visibility into any non-assembly body of the interrupt handler, have to be very conservative and save the [entire CPU state to the stack frame][full-frame-save]. By instead asking LLVM to only save the registers that it uses, we defer the decision to the tool with the best context: it can more accurately account for the cost of spills if it knows that every additional register used is already at the cost of an implicit spill.
At the LLVM level, this is apparently [implemented by] marking every register as "[callee-save]," matching the semantics of an interrupt handler nicely (it has to leave the CPU state just as it found it after its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes no attempt to e.g. save the state in a user-accessible stack frame. For a full discussion of those challenges and tradeoffs, please refer to [the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM does not expose the "all-saved" function flavor as a calling convention directly, instead preferring to use an attribute that allows for differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be aware of the differences between machine-mode and supervisor-mode interrupts as to why no `riscv-interrupt` calling convention is exposed through rustc, and similarly for why `riscv-interrupt-u` makes no appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
fix: not insert missing lifetime for `ConstParamTy`
Fixes#113462
We should ignore the missing lifetime, as it's illegal to include a lifetime in a const param.
r? ``@compiler-errors``
The change in 07f855d781 introduced a
trailing numeral of some kind after the `extern crate
compiler_builtins`, which appears to have caused at least two false
negatives (654b924 and 657fd24). Instead, this change normalizes the
test output to ignore the number (of symbols rustc recognizes?) to avoid
needing to re-`--bless` these two tests for unrelated changes.
Similar to prior support added for the mips430, avr, and x86 targets
this change implements the rough equivalent of clang's
[`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling
e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking
visibility into any non-assembly body of the interrupt handler, have to
be very conservative and save the [entire CPU state to the stack
frame][full-frame-save]. By instead asking LLVM to only save the
registers that it uses, we defer the decision to the tool with the best
context: it can more accurately account for the cost of spills if it
knows that every additional register used is already at the cost of an
implicit spill.
At the LLVM level, this is apparently [implemented by] marking every
register as "[callee-save]," matching the semantics of an interrupt
handler nicely (it has to leave the CPU state just as it found it after
its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes
no attempt to e.g. save the state in a user-accessible stack frame. For
a full discussion of those challenges and tradeoffs, please refer to
[the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM
does not expose the "all-saved" function flavor as a calling convention
directly, instead preferring to use an attribute that allows for
differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be
aware of the differences between machine-mode and supervisor-mode
interrupts as to why no `riscv-interrupt` calling convention is exposed
through rustc, and similarly for why `riscv-interrupt-u` makes no
appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
Restrict linker version script of proc-macro crates to just its two symbols
Restrict linker version script of proc-macro crates to just the two symbols of each proc-macro crate.
The main known effect of doing this is to stop including `#[no_mangle]` symbols in the linker version script.
Background:
The combination of a proc-macro crate with an import of another crate that itself exports a no_mangle function was broken for a period of time, because:
* In PR #99944 we stopped exporting no_mangle symbols from proc-macro crates; proc-macro crates have a very limited interface and are meant to be treated as a blackbox to everything except rustc itself. However: he constructed linker version script still referred to them, but resolving that discrepancy was left as a FIXME in the code, tagged with issue #99978.
* In PR #108017 we started telling the linker to check (via the`--no-undefined-version` linker invocation flag) that every symbol referenced in the "linker version script" is provided as linker input. So the unresolved discrepancy from #99978 started surfacing as a compile-time error (e.g. #111888).
Fix#111888Fix#99978.
tests: Uncomment now valid GAT code behind FIXME
The code fails to parse with `nightly-2021-02-05`:
$ cargo +nightly-2021-02-05 build
error: generic associated types in trait paths are currently not implemented
--> src/main.rs:9:42
|
9 | fn _bar<T: for<'a> StreamingIterator<Item<'a> = &'a [i32]>>(_iter: T) { /* ... */
| ^^^^
but parses with `nightly-2021-02-06`:
$ cargo +nightly-2021-02-06 build
warning: the feature `generic_associated_types` is incomplete and may not be safe to use and/or cause compiler crashes
warning: 1 warning emitted
because it was (with high probability) fixed by #79554 which was merged within that nightly range.
This PR is part of #44366 which is E-help-wanted.
CFI: Fix error compiling core with LLVM CFI enabled
Fix#90546 by filtering out global value function pointer types from the type tests, and adding the LowerTypeTests pass to the rustc LTO optimization pipelines.
add aarch64-unknown-teeos target
TEEOS is a mini os run in TrustZone, for trusted/security apps. The libc of TEEOS is a part of musl. The kernel of TEEOS is micro kernel.
This MR is to add a target for teeos.
MRs for libc and rust-std are in progress.
Compiler team MCP: [MCP](https://github.com/rust-lang/compiler-team/issues/652)
The code fails to parse with `nightly-2021-02-05`:
$ cargo +nightly-2021-02-05 build
error: generic associated types in trait paths are currently not implemented
--> src/main.rs:9:42
|
9 | fn _bar<T: for<'a> StreamingIterator<Item<'a> = &'a [i32]>>(_iter: T) { /* ... */
| ^^^^
but parses with `nightly-2021-02-06`:
$ cargo +nightly-2021-02-06 build
warning: the feature `generic_associated_types` is incomplete and may not be safe to use and/or cause compiler crashes
warning: 1 warning emitted
because it was (with high probability) fixed by PR 79554 which was merged
within that nightly range.
Map RPIT duplicated lifetimes back to fn captured lifetimes
Use the [`lifetime_mapping`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping) to map an RPIT's captured lifetimes back to the early- or late-bound lifetimes from its parent function. We may be going thru several layers of mapping, since opaques can be nested, so we introduce `TyCtxt::map_rpit_lifetime_to_fn_lifetime` to loop through several opaques worth of mapping, and handle turning it into a `ty::Region` as well.
We can then use this instead of the identity substs for RPITs in `check_opaque_meets_bounds` to address #114285.
We can then also use `map_rpit_lifetime_to_fn_lifetime` to properly install bidirectional-outlives predicates for both RPITs and RPITITs. This addresses #114601.
I based this on #114574, but I don't actually know how much of that PR we still need, so some code may be redundant now... 🤷
---
Fixes#114597Fixes#114579Fixes#114285
Also fixes#114601, since it turns out we had other bugs with RPITITs and their duplicated lifetime params 😅.
Supersedes #114574
r? `@oli-obk`
Structurally normalize weak and inherent in new solver
It seems pretty obvious to me that we should be normalizing weak and inherent aliases too, since they can always be normalized. This PR still leaves open the question of what to do with opaques, though 💀
**Also**, we need to structurally resolve the target of a coercion, for the UI test to work.
r? `@lcnr`
Store the laziness of type aliases in their `DefKind`
Previously, we would treat paths referring to type aliases as *lazy* type aliases if the current crate had lazy type aliases enabled independently of whether the crate which the alias was defined in had the feature enabled or not.
With this PR, the laziness of a type alias depends on the crate it is defined in. This generally makes more sense to me especially if / once lazy type aliases become the default in a new edition and we need to think about *edition interoperability*:
Consider the hypothetical case where the dependency crate has an older edition (and thus eager type aliases), it exports a type alias with bounds & a where-clause (which are void but technically valid), the dependent crate has the latest edition (and thus lazy type aliases) and it uses that type alias. Arguably, the bounds should *not* be checked since at any time, the dependency crate should be allowed to change the bounds at will with a *non*-major version bump & without negatively affecting downstream crates.
As for the reverse case (dependency: lazy type aliases, dependent: eager type aliases), I guess it rules out anything from slight confusion to mild annoyance from upstream crate authors that would be caused by the compiler ignoring the bounds of their type aliases in downstream crates with older editions.
