impl `From<&[T; N]>` for `Cow<[T]>`
Implement `From<&[T; N]>` for `Cow<[T]>` to simplify its usage in the following example.
```rust
fn foo(data: impl Into<Cow<'static, [&'static str]>>) { /* ... */ }
fn main() {
foo(vec!["hello", "world"]);
foo(&["hello", "world"]); // Error: the trait `From<&[&str; 2]>` is not implemented for `Cow<'static, [&'static str]>`
foo(&["hello", "world"] as &[_]); // Explicit convertion into a slice is required
}
```
stabilise array methods
Closes#76118
Stabilises the remaining array methods
FCP is yet to be carried out for this
There wasn't a clear consensus on the naming, but all the other alternatives had some flaws as discussed in the tracking issue and there was a silence on this issue for a year
Remove special-case handling of `vec.split_off(0)`
#76682 added special handling to `Vec::split_off` for the case where `at == 0`. Instead of copying the vector's contents into a freshly-allocated vector and returning it, the special-case code steals the old vector's allocation, and replaces it with a new (empty) buffer with the same capacity.
That eliminates the need to copy the existing elements, but comes at a surprising cost, as seen in #119913. The returned vector's capacity is no longer determined by the size of its contents (as would be expected for a freshly-allocated vector), and instead uses the full capacity of the old vector.
In cases where the capacity is large but the size is small, that results in a much larger capacity than would be expected from reading the documentation of `split_off`. This is especially bad when `split_off` is called in a loop (to recycle a buffer), and the returned vectors have a wide variety of lengths.
I believe it's better to remove the special-case code, and treat `at == 0` just like any other value:
- The current documentation states that `split_off` returns a “newly allocated vector”, which is not actually true in the current implementation when `at == 0`.
- If the value of `at` could be non-zero at runtime, then the caller has already agreed to the cost of a full memcpy of the taken elements in the general case. Avoiding that copy would be nice if it were close to free, but the different handling of capacity means that it is not.
- If the caller specifically wants to avoid copying in the case where `at == 0`, they can easily implement that behaviour themselves using `mem::replace`.
Fixes#119913.
Initial implementation of `str::from_raw_parts[_mut]`
ACP (accepted): rust-lang/libs-team#167
Tracking issue: #119206
Thanks to ``@Kixiron`` for previous work on this (#107207)
``@rustbot`` label +T-libs-api -T-libs
r? ``@thomcc``
Closes#107207.
Use `assert_unchecked` instead of `assume` intrinsic in the standard library
Now that a public wrapper for the `assume` intrinsic exists, we can use it in the standard library.
CC #119131
Fix deallocation with wrong allocator in (A)Rc::from_box_in
Deallocate the `Box` with the original allocator (via `&A`), not `Global`.
Fixes#119749
<details> <summary>Example code with error and Miri output</summary>
(Note that this UB is not observable on stable, because the only usable allocator on stable is `Global` anyway.)
