vulkano/examples/src/bin/multi-window.rs

472 lines
15 KiB
Rust
Raw Normal View History

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
// Welcome to the triangle example!
//
// This is the only example that is entirely detailed. All the other examples avoid code
// duplication by using helper functions.
//
// This example assumes that you are already more or less familiar with graphics programming
// and that you want to learn Vulkan. This means that for example it won't go into details about
// what a vertex or a shader is.
use bytemuck::{Pod, Zeroable};
use std::{collections::HashMap, sync::Arc};
use vulkano::{
buffer::{BufferUsage, CpuAccessibleBuffer, TypedBufferAccess},
command_buffer::{
AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, SubpassContents,
},
device::{
physical::{PhysicalDevice, PhysicalDeviceType},
Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
},
image::{view::ImageView, ImageAccess, ImageUsage, SwapchainImage},
impl_vertex,
instance::{Instance, InstanceCreateInfo},
pipeline::{
graphics::{
input_assembly::InputAssemblyState,
vertex_input::BuffersDefinition,
viewport::{Viewport, ViewportState},
},
GraphicsPipeline,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{
acquire_next_image, AcquireError, Surface, Swapchain, SwapchainCreateInfo,
SwapchainCreationError,
},
sync::{self, FlushError, GpuFuture},
VulkanLibrary,
};
use vulkano_win::VkSurfaceBuild;
use winit::{
event::{ElementState, Event, KeyboardInput, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::{Window, WindowBuilder},
};
// A struct to contain resources related to a window
struct WindowSurface {
surface: Arc<Surface<Window>>,
swapchain: Arc<Swapchain<Window>>,
framebuffers: Vec<Arc<Framebuffer>>,
recreate_swapchain: bool,
previous_frame_end: Option<Box<dyn GpuFuture>>,
}
fn main() {
let library = VulkanLibrary::new().unwrap();
let required_extensions = vulkano_win::required_extensions(&library);
let instance = Instance::new(
library,
InstanceCreateInfo {
enabled_extensions: required_extensions,
// Enable enumerating devices that use non-conformant vulkan implementations. (ex. MoltenVK)
enumerate_portability: true,
..Default::default()
},
)
.unwrap();
let event_loop = EventLoop::new();
// A hashmap that contains all of our created windows and their resources
let mut window_surfaces = HashMap::new();
let surface = WindowBuilder::new()
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
// Use the window's id as a means to access it from the hashmap
let window_id = surface.window().id();
// Find the device and a queue.
// TODO: it is assumed the device, queue, and surface surface_capabilities are the same for all windows
let (device, queue, surface_caps) = {
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::none()
};
let (physical_device, queue_family) = PhysicalDevice::enumerate(&instance)
.filter(|&p| p.supported_extensions().is_superset_of(&device_extensions))
.filter_map(|p| {
p.queue_families()
.find(|&q| {
q.supports_graphics() && q.supports_surface(&surface).unwrap_or(false)
})
.map(|q| (p, q))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo::family(queue_family)],
..Default::default()
},
)
.unwrap();
(
device,
queues.next().unwrap(),
physical_device
.surface_capabilities(&surface, Default::default())
.unwrap(),
)
};
// The swapchain and framebuffer images for this perticular window
let (swapchain, images) = {
let image_format = Some(
device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0,
);
Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: surface_caps.min_image_count,
image_format,
image_extent: surface.window().inner_size().into(),
image_usage: ImageUsage::color_attachment(),
composite_alpha: surface_caps
.supported_composite_alpha
.iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
2021-11-24 14:19:57 +00:00
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod)]
struct Vertex {
position: [f32; 2],
}
impl_vertex!(Vertex, position);
let vertices = [
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
];
let vertex_buffer =
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), false, vertices)
.unwrap();
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
"
}
}
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.image_format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
)
.unwrap();
let pipeline = GraphicsPipeline::start()
.vertex_input_state(BuffersDefinition::new().vertex::<Vertex>())
.vertex_shader(vs.entry_point("main").unwrap(), ())
.input_assembly_state(InputAssemblyState::new())
.viewport_state(ViewportState::viewport_dynamic_scissor_irrelevant())
.fragment_shader(fs.entry_point("main").unwrap(), ())
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap();
let mut viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [0.0, 0.0],
depth_range: 0.0..1.0,
};
window_surfaces.insert(
window_id,
WindowSurface {
surface,
swapchain,
recreate_swapchain: false,
framebuffers: window_size_dependent_setup(&images, render_pass.clone(), &mut viewport),
previous_frame_end: Some(sync::now(device.clone()).boxed()),
},
);
event_loop.run(move |event, event_loop, control_flow| match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
window_id,
event: WindowEvent::Resized(_),
..
} => {
window_surfaces
.get_mut(&window_id)
.unwrap()
.recreate_swapchain = true;
}
Event::WindowEvent {
event:
WindowEvent::KeyboardInput {
input:
KeyboardInput {
state: ElementState::Pressed,
..
},
..
},
..
} => {
let surface = WindowBuilder::new()
.build_vk_surface(event_loop, instance.clone())
.unwrap();
let window_id = surface.window().id();
let (swapchain, images) = {
let composite_alpha = surface_caps
.supported_composite_alpha
.iter()
.next()
.unwrap();
let image_format = Some(
device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0,
);
Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: surface_caps.min_image_count,
image_format,
image_extent: surface.window().inner_size().into(),
image_usage: ImageUsage::color_attachment(),
composite_alpha,
..Default::default()
},
)
.unwrap()
};
window_surfaces.insert(
window_id,
WindowSurface {
surface,
swapchain,
recreate_swapchain: false,
framebuffers: window_size_dependent_setup(
&images,
render_pass.clone(),
&mut viewport,
),
previous_frame_end: Some(sync::now(device.clone()).boxed()),
},
);
}
Event::RedrawEventsCleared => {
window_surfaces
.values()
.for_each(|s| s.surface.window().request_redraw());
}
Event::RedrawRequested(window_id) => {
let WindowSurface {
ref surface,
ref mut swapchain,
ref mut recreate_swapchain,
ref mut framebuffers,
ref mut previous_frame_end,
} = window_surfaces.get_mut(&window_id).unwrap();
let dimensions = surface.window().inner_size();
if dimensions.width == 0 || dimensions.height == 0 {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if *recreate_swapchain {
let (new_swapchain, new_images) = match swapchain.recreate(SwapchainCreateInfo {
image_extent: dimensions.into(),
..swapchain.create_info()
}) {
Ok(r) => r,
Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return,
Err(e) => panic!("Failed to recreate swapchain: {:?}", e),
};
*swapchain = new_swapchain;
*framebuffers =
window_size_dependent_setup(&new_images, render_pass.clone(), &mut viewport);
*recreate_swapchain = false;
}
let (image_num, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
*recreate_swapchain = true;
return;
}
Err(e) => panic!("Failed to acquire next image: {:?}", e),
};
if suboptimal {
*recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
device.clone(),
queue.family(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(framebuffers[image_num].clone())
},
SubpassContents::Inline,
)
.unwrap()
.set_viewport(0, [viewport.clone()])
.bind_pipeline_graphics(pipeline.clone())
.bind_vertex_buffers(0, vertex_buffer.clone())
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
*previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
*recreate_swapchain = true;
*previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("Failed to flush future: {:?}", e);
*previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
});
}
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let dimensions = images[0].dimensions().width_height();
viewport.dimensions = [dimensions[0] as f32, dimensions[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}