---
This fixes#114468 since before, my assumption that the type alias associated with a given weak projection was lazy (and therefore had its variances computed) did not necessarily hold in cross-crate scenarios (which [I kinda had a hunch about](https://github.com/rust-lang/rust/pull/114253#discussion_r1278608099)) as outlined above. Now it does hold.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Warn when #[macro_export] is applied on decl macros
The existing code checks if `#[macro_export]` is being applied to an item other than a macro, and warns in that case, but fails to take into account macros 2.0/decl macros, despite the attribute having no effect on these macros.
This PR adds a special case for decl macros with the aforementioned attribute, so that the warning is a bit more precise. Instead of just saying "this attribute has no effect", hint towards the fact that decl macros get exported and resolved like regular items.
It also removes a `#[macro_export]` attribute which was applied on one of `core`'s decl macros.
- core: Remove #[macro_export] from `debug_assert_matches`
- check_attrs: Warn when #[macro_export] is used on macros 2.0
Fix#90546 by filtering out global value function pointer types from the
type tests, and adding the LowerTypeTests pass to the rustc LTO
optimization pipelines.
The compiler should emit a more specific error when the `#[macro_export]`
attribute is present on a decl macro, instead of silently ignoring it.
This commit adds the required error message in rustc_passes/messages.ftl,
as well as a note. A new variant is added to the `errors::MacroExport`
enum, specifically for the case where the attribute is added to a macro
2.0.
Rollup of 9 pull requests
Successful merges:
- #113568 (Fix spurious test failure with `panic=abort`)
- #114196 (Bubble up nested goals from equation in `predicates_for_object_candidate`)
- #114485 (Add trait decls to SMIR)
- #114495 (Set max_atomic_width for AVR to 16)
- #114496 (Set max_atomic_width for sparc-unknown-linux-gnu to 32)
- #114510 (llvm-wrapper: adapt for LLVM API changes)
- #114562 (stabilize abi_thiscall)
- #114570 ([miri][typo] Fix a typo in a vector_block comment.)
- #114573 (CI: do not hide error logs in a group)
r? `@ghost`
`@rustbot` modify labels: rollup
Bubble up nested goals from equation in `predicates_for_object_candidate`
This used to be needed for https://github.com/rust-lang/rust/pull/114036#discussion_r1273987510, but since it's no longer, I'm opening this as a separate PR. This also fixes one ICEing UI test: (`tests/ui/unboxed-closures/issue-53448.rs`)
r? `@lcnr`
Make `unconditional_recursion` warning detect recursive drops
Closes#55388
Also closes#50049 unless we want to keep it for the second example which this PR does not solve, but I think it is better to track that work in #57965.
r? `@oli-obk` since you are the mentor for #55388
Unresolved questions:
- [x] There are two false positives that must be fixed before merging (see diff). I suspect the best way to solve them is to perform analysis after drop elaboration instead of before, as now, but I have not explored that any further yet. Could that be an option? **Answer:** Yes, that solved the problem.
`@rustbot` label +T-compiler +C-enhancement +A-lint
Add a new `compare_bytes` intrinsic instead of calling `memcmp` directly
As discussed in #113435, this lets the backends be the place that can have the "don't call the function if n == 0" logic, if it's needed for the target. (I didn't actually *add* those checks, though, since as I understood it we didn't actually need them on known targets?)
Doing this also let me make it `const` (unstable), which I don't think `extern "C" fn memcmp` can be.
cc `@RalfJung` `@Amanieu`
Remove FIXME about NLL diagnostic that is already improved
The FIXME was added in #46984 when the diagnostic message looked like this:
// FIXME(#46983): error message should be better
&s.0 //~ ERROR free region `` does not outlive free region `'static`
The message was improved in #90667 and now looks like this:
&s.0 //~ ERROR lifetime may not live long enough
but the FIXME was not removed. The issue #46983 about that diagnostics should be improved has been closed. We can remove the FIXME now.
(This PR was made for #44366.)
The FIXME was added in 46984 when the diagnostic message looked like
this:
// FIXME(#46983): error message should be better
&s.0 //~ ERROR free region `` does not outlive free region `'static`
The message was improved in 90667 and now looks like this:
&s.0 //~ ERROR lifetime may not live long enough
but the FIXME was not removed. The issue 46983 about that diagnostics
should be improved has been closed. We can remove the FIXME now.
Avoid invalid NaN lint machine-applicable suggestion in const context
This PR removes the machine-applicable suggestion in const context for the `invalid_nan_comparision` lint ~~and replace it with a simple help~~.
Fixes https://github.com/rust-lang/rust/issues/114471
Rename tests/ui/issues/issue-100605.rs to ../type/option-ref-advice.rs
The test is a regression test for a [bug ](https://github.com/rust-lang/rust/issues/100605) where the compiler gave bad advice for an `Option<&String>`. Rename the file appropriately.
Part of #73494
Resolve visibility paths as modules not as types.
Asking for a resolution with `opt_ns = Some(TypeNS)` allows path resolution to look for type-relative paths, leaving unresolved segments behind. However, for visibility paths we really need to look for a module, so we need to pass `opt_ns = None`.
Fixes https://github.com/rust-lang/rust/issues/109146
r? `@petrochenkov`
Convert builtin "global" late lints to run per module
The compiler currently has 4 non-incremental lints:
1. `clashing_extern_declarations`;
2. `missing_debug_implementations`;
3. ~`unnameable_test_items`;~ changed by https://github.com/rust-lang/rust/pull/114414
4. `missing_docs`.
Non-incremental lints get reexecuted for each compilation, which is slow. Moreover, those lints are allow-by-default, so run for nothing most of the time. This PR attempts to make them more incremental-friendly.
`clashing_extern_declarations` is moved to a standalone query.
`missing_debug_implementation` can use `non_blanket_impls_for_ty` instead of recomputing it.
`missing_docs` is harder as it needs to track if there is a `doc(hidden)` module surrounding. I hack around this using the lint level engine. That's easy to implement and allows to re-enable the lint for a re-exported module, while a more proper solution would reuse the same device as `unnameable_test_items`.
update overflow handling in the new trait solver
implements https://hackmd.io/QY0dfEOgSNWwU4oiGnVRLw?view. I want to clean up this doc and add it to the rustc-dev-guide, but I think this PR is ready for merge as is, even without the dev-guide entry.
r? `@compiler-errors`
Add separate feature gate for async fn track caller
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Improve spans for indexing expressions
fixes#114388
Indexing is similar to method calls in having an arbitrary left-hand-side and then something on the right, which is the main part of the expression. Method calls already have a span for that right part, but indexing does not. This means that long method chains that use indexing have really bad spans, especially when the indexing panics and that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an extra span which is then put into the `fn_span` field in THIR.
r? compiler-errors
```
error[E0599]: no method named `x` found for struct `Pin<&S>` in the current scope
--> $DIR/arbitrary_self_type_mut_difference.rs:11:18
|
LL | Pin::new(&S).x();
| ^ help: there is a method with a similar name: `y`
|
note: method is available for `Pin<&mut S>`
--> $DIR/arbitrary_self_type_mut_difference.rs:6:5
|
LL | fn x(self: Pin<&mut Self>) {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Related to #57994, as one of the presented cases can lead to code like
this.
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
Rework upcasting confirmation to support upcasting to fewer projections in target bounds
This PR implements a modified trait upcasting algorithm that is resilient to changes in the number of associated types in the bounds of the source and target trait objects.
It does this by equating each bound of the target trait ref individually against the bounds of the source trait ref, rather than doing them all together by constructing a new trait object.
#### The new way we do trait upcasting confirmation
1. Equate the target trait object's principal trait ref with one of the supertraits of the source trait object's principal.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2509-L2525)
2. Make sure that every auto trait in the *target* trait object is present in the source trait ref's bounds.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2559-L2562)
3. For each projection in the *target* trait object, make sure there is exactly one projection that equates with it in the source trait ref's bound. If there is more than one, bail with ambiguity.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2526-L2557)
* Since there may be more than one that applies, we probe first to check that there is exactly one, then we equate it outside of a probe once we know that it's unique.