Code ([playground link](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=96193c2c6a1912d7f669fbbe39174b09)):
```rs
#![feature(allocator_api)]
use std::alloc::System;
// uncomment one of these
use std::rc::Rc;
//use std::sync::Arc as Rc;
fn main() {
let x: Box<[u32], System> = Box::new_in([1,2,3], System);
let _: Rc<[u32], System> = Rc::from(x);
}
```
Miri output:
```rs
error: Undefined Behavior: deallocating alloc904, which is C heap memory, using Rust heap deallocation operation
--> /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/alloc/src/alloc.rs:117:14
|
117 | unsafe { __rust_dealloc(ptr, layout.size(), layout.align()) }
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ deallocating alloc904, which is C heap memory, using Rust heap deallocation operation
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: BACKTRACE:
= note: inside `std::alloc::dealloc` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/alloc/src/alloc.rs:117:14: 117:64
= note: inside `<std::alloc::Global as std::alloc::Allocator>::deallocate` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/alloc/src/alloc.rs:254:22: 254:51
= note: inside `<std::boxed::Box<std::mem::ManuallyDrop<[u32]>> as std::ops::Drop>::drop` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/alloc/src/boxed.rs:1244:17: 1244:66
= note: inside `std::ptr::drop_in_place::<std::boxed::Box<std::mem::ManuallyDrop<[u32]>>> - shim(Some(std::boxed::Box<std::mem::ManuallyDrop<[u32]>>))` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/ptr/mod.rs:507:1: 507:56
= note: inside `std::mem::drop::<std::boxed::Box<std::mem::ManuallyDrop<[u32]>>>` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/mem/mod.rs:992:24: 992:25
= note: inside `std::rc::Rc::<[u32], std::alloc::System>::from_box_in` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/alloc/src/rc.rs:1928:13: 1928:22
= note: inside `<std::rc::Rc<[u32], std::alloc::System> as std::convert::From<std::boxed::Box<[u32], std::alloc::System>>>::from` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/alloc/src/rc.rs:2504:9: 2504:27
note: inside `main`
--> src/main.rs:10:32
|
10 | let _: Rc<[u32], System> = Rc::from(x);
| ^^^^^^^^^^^
note: some details are omitted, run with `MIRIFLAGS=-Zmiri-backtrace=full` for a verbose backtrace
error: aborting due to 1 previous error
```
</details>
Document some alternatives to `Vec::split_off`
One of the discussion points that came up in #119917 is that some people use `Vec::split_off` in cases where they probably shouldn't, because the alternatives (like `mem::take`) are hard to discover.
This PR adds some suggestions to the documentation of `split_off` that should point people towards alternatives that might be more appropriate for their use-case.
I've deliberately tried to keep these changes as simple and uncontroversial as possible, so that they don't depend on how the team decides to handle the concerns raised in #119917. That's why I haven't touched the existing documentation for `split_off`, and haven't added links to `split_off` to the documentation of other methods.
fix: Drop guard was deallocating with the incorrect size
InPlaceDstBufDrop holds onto the allocation before the shrinking happens which means it must deallocate the destination elements but the source allocation.
Thanks `@cuviper` for spotting this.
Remove alignment-changing in-place collect
This removes the alignment-changing in-place collect optimization introduced in #110353
Currently stable users can't benefit from the optimization because GlobaAlloc doesn't support alignment-changing realloc and neither do most posix allocators. So in practice it has a negative impact on performance.
Explanation from https://github.com/rust-lang/rust/issues/120091#issuecomment-1899071681:
> > You mention that in case of alignment mismatch -- when the new alignment is less than the old -- the implementation calls `mremap`.
>
> I was trying to note that this isn't really the case in practice, due to the semantics of Rust's allocator APIs. The only use of the allocator within the `in_place_collect` implementation itself is [a call to `Allocator::shrink()`](db7125f008/library/alloc/src/vec/in_place_collect.rs (L299-L303)), which per its documentation [allows decreasing the required alignment](https://doc.rust-lang.org/1.75.0/core/alloc/trait.Allocator.html). However, in stable Rust, the only available `Allocator` is [`Global`](https://doc.rust-lang.org/1.75.0/alloc/alloc/struct.Global.html), which delegates to the registered `GlobalAlloc`. Since `GlobalAlloc::realloc()` [cannot change the required alignment](https://doc.rust-lang.org/1.75.0/core/alloc/trait.GlobalAlloc.html#method.realloc), the implementation of [`<Global as Allocator>::shrink()`](db7125f008/library/alloc/src/alloc.rs (L280-L321)) must fall back to creating a brand-new allocation, `memcpy`ing the data into it, and freeing the old allocation, whenever the alignment doesn't remain exactly the same.
>
> Therefore, the underlying allocator, provided by libc or some other source, has no opportunity to internally `mremap()` the data when the alignment is changed, since it has no way of knowing that the allocation is the same.
This also removes
* impl From<&Context> for ContextBuilder
* Context::try_waker()
The from implementation is removed because now that
wakers are always supported, there are less incentives
to override the current context. Before, the incentive
was to add Waker support to a reactor that didn't have
any.
InPlaceDstBufDrop holds onto the allocation before the shrinking happens
which means it must deallocate the destination elements but the source
allocation.
Update documentation for Vec::into_boxed_slice to be more clear about excess capacity
Currently, the documentation for Vec::into_boxed_slice says that "if the vector has excess capacity, its items will be moved into a newly-allocated buffer with exactly the right capacity." This is misleading, as copies do not necessarily occur, depending on if the allocator supports in-place shrinking. I copied some of the wording from shrink_to_fit, though it could potentially still be worded better than this.
Currently stable users can't benefit from this because GlobaAlloc doesn't support
alignment-changing realloc and neither do most posix allocators.
So in practice it always results in an extra memcpy.
merge core_panic feature into panic_internals
I don't know why those are two separate features, but it does not seem intentional. This merge is useful because with https://github.com/rust-lang/rust/pull/118123, panic_internals is recognized as an internal feature, but core_panic is not -- but core_panic definitely should be internal.
rc: Take *const T in is_dangling
It is not important which one is used since `is_dangling` does not access memory, but `*const` removes the needs of `*const T` -> `*mut T` casts in `from_raw_in`.
Clean up alloc::sync::Weak Clone implementation
Since both return points (tail and early return) return the same expression and the only difference is whether inner is available, the code that does the atomic operations and checks on inner was moved into the if body and the only return is at the tail. Original comments preserved.
It is not important which one is used since `is_dangling` does not access
memory, but `*const` removes the needs of `*const T` -> `*mut T` casts
in `from_raw_in`.
fix minor mistake in comments describing VecDeque resizing
Avoiding confusion where one of the items in the deque seems to disappear in two of the three cases
Since both return points (tail and early return) return the same
expression and the only difference is whether inner is available, the
code that does the atomic operations and checks on inner was moved into
the if body and the only return is at the tail. Original comments
preserved.
add more niches to rawvec
Previously RawVec only had a single niche in its `NonNull` pointer. With this change it now has `isize::MAX` niches since half the value-space of the capacity field is never needed, we can't have a capacity larger than isize::MAX.
remove redundant imports
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and removing redundant imports code into two PR.
r? `@petrochenkov`
Stablize arc_unwrap_or_clone
Fixes: #93610
This likely needs FCP. I created this PR as it's stabilization is trivial and FCP can be just conducted here. Not sure how to ping the libs API team (last attempt didn't work apparently according to GH UI)
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Split `Vec::dedup_by` into 2 cycles
First cycle runs until we found 2 same elements, second runs after if there any found in the first one. This allows to avoid any memory writes until we found an item which we want to remove.
This leads to significant performance gains if all `Vec` items are kept: -40% on my benchmark with unique integers.