4. Make sure the lifetime of the source trait object outlives the lifetime of the target.
<details>
<summary>Meanwhile, this is how we used to do upcasting:</summary>
1. For each supertrait of the source trait object, take that supertrait, append the source object's projection bounds, and the *target* trait object's auto trait bounds, and make this into a new object type:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L915-L929)
2. Then equate it with the target trait object:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L936)
This will be a type mismatch if the target trait object has fewer projection bounds, since we compare the bounds structurally in relate:
d12c6e947c/compiler/rustc_middle/src/ty/relate.rs (L696-L698)
</details>
Fixes#114035
Also fixes#114113, because I added a normalize call in the old solver.
r? types
Perform OpaqueCast field projection on HIR, too.
fixes#105819
This is necessary for closure captures in 2021 edition, as they capture individual fields, not the full mentioned variables. So it may try to capture a field of an opaque (because the hidden type is known to be something with a field).
See https://github.com/rust-lang/rust/pull/99806 for when and why we added OpaqueCast to MIR.
Forbid old-style `simd_shuffleN` intrinsics
Don't merge before https://github.com/rust-lang/packed_simd/pull/350 has made its way to crates.io
We used to support specifying the lane length of simd_shuffle ops by attaching the lane length to the name of the intrinsic (like `simd_shuffle16`). After this PR, you cannot do that anymore, and need to instead either rely on inference of the `idx` argument type or specify it as `simd_shuffle::<_, [u32; 16], _>`.
r? `@workingjubilee`
Add `internal_features` lint
Implements https://github.com/rust-lang/compiler-team/issues/596
Also requires some more test blessing for codegen tests etc
`@jyn514` had the idea of just `allow`ing the lint by default in the test suite. I'm not sure whether this is a good idea, but it's definitely one worth considering. Additional input encouraged.
const validation: point at where we found a pointer but expected an integer
Instead of validation just printing "unable to turn pointer into bytes", make this a regular validation error that says where in the value the bad pointer was found. Also distinguish "expected integer, got pointer" from "expected pointer, got partial pointer or mix of pointers".
To avoid duplicating things too much I refactored the diagnostics for validity a bit, so that "got uninit, expected X" and "got pointer, expected X" can share the "X" part. Also all the errors emitted for validation are now grouped under `const_eval_validation` so that they are in a single group in the ftl file.
r? `@oli-obk`
parser: more friendly hints for handling `async move` in the 2015 edition
Fixes#114219
An error is emitted when encountering an async move block in the 2015 edition.
Another appropriate location to raise an error is after executing [let path = this.parse_path(PathStyle::Expr)?](https://github.com/rust-lang/rust/blob/master/compiler/rustc_parse/src/parser/stmt.rs#L152), but it seems somewhat premature to invoke `create_err` at that stage.
Expand, rename and improve `incorrect_fn_null_checks` lint
This PR,
- firstly, expand the lint by now linting on references
- secondly, it renames the lint `incorrect_fn_null_checks` -> `useless_ptr_null_checks`
- and thirdly it improves the lint by catching `ptr::from_mut`, `ptr::from_ref`, as well as `<*mut _>::cast` and `<*const _>::cast_mut`
Fixes https://github.com/rust-lang/rust/issues/113601
cc ```@est31```
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
Infer type in irrefutable slice patterns with fixed length as array
Fixes https://github.com/rust-lang/rust/issues/76342
In irrefutable slice patterns with a fixed length, we can infer the type as an array type. We now choose to prefer some implementations over others, e.g. in:
```
struct Zeroes;
const ARR: [usize; 2] = [0; 2];
const ARR2: [usize; 2] = [2; 2];
impl Into<&'static [usize; 2]> for Zeroes {
fn into(self) -> &'static [usize; 2] {
&ARR
}
}
impl Into<&'static [usize]> for Zeroes {
fn into(self) -> &'static [usize] {
&ARR2
}
}
fn main() {
let &[a, b] = Zeroes.into();
}
```
We now prefer the impl candidate `impl Into<&'static [usize; 2]> for Zeroes`, it's not entirely clear to me that this is correct, but given that the slice impl would require a type annotation anyway, this doesn't seem unreasonable.
r? `@lcnr`
Fix suggestion spans for expr from macro expansions
### Issue #112007: rustc shows expanded `writeln!` macro in code suggestion
#### Before This PR
```
help: consider using a semicolon here
|
6 | };
| +
help: you might have meant to return this value
--> C:\Users\hayle\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib/rustlib/src/rust\library\core\src\macros\mod.rs:557:9
|
55| return $dst.write_fmt($crate::format_args_nl!($($arg)*));
| ++++++ +
```
#### After This PR
```
help: consider using a semicolon here
|
LL | };
| +
help: you might have meant to return this value
|
LL | return writeln!(w, "but not here");
| ++++++ +
```
### Issue #110017: `format!` `.into()` suggestion deletes the `format` macro
#### Before This PR
```
help: call `Into::into` on this expression to convert `String` into `Box<dyn std::error::Error>`
--> /Users/eric/.rustup/toolchains/nightly-aarch64-apple-darwin/lib/rustlib/src/rust/library/alloc/src/macros.rs:121:12
|
12| res.into()
| +++++++
```
#### After This PR
```
help: call `Into::into` on this expression to convert `String` into `Box<dyn std::error::Error>`
|
LL | Err(format!("error: {x}").into())
| +++++++
```
---
Fixes#112007.
Fixes#110017.
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Rollup of 5 pull requests
Successful merges:
- #114079 (Use `upvar_tys` in more places, make it return a list)
- #114166 (Add regression test for resolving `--extern libc=test.rlib`)
- #114321 (get auto traits for parallel rustc)
- #114335 (fix and extend ptr_comparison test)
- #114347 (x.py print more detailed format files and untracked files count)
r? `@ghost`
`@rustbot` modify labels: rollup
Improve `invalid_reference_casting` lint
This PR is a follow-up to https://github.com/rust-lang/rust/pull/111567 and https://github.com/rust-lang/rust/pull/113422.
This PR does multiple things:
- First it adds support for deferred de-reference, the goal is to support code like this, where the casting and de-reference are not done on the same expression
```rust
let myself = self as *const Self as *mut Self;
*myself = Self::Ready(value);
```
- Second it does not lint anymore on SB/TB UB code by only checking assignments (`=`, `+=`, ...) and creation of mutable references `&mut *`
- Thirdly it greatly improves the diagnostics in particular for cast from `&mut` to `&mut` or assignments
- ~~And lastly it renames the lint from `cast_ref_to_mut` to `invalid_reference_casting` which is more consistent with the ["rules"](https://github.com/rust-lang/rust-clippy/issues/2845) and also more consistent with what the lint checks~~ *https://github.com/rust-lang/rust/pull/113422*
This PR is best reviewed commit by commit.
r? compiler
Miri: fix error on dangling pointer inbounds offset
We used to claim that the pointer was "dereferenced", but that is just not true.
Can be reviewed commit-by-commit. The first commit is an unrelated rename that didn't seem worth splitting into its own PR.
r? `@oli-obk`
Fix invalid slice coercion suggestion reported in turbofish
This PR fixes the invalid slice coercion suggestion reported in turbofish and inferred generics by not emitting them.
Fixes https://github.com/rust-lang/rust/issues/110063
Don't check unnecessarily that impl trait is RPIT
We have this random `return_type_impl_trait` function to detect if a function returns an RPIT which is used in outlives suggestions, but removing it doesn't actually change any diagnostics. Let's just remove it.
Also, suppress a spurious outlives error from a ReError.
Fixes#114274
Account for macros when suggesting a new let binding
Provide a structured suggestion when the expression comes from a macro expansion:
```
error[E0716]: temporary value dropped while borrowed
--> $DIR/borrowck-let-suggestion.rs:2:17
|
LL | let mut x = vec![1].iter();
| ^^^^^^^ - temporary value is freed at the end of this statement
| |
| creates a temporary value which is freed while still in use
LL |
LL | x.use_mut();
| - borrow later used here
|
= note: this error originates in the macro `vec` (in Nightly builds, run with -Z macro-backtrace for more info)
help: consider using a `let` binding to create a longer lived value
|
LL ~ let binding = vec![1];
LL ~ let mut x = binding.iter();
|
```
cleanup: remove pointee types
This can't be merged until the oldest LLVM version we support uses opaque pointers, which will be the case after #114148. (Also note `-Cllvm-args="-opaque-pointers=0"` can technically be used in LLVM 15, though I don't think we should support that configuration.)
I initially hoped this would provide some minor perf win, but in https://github.com/rust-lang/rust/pull/105412#issuecomment-1341224450 it had very little impact, so this is only valuable as a cleanup.
As a followup, this will enable #96242 to be resolved.
r? `@ghost`
`@rustbot` label S-blocked
Improve diagnostic for wrong borrow on binary operations
This PR improves the diagnostic for wrong borrow on binary operations by suggesting to reborrow on appropriate expressions.
```diff
+ = note: an implementation for `&Foo * &Foo` exist
+ help: consider reborrowing both sides
+ |
+ LL | let _ = &*ref_mut_foo * &*ref_mut_foo;
+ | ++ ++
```
Fixes https://github.com/rust-lang/rust/issues/109352
Change default panic handler message format.
This changes the default panic hook's message format from:
```
thread '{thread}' panicked at '{message}', {location}
```
to
```
thread '{thread}' panicked at {location}:
{message}
```
This puts the message on its own line without surrounding quotes, making it easiser to read. For example:
Before:
```
thread 'main' panicked at 'env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`', src/main.rs:4:6
```
After:
```
thread 'main' panicked at src/main.rs:4:6:
env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`
```
---
See this PR by `@nyurik,` which does that for only multi-line messages (specifically because of `assert_eq`): https://github.com/rust-lang/rust/pull/111071
This is the change that does that for *all* panic messages.
Detect trait upcasting through struct tail unsizing in new solver select
Oops, we were able to hide trait upcasting behind a parent unsize goal that evaluated to `Certainty::Yes`. Let's do rematching for `Certainty::Yes` unsize goals with `BuiltinImplSource::Misc` sources (corresponding to all of the other unsize rules) to make sure we end up selecting any nested goals which may be satisfied via `BuiltinImplSource::TraitUpcasting` or `::TupleUnsizing`.
r? ``@lcnr``
Update lexer emoji diagnostics to Unicode 15.0
This replaces the `unic-emoji-char` dep tree (which hasn't been updated for a while) with `unicode-properties` crate which contains Unicode 15.0 data.
Improves diagnostics for added emoji characters in recent years. (See tests).
cc #101840
cc ``@Manishearth``
Map RPITIT's opaque type bounds back from projections to opaques
An RPITIT in a program's AST is eventually translated into both a projection GAT and an opaque. The opaque is used for default trait methods, like:
```
trait Foo {
fn bar() -> impl Sized { 0i32 }
}
```
The item bounds for both the projection and opaque are identical, and both have a *projection* self ty. This is mostly okay, since we can normalize this projection within the default trait method body to the opaque, but it does two things:
1. it leads to bugs in places where we don't normalize item bounds, like `deduce_future_output_from_obligations`
2. it leads to extra match arms that are both suspicious looking and also easy to miss
This PR maps the opaque type bounds of the RPITIT's *opaque* back to the opaque's self type to avoid this quirk. Then we can fix the UI test for #108304 (1.) and also remove a bunch of match arms (2.).
Fixes#108304
r? `@spastorino`
Check lazy type aliases for well-formedness
Previously we didn't check if `T: Mul` holds given lazy `type Alias<T> = <T as Mul>::Output;`.
Now we do. It only makes sense.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Only golden arches
A number of tests in the test suite have applied the somewhat comedic practice of ignoring *every* single target architecture that rustc has ever supported. This is silly, when they are clearly tests built around certain assumptions, primarily of the x86-64 architecture, or in one case when they are only relevant for a handful of 32-bit targets. This has even resulted, in one case, in the same architecture being ignored twice!
Document these better, and use a "revision + only-arch" idiom in the test headers to denote the "golden arches" that actually pass these tests.
Don't install default projection bound for return-position `impl Trait` in trait methods with no body
This ensures that we never try to project to an opaque type in a trait method that has no body to infer its hidden type, which means we never later call `type_of` on that opaque. This is because opaque types try to reveal their hidden type when proving auto traits.
I thought about this a lot, and I think this is a fix that's less likely to introduce other strange downstream ICEs than #113461.
Fixes#113434
r? `@spastorino`
Fix invalid suggestion for mismatched types in closure arguments
This PR fixes the invalid suggestion for mismatched types in closure arguments.
The invalid suggestion came from a wrongly created span in the parser for closure arguments that don't have a type specified. Specifically, the span in this case was the last token span, but in the case of tuples, the span represented the last parenthesis instead of the whole tuple, which is fixed by taking the more accurate span of the pattern.
There is one unfortunate downside of this fix, it worsens even more the diagnostic for mismatched types in closure args without an explicit type. This happens because there is no correct span for implied inferred type. I tried also fixing this but it's a rabbit hole.
Fixes https://github.com/rust-lang/rust/issues/114180
`const`-stablilize `NonNull::as_ref`
A bunch of pointer to reference methods have been made unstably const some time ago in #91823 under the feature gate `const_ptr_as_ref`.
Out of these, `NonNull::as_ref` can be implemented as a `const fn` in stable rust today, so i hereby propose to const stabilize this function only.
Tracking issue: #91822
``@rustbot`` label +T-libs-api -T-libs
The invalid suggestion came from a wrongly created span in `rustc_parse'
for closure arguments that didn't have a type specified. Specifically,
the span in this case was the last token span, but in the case of
tuples, the span represented the last parenthesis instead of the whole
tuple, which is fixed by taking the more accurate span of the pattern.
Combining revisions with only-arch allows specifying
that a test only applies to a handful of targets.
This allows removing a large amount of repetition
in the test suite for tests that do not benefit.
The revisions are suboptimal for this for some tests,
so they aren't preferred in those cases.
Gracefully handle ternary operator
Fixes#112578
~~May not be the best way to do this as it doesn't check for a single `:`, so it could perhaps appear even when the actual issue is just a missing semicolon. May not be the biggest deal, though?~~
Nevermind, got it working properly now ^^
Update the minimum external LLVM to 15
With this change, we'll have stable support for LLVM 15 through 17 (pending release).
For reference, the previous increase to LLVM 14 was #107573.
Refactor + improve diagnostics for `&mut T`/`T` mismatch inside Option/Result
Follow up to #114052. This also makes the diagnostics structured + translatable.
r? `@WaffleLapkin`
Rename and allow `cast_ref_to_mut` lint
This PR is a small subset of https://github.com/rust-lang/rust/pull/112431, that is the renaming of the lint (`cast_ref_to_mut` -> `invalid_reference_casting`).
BUT also temporarily change the default level of the lint from deny-by-default to allow-by-default until https://github.com/rust-lang/rust/pull/112431 is merged.
r? `@Nilstrieb`
I could not find a test for this particular use case. The closest I got
was `tests/ui/imports/issue-37887.rs`, but that is a regression test
for a different use case.
fix(resolve): update the ambiguity glob binding as warning recursively
Fixes#47525Fixes#56593, but `issue-56593-2.rs` is not fixed to ensure backward compatibility.
Fixes#98467Fixes#105235Fixes#112713
This PR had added a field called `warn_ambiguous` in `NameBinding` which is only for back compatibly reason and used for lint.