Results of benchmarks before implementation (including new benchmark where nothing needs to be removed):
* vec::bench_dedup_all_100 74.00ns/iter +/- 13.00ns
* vec::bench_dedup_all_1000 572.00ns/iter +/- 272.00ns
* vec::bench_dedup_all_100000 64.42µs/iter +/- 19.47µs
* __vec::bench_dedup_none_100 67.00ns/iter +/- 17.00ns__
* __vec::bench_dedup_none_1000 662.00ns/iter +/- 86.00ns__
* __vec::bench_dedup_none_10000 9.16µs/iter +/- 2.71µs__
* __vec::bench_dedup_none_100000 91.25µs/iter +/- 1.82µs__
* vec::bench_dedup_random_100 105.00ns/iter +/- 11.00ns
* vec::bench_dedup_random_1000 781.00ns/iter +/- 10.00ns
* vec::bench_dedup_random_10000 9.00µs/iter +/- 5.62µs
* vec::bench_dedup_random_100000 449.81µs/iter +/- 74.99µs
* vec::bench_dedup_slice_truncate_100 105.00ns/iter +/- 16.00ns
* vec::bench_dedup_slice_truncate_1000 2.65µs/iter +/- 481.00ns
* vec::bench_dedup_slice_truncate_10000 18.33µs/iter +/- 5.23µs
* vec::bench_dedup_slice_truncate_100000 501.12µs/iter +/- 46.97µs
Results after implementation:
* vec::bench_dedup_all_100 75.00ns/iter +/- 9.00ns
* vec::bench_dedup_all_1000 494.00ns/iter +/- 117.00ns
* vec::bench_dedup_all_100000 58.13µs/iter +/- 8.78µs
* __vec::bench_dedup_none_100 52.00ns/iter +/- 22.00ns__
* __vec::bench_dedup_none_1000 417.00ns/iter +/- 116.00ns__
* __vec::bench_dedup_none_10000 4.11µs/iter +/- 546.00ns__
* __vec::bench_dedup_none_100000 40.47µs/iter +/- 5.36µs__
* vec::bench_dedup_random_100 77.00ns/iter +/- 15.00ns
* vec::bench_dedup_random_1000 681.00ns/iter +/- 86.00ns
* vec::bench_dedup_random_10000 11.66µs/iter +/- 2.22µs
* vec::bench_dedup_random_100000 469.35µs/iter +/- 20.53µs
* vec::bench_dedup_slice_truncate_100 100.00ns/iter +/- 5.00ns
* vec::bench_dedup_slice_truncate_1000 2.55µs/iter +/- 224.00ns
* vec::bench_dedup_slice_truncate_10000 18.95µs/iter +/- 2.59µs
* vec::bench_dedup_slice_truncate_100000 492.85µs/iter +/- 72.84µs
Resolves#77772
P.S. Note that this is same PR as #92104 I just missed review then forgot about it.
Also, I cannot reopen that pull request so I am creating a new one.
I responded to remaining questions directly by adding commentaries to my code.
#79327 added `'static` bounds to the allocator parameter
for various `Box` + `Pin` APIs to ensure soundness.
But it was a bit overzealous, some of the bounds aren't
actually needed.
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
While a better approach would be to implement it for all ZSTs
which are `Copy` and have trivial `Clone`,
the last property cannot be detected for now.
Signed-off-by: Petr Portnov <me@progrm-jarvis.ru>
Add `std:#️⃣:{DefaultHasher, RandomState}` exports (needs FCP)
This implements rust-lang/libs-team#267 to move the libstd hasher types to `std::hash` where they belong, instead of `std::collections::hash_map`.
<details><summary>The below no longer applies, but is kept for clarity.</summary>
This is a small refactor for #27242, which moves the definitions of `RandomState` and `DefaultHasher` into `std::hash`, but in a way that won't be noticed in the public API.
I've opened rust-lang/libs-team#267 as a formal ACP to move these directly into the root of `std::hash`, but for now, they're at least separated out from the collections code in a way that will make moving that around easier.
I decided to simply copy the rustdoc for `std::hash` from `core::hash` since I think it would be ideal for the two to diverge longer-term, especially if the ACP is accepted. However, I would be willing to factor them out into a common markdown document if that's preferred.
</details>
Stabilize `const_maybe_uninit_zeroed` and `const_mem_zeroed`
Make `MaybeUninit::zeroed` and `mem::zeroed` const stable. Newly stable API:
```rust
// core::mem
pub const unsafe fn zeroed<T>() ->;
impl<T> MaybeUninit<T> {
pub const fn zeroed() -> MaybeUninit<T>;
}
```
This relies on features based around `const_mut_refs`. Per `@RalfJung,` this should be OK since we do not leak any `&mut` to the user.
For this to be possible, intrinsics `assert_zero_valid` and `assert_mem_uninitialized_valid` were made const stable.