More details: https://github.com/rust-lang/rust/pull/112743
r? `@petrochenkov`
Rollup of 7 pull requests
Successful merges:
- #113773 (Don't attempt to compute layout of type referencing error)
- #114107 (Prevent people from assigning me as a PR reviewer)
- #114124 (tests/ui/proc-macro/*: Migrate FIXMEs to check-pass)
- #114171 (Fix switch-stdout test for none unix/windows platforms)
- #114172 (Fix issue_15149 test for the SGX target)
- #114173 (btree/map.rs: remove "Basic usage" text)
- #114174 (doc: replace wrong punctuation mark)
r? `@ghost`
`@rustbot` modify labels: rollup
tests/ui/proc-macro/*: Migrate FIXMEs to check-pass
proc-macros are processed early in the compiler pipeline. There is no need to involve codegen. So change to check-pass.
I have also looked through each changed test and to me it is sufficiently clear that codegen is not needed for the purpose of the test.
I skipped changing `tests/ui/proc-macro/no-missing-docs.rs` in this commit because it was not clear to me that it can be changed to check-pass.
Part of #62277
Rollup of 7 pull requests
Successful merges:
- #114099 (privacy: no nominal visibility for assoc fns )
- #114128 (When flushing delayed span bugs, write to the ICE dump file even if it doesn't exist)
- #114138 (Adjust spans correctly for fn -> method suggestion)
- #114146 (Skip reporting item name when checking RPITIT GAT's associated type bounds hold)
- #114147 (Insert RPITITs that were shadowed by missing ADTs that resolve to [type error])
- #114155 (Replace a lazy `RefCell<Option<T>>` with `OnceCell<T>`)
- #114164 (Add regression test for `--cap-lints allow` and trait bounds warning)
r? `@ghost`
`@rustbot` modify labels: rollup
Add regression test for `--cap-lints allow` and trait bounds warning
Closes#43134
I have verified that the test fails if stderr begins to contain output by making sure the test fails when I add
eprintln!("some output on stderr");
to the compiler (I added it to `fn build_session()`).
Skip reporting item name when checking RPITIT GAT's associated type bounds hold
Doesn't really make sense to label an item that has a name that users can't really mention. Fixes#114145. Also fixes#113794.
r? `@spastorino`
privacy: no nominal visibility for assoc fns
Fixes#113860.
When `staged_api` is enabled, effective visibilities are computed earlier and this can trigger an ICE in some cases.
In particular, if a impl of a trait method has a visibility then an error will be reported for that, but when privacy invariants are being checked, the effective visibility will still be greater than the nominal visbility and that will trigger a `span_bug!`.
However, this invariant - that effective visibilites are limited to nominal visibility - doesn't make sense for associated functions.
Diagnostic namespace
This PR implements the basic infrastructure for accepting the `#[diagnostic]` attribute tool namespace as specified in https://github.com/rust-lang/rfcs/pull/3368. Note: This RFC is not merged yet, but it seems like it will be accepted soon. I open this PR early on to get feedback on the actual implementation as soon as possible. This hopefully enables getting at least the diagnostic namespace to stable rust "soon", so that crates do not need to bump their MSRV if we stabilize actual attributes in this namespace.
This PR only adds infrastructure accept attributes from this namespace, it does not add any specific attribute. Therefore the compiler will emit a lint warning for each attribute that's actually used. This namespace is added behind a feature flag, so it will be only available on a nightly compiler for now.
cc `@estebank` as they've supported me in planing, specifying and implementing this feature.
When `staged_api` is enabled, effective visibilities are computed earlier
and this can trigger an ICE in some cases.
In particular, if a impl of a trait method has a visibility then an error
will be reported for that, but when privacy invariants are being checked,
the effective visibility will still be greater than the nominal visbility
and that will trigger a `span_bug!`.
However, this invariant - that effective visibilites are limited to
nominal visibility - doesn't make sense for associated functions.
Signed-off-by: David Wood <david@davidtw.co>
I have verified that the test fails if stderr begins to contain output
by making sure the test fails when I add
eprintln!("some output on stderr");
to the compiler (I added it to `fn build_session()`).
Move two tests from `tests/ui/std` to `library/std/tests`
Hi, there,
This pull request comes from this issue (#99417), sorry I made some mistakes creating the pull request, it's my first one.
Regression test `println!()` panic message on `ErrorKind::BrokenPipe`
No existing test (that I could find) failed if the `panic!()` of the `println!()` family of functions was removed, or if its message was changed:
104f4300cf/library/std/src/io/stdio.rs (L1007-L1009)
So add such a test.
This is in preparation of adding a hint about the existence of [`unix_sigpipe`](https://github.com/rust-lang/rust/issues/97889) if that is the reason for the panic.
Even if we don't end up adding a hint, this is still a sensible test to have, I think.
`@rustbot` label +A-testsuite +A-io +T-libs +O-unix
tests/ui/hello_world/main.rs: Remove FIXME (#62277)
The purpose of the test is to make sure that compiling hello world produces no compiler output. To properly test that, we need to run the entire compiler pipeline. We don't want the test to pass if codegen accidentally starts writing to stdout. So keep it as build-pass.
Part of #62277
Turns out opaque types can have hidden types registered during mir validation
See the newly added test's documentation for an explanation.
fixes#114121
proc-macros are processed early in the compiler pipeline. There is no
need to involve codegen. So change to check-pass.
I have also looked through each changed test and to me it is
sufficiently clear that codegen is not needed for the purpose of the
test.
I skipped changing tests/ui/proc-macro/no-missing-docs.rs in this commit
because it was not clear to me that it can be changed to check-pass.
The purpose of the test is to make sure that compiling hello world
produces no compiler output. To properly test that, we need to run the
entire compiler pipeline. We don't want the test to pass if codegen
accidentally starts writing to stdout. So keep it as build-pass.
Replace in-tree `rustc_apfloat` with the new version of the crate
Replace the in-tree version of `rustc_apfloat` with the new version of the crate which has been correctly licensed. The new crate incorporates upstream changes from LLVM since the original port was done including many correctness fixes and has been extensively fuzz tested to validate correctness.
Fixes#100233Fixes#102403Fixes#113407Fixes#113409Fixes#55993Fixes#93224Closes#93225Closes#109573
lint/ctypes: fix `()` return type checks
Fixes#113436.
`()` is normally FFI-unsafe, but is FFI-safe when used as a return type. It is also desirable that a transparent newtype for `()` is FFI-safe when used as a return type.
In order to support this, when a type was deemed FFI-unsafe, because of a `()` type, and was used in return type - then the type was considered FFI-safe. However, this was the wrong approach - it didn't check that the `()` was part of a transparent newtype! The consequence of this is that the presence of a `()` type in a more complex return type would make it the entire type be considered safe (as long as the `()` type was the first that the lint found) - which is obviously incorrect.
Instead, this logic is removed, and after [consultation with t-lang](https://github.com/rust-lang/rust/issues/113436#issuecomment-1640756721), I've fixed the bugs and inconsistencies and made `()` FFI-safe within types.
I also refactor a function, but that's not too exciting.
new unstable option: -Zwrite-long-types-to-disk
This option guards the logic of writing long type names in files and instead using short forms in error messages in rustc_middle/ty/error behind a flag. The main motivation for this change is to disable this behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their file is.
Some ui tests actually rely on this behaviour for their assertions, so for those we enable the flag manually.
Double check that hidden types match the expected hidden type
Fixes https://github.com/rust-lang/rust/issues/113278 specifically, but I left a TODO for where we should also add some hardening.
It feels a bit like papering over the issue, but at least this way we don't get unsoundness, but just surprising errors. Errors will be improved and given spans before this PR lands.
r? `@compiler-errors` `@lcnr`
Don't say that a type is uncallable if its fn signature has errors in it
This is fallout from #106309, where we don't consider param-env candidates that reference errors because they unify with everything. This means, however, that we don't consider an APIT like `impl Fn(MissingType)` isn't considered to implement `Fn`, for example.
We can double-check that with a weaker heuristic [`extract_callable_info`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_typeck/fn_ctxt/struct.FnCtxt.html#method.extract_callable_info), and suppress the knock-down error using that.
Fixes#113566
Rollup of 7 pull requests
Successful merges:
- #114008 (coverage: Obtain the `__llvm_covfun` section name outside a per-function loop)
- #114014 (builtin_macros: expect raw strings too)
- #114043 (docs(LazyLock): add example pass local LazyLock variable to struct)
- #114051 (Add regression test for invalid "unused const" in method)
- #114052 (Suggest `{Option,Result}::as_ref()` instead of `cloned()` in some cases)
- #114058 (Add help for crate arg when crate name is invalid)
- #114060 (abi: unsized field in union - assert to delay bug )
r? `@ghost`
`@rustbot` modify labels: rollup
abi: unsized field in union - assert to delay bug
Fixes#113279.
> Unions cannot have unsized fields, and as such, layout computation for
unions asserts that each union field is sized (as this would normally
have halted compilation earlier).
>
> However, if a generator ends up with an unsized local - a circumstance
in which an error will always have been emitted earlier, for example, if
attempting to dereference a `&str` - then the generator transform will
produce a union with an unsized field.
>
> Since https://github.com/rust-lang/rust/pull/110107, later passes will be run, such as constant propagation,
and can attempt layout computation on the generator, which will result
in layout computation of `str` in the context of it being a field of a
union - and so the aforementioned assertion would cause an ICE.
>
> It didn't seem appropriate to try and detect this case in the MIR body
and skip this specific pass; tainting the MIR body or delaying a bug
from the generator transform (or elsewhere) wouldn't prevent this either
(as neither would prevent the later pass from running); and tainting when
the deref of `&str` is reported, if that's possible, would unnecessarily
prevent potential other errors from being reported later in compilation,
and is very tailored to this specific case of getting a unsized type in
a generator.
>
> Given that this circumstance can only happen when an error should have
already been reported, the correct fix appears to be just changing the
assert to a delayed bug. This will still assert if there is some
circumstance where this occurs and no error has been reported, but it
won't crash the compiler in this instance.
While debugging this, I noticed a translation ICE in a delayed bug, so I fixed that too:
> During borrowck, the `MultiSpan` from a buffered diagnostic is cloned and
used to emit a delayed bug indicating a diagnostic was buffered - when
the buffered diagnostic is translated, then the cloned `MultiSpan` may
contain labels which can only render with the diagnostic's arguments, but
the delayed bug being emitted won't have those arguments. Adds a function
which clones `MultiSpan` without also cloning the contained labels, and
use this function when creating the buffered diagnostic delayed bug.
Suggest `{Option,Result}::as_ref()` instead of `cloned()` in some cases
Fixes#114050
When we have an expr available that produces the type expectation, we can suggest appending `.as_ref()` to the span, instead of cloning the expr producing the mismatch
Add regression test for invalid "unused const" in method
The warning can be reproduced with 1.63 but not with 1.64.
$ rustc +1.63 tests/ui/lint/unused/const-local-var.rs
warning: constant `F` is never used
--> tests/ui/lint/unused/const-local-var.rs:14:9
|
14 | const F: i32 = 2;
| ^^^^^^^^^^^^^^^^^
|
= note: `#[warn(dead_code)]` on by default
$ rustc +1.64 tests/ui/lint/unused/const-local-var.rs
Add a regression test to prevent the problem from re-appearing.
Closes#69016
Normalize the RHS of an `Unsize` goal in the new solver
`Unsize` goals are... tricky. Not only do they structurally match on their self type, but they're also structural on their other type parameter. I'm pretty certain that it is both incomplete and also just plain undesirable to not consider normalizing the RHS of an unsize goal. More practically, I'd like for this code to work:
```rust
trait A {}
trait B: A {}
impl A for usize {}
impl B for usize {}
trait Mirror {
type Assoc: ?Sized;
}
impl<T: ?Sized> Mirror for T {
type Assoc = T;
}
fn main() {
// usize: Unsize<dyn B>
let x = Box::new(1usize) as Box<<dyn B as Mirror>::Assoc>;
// dyn A: Unsize<dyn B>
let y = x as Box<<dyn A as Mirror>::Assoc>;
}
```
---
In order to achieve this, we add `EvalCtxt::normalize_non_self_ty` (naming modulo bikeshedding), which *must* be used for all non-self type arguments that are structurally matched in candidate assembly. Currently this is only necessary for `Unsize`'s argument, but I could see future traits requiring this (hopefully rarely) in the future. It uses `repeat_while_none` to limit infinite looping, and normalizes the self type until it is no longer an alias.
Also, we need to fix feature gate detection for `trait_upcasting` and `unsized_tuple_coercion` when HIR typeck has unnormalized types. We can do that by checking the `ImplSource` returned by selection, which necessitates adding a new impl source for tuple upcasting.
Unions cannot have unsized fields, and as such, layout computation for
unions asserts that each union field is sized (as this would normally
have halted compilation earlier).
However, if a generator ends up with an unsized local - a circumstance
in which an error will always have been emitted earlier, for example, if
attempting to dereference a `&str` - then the generator transform will
produce a union with an unsized field.
Since #110107, later passes will be run, such as constant propagation,
and can attempt layout computation on the generator, which will result
in layout computation of `str` in the context of it being a field of a
union - and so the aforementioned assertion would cause an ICE.
It didn't seem appropriate to try and detect this case in the MIR body
and skip this specific pass; tainting the MIR body or delaying a bug
from the generator transform (or elsewhere) wouldn't prevent this either
(as neither would prevent the later pass from running); and tainting when
the deref of `&str` is reported, if that's possible, would unnecessarily
prevent potential other errors from being reported later in compilation,
and is very tailored to this specific case of getting a unsized type in
a generator.
Given that this circumstance can only happen when an error should have
already been reported, the correct fix appears to be just changing the
assert to a delayed bug. This will still assert if there is some
circumstance where this occurs and no error has been reported, but it
won't crash the compiler in this instance.
Signed-off-by: David Wood <david@davidtw.co>
interpret: Unify projections for MPlaceTy, PlaceTy, OpTy
For ~forever, we didn't really have proper shared code for handling projections into those three types. This is mostly because `PlaceTy` projections require `&mut self`: they might have to `force_allocate` to be able to represent a project part-way into a local.
This PR finally fixes that, by enhancing `Place::Local` with an `offset` so that such an optimized place can point into a part of a place without having requiring an in-memory representation. If we later write to that place, we will still do `force_allocate` -- for now we don't have an optimized path in `write_immediate` that would avoid allocation for partial overwrites of immediately stored locals. But in `write_immediate` we have `&mut self` so at least this no longer pollutes all our type signatures.
(Ironically, I seem to distantly remember that many years ago, `Place::Local` *did* have an `offset`, and I removed it to simplify things. I guess I didn't realize why it was so useful... I am also not sure if this was actually used to achieve place projection on `&self` back then.)
The `offset` had type `Option<Size>`, where `None` represent "no projection was applied". This is needed because locals *can* be unsized (when they are arguments) but `Place::Local` cannot store metadata: if the offset is `None`, this refers to the entire local, so we can use the metadata of the local itself (which must be indirect); if a projection gets applied, since the local is indirect, it will turn into a `Place::Ptr`. (Note that even for indirect locals we can have `Place::Local`: when the local appears in MIR, we always start with `Place::Local`, and only check `frame.locals` later. We could eagerly normalize to `Place::Ptr` but I don't think that would actually simplify things much.)
Having done all that, we can finally properly abstract projections: we have a new `Projectable` trait that has the basic methods required for projecting, and then all projection methods are implemented for anything that implements that trait. We can even implement it for `ImmTy`! (Not that we need that, but it seems neat.) The visitor can be greatly simplified; it doesn't need its own trait any more but it can use the `Projectable` trait. We also don't need the separate `Mut` visitor any more; that was required only to reflect that projections on `PlaceTy` needed `&mut self`.