Tracking issue: #91850
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/.60const_mut_refs.60.20dependents
r? libs-api
`@rustbot` label -T-libs +T-libs-api +A-const-eval
cc `@RalfJung` `@oli-obk` `@rust-lang/wg-const-eval`
Hint optimizer about try-reserved capacity
This is #116568, but limited only to the less-common `try_reserve` functions to reduce bloat in debug binaries from debug info, while still addressing the main use-case #116570
Make `MaybeUninit::zeroed` const stable. Newly stable API:
// core::mem
impl<T> MaybeUninit<T> {
pub const fn zeroed() -> MaybeUninit<T>;
}
Use of `const_mut_refs` should be acceptable since we do not leak the
mutability.
Tracking issue: #91850
Increase the reach of panic_immediate_abort
I wanted to use/abuse this recently as part of another project, and I was surprised how many panic-related things were left in my binaries if I built a large crate with the feature enabled along with LTO. These changes get all the panic-related symbols that I could find out of my set of locally installed Rust utilities.
Add explicit-endian String::from_utf16 variants
This adds the following APIs under `feature(str_from_utf16_endian)`:
```rust
impl String {
pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error>;
pub fn from_utf16le_lossy(v: &[u8]) -> String;
pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error>;
pub fn from_utf16be_lossy(v: &[u8]) -> String;
}
```
These are versions of `String::from_utf16` that explicitly take [UTF-16LE and UTF-16BE](https://unicode.org/faq/utf_bom.html#gen7). Notably, we can do better than just the obvious `decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes)).collect()` in that:
- We handle the case where the byte slice is not an even number of bytes, and
- In the case that the UTF-16 is native endian and the slice is aligned, we can forward to `String::from_utf16`.
If the Unicode Consortium actively defines how to handle character replacement when decoding a UTF-16 bytestream with a trailing odd byte, I was unable to find reference. However, the behavior implemented here is fairly self-evidently correct: replace the single errant byte with the replacement character.
Implement `From<{&,&mut} [T; N]>` for `Vec<T>` where `T: Clone`
Currently, if `T` implements `Clone`, we can create a `Vec<T>` from an `&[T]` or an `&mut [T]`, can we also support creating a `Vec<T>` from an `&[T; N]` or an `&mut [T; N]`? Also, do I need to add `#[inline]` to the implementation?
ACP: rust-lang/libs-team#220. [Accepted]
Closes#100880.
Update doc for `alloc::format!` and `core::concat!`
Closes#115551.
Used comments instead of `assert!`s as [`std::fmt`](https://doc.rust-lang.org/std/fmt/index.html#usage) uses comments.
Should all the str-related macros (`format!`, `format_args!`, `concat!`, `stringify!`, `println!`, `writeln!`, etc.) references each others? For instance, [`concat!`](https://doc.rust-lang.org/core/macro.concat.html) mentions that integers are stringified, but don't link to `stringify!`.
`@rustbot` label +A-docs +A-fmt
Make useless_ptr_null_checks smarter about some std functions
This teaches the `useless_ptr_null_checks` lint that some std functions can't ever return null pointers, because they need to point to valid data, get references as input, etc.
This is achieved by introducing an `#[rustc_never_returns_null_ptr]` attribute and adding it to these std functions (gated behind bootstrap `cfg_attr`).
Later on, the attribute could maybe be used to tell LLVM that the returned pointer is never null. I don't expect much impact of that though, as the functions are pretty shallow and usually the input data is already never null.
Follow-up of PR #113657Fixes#114442
Also stabilizes saturating_int_assign_impl, gh-92354.
And also make pub fns const where the underlying saturating_*
fns became const in the meantime since the Saturating type was
created.