It is possible that there are some more `&mut self` that can now become `&self`... I guess we'll notice that over time.
r? `@oli-obk`
Reimplement C-str literals
This reverts #113334, cc `@fmease.`
While converting lexer tokens to ast Tokens in `rustc_parse`, we check the edition of the span of the token. If the edition < 2021, we split the token into two, one being the identifier and other being the str literal.
The warning can be reproduced with 1.63 but not with 1.64.
$ rustc +1.63 tests/ui/lint/unused/const-local-var.rs
warning: constant `F` is never used
--> tests/ui/lint/unused/const-local-var.rs:14:9
|
14 | const F: i32 = 2;
| ^^^^^^^^^^^^^^^^^
|
= note: `#[warn(dead_code)]` on by default
$ rustc +1.64 tests/ui/lint/unused/const-local-var.rs
Add a regression test to prevent the problem from re-appearing.
If a raw string was used in the `env!` invocation, then it should also
be shown in the diagnostic messages as a raw string.
Signed-off-by: David Wood <david@davidtw.co>
fix(resolve): skip panic when resolution is dummy
Fixes#113953
Skip the panic when the binding refers to a dummy node during the finalization.
r? `@petrochenkov`
fix intra-doc links on nested `use` and `extern crate` items
This PR fixes two rustdoc ICEs that happen if there are any intra-doc links on nested `use` or `extern crate` items, for example:
```rust
/// Re-export [`fmt`] and [`io`].
pub use std::{fmt, io}; // "nested" use = use with braces
/// Re-export [`std`].
pub extern crate std;
```
Nested use items were incorrectly considered private and therefore didn't have their intra-doc links resolved. I fixed this by always resolving intra-doc links for nested `use` items that are declared `pub`.
<details>
During AST->HIR lowering, nested `use` items are desugared like this:
```rust
pub use std::{}; // "list stem"
pub use std::fmt;
pub use std::io;
```
Each of these HIR nodes has it's own effective visibility and the list stem is always considered private.
To check the effective visibility of an AST node, the AST node is mapped to a HIR node with `Resolver::local_def_id`, which returns the (private) list stem for nested use items.
</details>
For `extern crate`, there was a hack in rustdoc that stored the `DefId` of the crate itself in the cleaned item, instead of the `DefId` of the `extern crate` item. This made rustdoc look at the resolved links of the extern crate's crate root instead of the `extern crate` item. I've removed this hack and instead translate the `DefId` in the appropriate places.
As as side effect of fixing `extern crate`, i've turned
```rust
#[doc(masked)]
extern crate self as _;
```
into a no-op instead of hiding all trait impls. Proper verification for `doc(masked)` is included as a bonus.
fixes https://github.com/rust-lang/rust/issues/113896
lint/ctypes: only try normalize
Fixes#113900.
Now that this lint runs on any external-ABI fn-ptr, normalization won't always succeed, so use `try_normalize_erasing_regions` instead.
This is necessary for closure captures in 2021 edition, as they capture individual fields, not the full mentioned variables. So it may try to capture a field of an opaque (because the hidden type is known to be something with a field).
This option guards the logic of writing long type names in files and
instead using short forms in error messages in rustc_middle/ty/error
behind a flag. The main motivation for this change is to disable this
behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a
long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their
file is.
Some ui tests actually rely on this behaviour for their assertions,
so for those we enable the flag manually.
Fix #[inline(always)] on closures with target feature 1.1
Fixes#108655. I think this is the most obvious solution that isn't overly complicated. The comment includes more justification, but I think this is likely better than demoting the `#[inline(always)]` to `#[inline]`, since existing code is unaffected.
Support interpolated block for `try` and `async`
I'm putting this up for T-lang discussion, to decide whether or not they feel like this should be supported. This was raised in #112952, which surprised me. There doesn't seem to be a *technical* reason why we don't support this.
### Precedent:
This is supported:
```rust
macro_rules! always {
($block:block) => {
if true $block
}
}
fn main() {
always!({});
}
```
### Counterpoint:
However, for context, this is *not* supported:
```rust
macro_rules! unsafe_block {
($block:block) => {
unsafe $block
}
}
fn main() {
unsafe_block!({});
}
```
If this support for `async` and `try` with interpolated blocks is *not* desirable, then I can convert them to instead the same diagnostic as `unsafe $block` and make this situation a lot less ambiguous.
----
I'll try to write up more before T-lang triage on Tuesday. I couldn't find anything other than #69760 for why something like `unsafe $block` is not supported, and even that PR doesn't have much information.
Fixes#112952
Tweak spans for self arg, fix borrow suggestion for signature mismatch
1. Adjust a suggestion message that was annoying me
2. Fix#112503 by recording the right spans for the `self` part of the `&self` 0th argument
3. Remove the suggestion for adjusting a trait signature on type mismatch, bc that's gonna probably break all the other impls of the trait even if it fixes its one usage 😅
Rollup of 4 pull requests
Successful merges:
- #113887 (new solver: add a separate cache for coherence)
- #113910 (Add FnPtr ty to SMIR)
- #113913 (error/E0691: include alignment in error message)
- #113914 (rustc_target: drop duplicate code)
r? `@ghost`
`@rustbot` modify labels: rollup
error/E0691: include alignment in error message
Include the computed alignment of the violating field when rejecting transparent types with non-trivially aligned ZSTs.
ZST member fields in transparent types must have an alignment of 1 (to ensure it does not raise the layout requirements of the transparent field). The current error message looks like this:
```text
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment larger than 1
```
This patch changes the report to include the alignment of the violating field:
```text
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment of 4, which is larger than 1
```
In case of unknown alignments, it will yield:
```text
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ may have alignment larger than 1
```
This allows developers to get a better grasp why a specific field is rejected. Knowing the alignment of the violating field makes it easier to judge where that alignment-requirement originates, and thus hopefully provide better hints on how to mitigate the problem.
This idea was proposed in 2022 in #98071 as part of a bigger change. This commit simply extracts this error-message change, to decouple it from the other diagnostic improvements.
(Originally proposed by `@compiler-errors` in #98071)
Prototype: Add unstable `-Z reference-niches` option
MCP: rust-lang/compiler-team#641
Relevant RFC: rust-lang/rfcs#3204
This prototype adds a new `-Z reference-niches` option, controlling the range of valid bit-patterns for reference types (`&T` and `&mut T`), thereby enabling new enum niching opportunities. Like `-Z randomize-layout`, this setting is crate-local; as such, references to built-in types (primitives, tuples, ...) are not affected.
The possible settings are (here, `MAX` denotes the all-1 bit-pattern):
| `-Z reference-niches=` | Valid range |
|:---:|:---:|
| `null` (the default) | `1..=MAX` |
| `size` | `1..=(MAX- size)` |
| `align` | `align..=MAX.align_down_to(align)` |
| `size,align` | `align..=(MAX-size).align_down_to(align)` |
------
This is very WIP, and I'm not sure the approach I've taken here is the best one, but stage 1 tests pass locally; I believe this is in a good enough state to unleash this upon unsuspecting 3rd-party code, and see what breaks.
Now that this lint runs on any external-ABI fn-ptr, normalization won't
always succeed, so use `try_normalize_erasing_regions` instead.
Signed-off-by: David Wood <david@davidtw.co>
Still more complexity, but this allows computing exact `NaiveLayout`s
for null-optimized enums, and thus allows calls like
`transmute::<Option<&T>, &U>()` to work in generic contexts.
Include the computed alignment of the violating field when rejecting
transparent types with non-trivially aligned ZSTs.
ZST member fields in transparent types must have an alignment of 1 (to
ensure it does not raise the layout requirements of the transparent
field). The current error message looks like this:
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment larger than 1
This patch changes the report to include the alignment of the violating
field:
LL | struct Foobar(u32, [u32; 0]);
| ^^^^^^^^ has alignment of 4, which is larger than 1
In case of unknown alignments, it will yield:
LL | struct Foobar<T>(u32, [T; 0]);
| ^^^^^^ may have alignment larger than 1
This allows developers to get a better grasp why a specific field is
rejected. Knowing the alignment of the violating field makes it easier
to judge where that alignment-requirement originates, and thus hopefully
provide better hints on how to mitigate the problem.