Add note that Vec::as_mut_ptr() does not materialize a reference to the internal buffer
See discussion on https://github.com/thomcc/rust-typed-arena/issues/62 and [t-opsem](https://rust-lang.zulipchat.com/#narrow/stream/136281-t-opsem/topic/is.20this.20typed_arena.20code.20sound.20under.20stacked.2Ftree.20borrows.3F)
This method already does the correct thing here, but it is worth guaranteeing that it does so it can be used more freely in unsafe code without having to worry about potential Stacked/Tree Borrows violations. This moves one more unsafe usage pattern from the "very likely sound but technically not fully defined" box into "definitely sound", and currently our surface area of the latter is woefully small.
I'm not sure how best to word this, opening this PR as a way to start discussion.
Correct and expand documentation of `handle_alloc_error` and `set_alloc_error_hook`.
The primary goal of this change is to remove the false claim that `handle_alloc_error` always aborts; instead, code should be prepared for `handle_alloc_error` to possibly unwind, and be sound under that condition.
I saw other opportunities for improvement, so I have added all the following information:
* `handle_alloc_error` may panic instead of aborting. (Fixes#114898)
* What happens if a hook returns rather than diverging.
* A hook may panic. (This was already demonstrated in an example, but not stated in prose.)
* A hook must be sound to call — it cannot assume that it is only called by the runtime, since its function pointer can be retrieved by safe code.
I've checked these statements against the source code of `alloc` and `std`, but there may be nuances I haven't caught, so a careful review is welcome.
Add `suggestion` for some `#[deprecated]` items
Consider code:
```rust
fn main() {
let _ = ["a", "b"].connect(" ");
}
```
Currently it shows deprecated warning:
```rust
warning: use of deprecated method `std::slice::<impl [T]>::connect`: renamed to join
--> src/main.rs:2:24
|
2 | let _ = ["a", "b"].connect(" ");
| ^^^^^^^
|
= note: `#[warn(deprecated)]` on by default
```
This PR adds `suggestion` for `connect` and some other deprecated items, so the warning will be changed to this:
```rust
warning: use of deprecated method `std::slice::<impl [T]>::connect`: renamed to join
--> src/main.rs:2:24
|
2 | let _ = ["a", "b"].connect(" ");
| ^^^^^^^
|
= note: `#[warn(deprecated)]` on by default
help: replace the use of the deprecated method
|
2 | let _ = ["a", "b"].join(" ");
| ^^^^
```
Add the following facts:
* `handle_alloc_error` may panic instead of aborting.
* What happens if a hook returns rather than diverging.
* A hook may panic. (This was already demonstrated in an example,
but not stated in prose.)
* A hook must be sound to call — it cannot assume that it is only
called by the runtime, since its function pointer can be retrieved by
safe code.
avoid transmuting Box when we can just cast raw pointers instead
Always better to avoid a transmute, in particular when the layout assumptions it is making are not clearly documented. :)
* remove `impl Provider for Error`
* rename `Demand` to `Request`
* update docstrings to focus on the conceptual API provided by `Request`
* move `core::any::{request_ref, request_value}` functions into `core::error`
* move `core::any::tag`, `core::any::Request`, an `core::any::TaggedOption` into `core::error`
* replace `provide_any` feature name w/ `error_generic_member_access`
* move `core::error::request_{ref,value} tests into core::tests::error module
* update unit and doc tests
Fix documentation of impl From<Vec<T>> for Rc<[T]>
The example in the documentation of `impl From<Vec<T>> for <Rc<[T]>` is irrelevant (likely was copied from `impl From<Box<T>> for <Rc<T>`). I suggest taking corresponding example from the documentation of `Arc` and replacing `Arc` with `Rc`.
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
Stabilize const-weak-new
This is a fairly uncontroversial library stabilization, so I'm going ahead and proposing it to ride the trains to stable.
This stabilizes the following APIs, which are defined to be non-allocating constructors.
```rust
// alloc::rc
impl<T> Weak<T> {
pub const fn new() -> Weak<T>;
}
// alloc::sync
impl<T> Weak<T> {
pub const fn new() -> Weak<T>;
}
```
Closes#95091
``@rustbot`` modify labels: +needs-fcp
Bump its stabilization version several times along
the way to accommodate changes in release processes.