This idea was proposed in 2022 in #98071 as part of a bigger change.
This commit simply extracts this error-message change, to decouple it
from the other diagnostic improvements.
Support `--print KIND=PATH` command line syntax
As is already done for `--emit KIND=PATH` and `-L KIND=PATH`.
In the discussion of #110785, it was pointed out that `--print KIND=PATH` is nicer than trying to apply the single global `-o` path to `--print`'s output, because in general there can be multiple print requests within a single rustc invocation, and anyway `-o` would already be used for a different meaning in the case of `link-args` and `native-static-libs`.
I am interested in using `--print cfg=PATH` in Buck2. Currently Buck2 works around the lack of support for `--print KIND=PATH` by [indirecting through a Python wrapper script](d43cf3a51a/prelude/rust/tools/get_rustc_cfg.py) to redirect rustc's stdout into the location dictated by the build system.
From skimming Cargo's usages of `--print`, it definitely seems like it would benefit from `--print KIND=PATH` too. Currently it is working around the lack of this by inserting `--crate-name=___ --print=crate-name` so that it can look for a line containing `___` as a delimiter between the 2 other `--print` informations it actually cares about. This is commented as a "HACK" and "abuse". 31eda6f7c3/src/cargo/core/compiler/build_context/target_info.rs (L242) (FYI `@weihanglo` as you dealt with this recently in https://github.com/rust-lang/cargo/pull/11633.)
Mentioning reviewers active in #110785: `@fee1-dead` `@jyn514` `@bjorn3`
THis significantly complicates `NaiveLayout` logic, but is necessary to
ensure that bounds like `NonNull<T>: PointerLike` hold in generic
contexts.
Also implement exact layout computation for structs.
Refactor vtable encoding and optimize it for the case of multiple marker traits
This PR does two things
- Refactor `prepare_vtable_segments` (this was motivated by the other change, `prepare_vtable_segments` was quite hard to understand and while trying to edit it I've refactored it)
- Mostly remove `loop`s labeled `break`s/`continue`s whenever there is a simpler solution
- Also use `?`
- Make vtable format a bit more efficient wrt to marker traits
- See the tests for an example
Fixes https://github.com/rust-lang/rust/issues/113840
cc `@crlf0710`
----
Review wise it's probably best to review each commit individually, as then it's more clear why the refactoring is correct.
I can split the last two commits (which change behavior) into a separate PR if it makes reviewing easier
new solver: don't consider blanket impls multiple times
only consider candidates which rely on the self type in `assemble_candidates_after_normalizing_self_ty`.
r? ``@compiler-errors``
Verify that all crate sources are in sync
This ensures that rustc will not attempt to link against a cdylib as if it is a rust dylib when an rlib for the same crate is available. Previously rustc didn't actually check if any further formats of a crate which has been loaded are of the same version and if they are actually valid. This caused a cdylib to be interpreted as rust dylib as soon as the corresponding rlib was loaded. As cdylibs don't export any rust symbols, linking would fail if rustc decides to link against the cdylib rather than the rlib.
Two crates depended on the previous behavior by separately compiling a test crate as both rlib and dylib. These have been changed to capture their original spirit to the best of my ability while still working when rustc verifies that all crates are in sync. It is unlikely that build systems depend on the current behavior and in any case we are taking a lot of measures to ensure that any change to either the source or the compilation options (including crate type) results in rustc rejecting it as incompatible. We merely didn't do this check here for now obsolete perf reasons.
Fixes https://github.com/rust-lang/rust/issues/10786
Fixes https://github.com/rust-lang/rust/issues/82151
Fixes https://github.com/rust-lang/rust/issues/82972
Closes https://github.com/bevy-cheatbook/bevy-cheatbook/issues/114
Use the correct span for displaying the line following a derive sugge…
`span` here is the main span of the diagnostic. In the linked issue's case, this belongs to `main.rs`. However, the line numbers (and line we are trying to display) are in `name.rs`, so using `span_to_lines` gives us the wrong `FileLines`.
Use `parts[0].span` (the span of the suggestion) here like the rest of the code does to get the right file.
Not sure if this needs a dedicated test because this fixes an existing error in the UI suite
Fixes#113844
Fix inline_const with interpolated block
Interpolation already worked when we had a `const $block` that wasn't a statement expr:
```
fn foo() {
let _ = const $block;
}
```
But it was failing when the const block was in statement expr position:
```
fn foo() {
const $block;
}
```
... because of a bug in a check for const items. This fixes that.
---
cc https://github.com/rust-lang/rust/pull/112953#issuecomment-1631354481, though I don't think this requires an FCP since it's already supported in exprs and seems to me to be fully a parser bug.
Consider `()` within types to be FFI-safe, and `()` to be FFI-safe as a
return type (incl. when in a transparent newtype).
Signed-off-by: David Wood <david@davidtw.co>
`()` is normally FFI-unsafe, but is FFI-safe when used as a return type.
It is also desirable that a transparent newtype for `()` is FFI-safe when
used as a return type.
In order to support this, when an type was deemed FFI-unsafe, because of
a `()` type, and was used in return type - then the type was considered
FFI-safe. However, this was the wrong approach - it didn't check that the
`()` was part of a transparent newtype! The consequence of this is that
the presence of a `()` type in a more complex return type would make it
the entire type be considered safe (as long as the `()` type was the
first that the lint found) - which is obviously incorrect.
Instead, this logic is removed, and a unit return type or a transparent
wrapper around a unit is checked for directly for functions and fn-ptrs.
Signed-off-by: David Wood <david@davidtw.co>
Better diagnostics for dlltool errors.
When dlltool fails, show the full command that was executed. In particular, llvm-dlltool is not very helpful, printing a generic usage message rather than what actually went wrong, so stdout and stderr aren't of much use when troubleshooting.
allow opaques to be defined by trait queries, again
This basically reverts #112963.
Moreover, all call-sites of `enter_canonical_trait_query` can now define opaque types, see the ui test `defined-by-user-annotation.rs`.
Fixes#113689
r? `@compiler-errors` `@oli-obk`
Restrict recursive opaque type check
We have a recursive opaque check in writeback to avoid inferring the hidden of an opaque type to be itself:
33a2c2487a/compiler/rustc_hir_typeck/src/writeback.rs (L556-L575)
Issue #113619 treats `make_option2` as not defining the TAIT `TestImpl` since it is inferred to have the definition `TestImpl := B<TestImpl>`, which fails this check. This regressed in #102700 (5d15beb591), I think due to the refactoring that made us record the hidden types of TAITs during writeback.
However, nothing actually seems to go bad if we relax this recursion checker to only check for directly recursive definitions. This PR fixes#113619 by changing this recursive check from being a visitor to just checking that the hidden type is exactly the same as the opaque being inferred.
Alternatively, we may be able to fix#113619 by restricting this recursion check only to RPITs/async fns. It seems to only be possible to use misuse the recursion check to cause ICEs for TAITs (though I didn't try too hard to create a bad RPIT example... may be possible, actually.)
r? `@oli-obk`
--
Fixes#113314
Fix removal span calculation of `unused_qualifications` suggestion
Given a path such as `std::ops::Index<str>`, calculate the unnecessary qualification removal span by computing the beginning of the entire span until the ident span of the last path segment, which handles generic arguments and lifetime arguments in the last path segment. Previous logic only kept the ident span of the last path segment which is incorrect.
Closes#113808.
Safe Transmute: Fix ICE (due to UnevaluatedConst)
This patch updates the code that looks at the `Assume` type when evaluating if transmutation is possible. An ICE was being triggered in the case that the `Assume` parameter contained an unevaluated const (in this test case, due to a function with missing parameter names).
Fixes#110892