Co-authored-by: Mara Bos <m-ou.se@m-ou.se>
Co-authored-by: Trevor Gross <t.gross35@gmail.com>
Documentation: Fix Stilted Language in Vec->Indexing
Problem
Language in the Vec->Indexing documentation sounds stilted due to incorrect word ordering: "... type allows to access values by index."
Solution
Reorder words in the Vec->Indexing documentation to flow better: "... type allows access to values by index." The phrase "allows access to" also matches other existing documentation.
Clarify behavior of inclusive bounds in BTreeMap::{lower,upper}_bound
It wasn’t quite clear to me how these methods would interpret inclusive bounds so I added examples for those.
Remove redundant example of `BTreeSet::iter`
The usage and that `Values returned by the iterator are returned in ascending order` are already demonstrated by the other example and the description, so I removed the useless one.
Problem
Language in the Vec->Indexing documentation sounds stilted due to
incorrect word ordering: "... type allows to access values by index."
Solution
Reorder words in the Vec->Indexing documentation to flow better:
"... type allows access to values by index." The phrase "allows access to"
also matches other existing documentation.
The status quo is highly confusing, since the overlap is not apparent,
and specialization is not a feature of Rust. This addresses #87545;
I'm not certain if it closes it, since that issue might also be trackign
a *general* solution for hiding specializing impls automatically.
Add support for allocators in `Rc` & `Arc`
Adds the ability for `std::rc:Rc`, `std::rc::Weak`, `std::sync::Arc`, and `std::sync::Weak` to live in custom allocators
Rename VecDeque's `rotate_left` and `rotate_right` parameters
This pull request introduces a modification to the `VecDeque` collection, specifically the `rotate_left` and `rotate_right` functions, by renaming the parameter associated with these functions.
The rationale behind this change is to provide clearer and more consistent naming for the parameter that specifies the number of places to rotate the double-ended queue. By using `n` as the parameter name in both functions, it becomes easier to understand and remember the purpose of the parameter.
Eliminate ZST allocations in `Box` and `Vec`
This PR fixes 2 issues with `Box` and `RawVec` related to ZST allocations. Specifically, the `Allocator` trait requires that:
- If you allocate a zero-sized layout then you must later deallocate it, otherwise the allocator may leak memory.
- You cannot pass a ZST pointer to the allocator that you haven't previously allocated.
These restrictions exist because an allocator implementation is allowed to allocate non-zero amounts of memory for a zero-sized allocation. For example, `malloc` in libc does this.
Currently, ZSTs are handled differently in `Box` and `Vec`:
- `Vec` never allocates when `T` is a ZST or if the vector capacity is 0.
- `Box` just blindly passes everything on to the allocator, including ZSTs.
This causes problems due to the free conversions between `Box<[T]>` and `Vec<T>`, specifically that ZST allocations could get leaked or a dangling pointer could be passed to `deallocate`.
This PR fixes this by changing `Box` to not allocate for zero-sized values and slices. It also fixes a bug in `RawVec::shrink` where shrinking to a size of zero did not actually free the backing memory.
This reverts commit 001b081cc1.
This change was done as the above commit introduces a regression in type
inference. Regression test located at
`tests/ui/type-inference/issue-113283-alllocator-trait-eq.rs`
Allow comparing `Box`es with different allocators
Currently, comparing `Box`es over different allocators is not allowed:
```Rust
error[E0308]: mismatched types
--> library/alloc/tests/boxed.rs:22:20
|
22 | assert_eq!(b1, b2);
| ^^ expected `Box<{integer}, ConstAllocator>`, found `Box<{integer}, AnotherAllocator>`
|
= note: expected struct `Box<{integer}, ConstAllocator>`
found struct `Box<{integer}, AnotherAllocator>`
For more information about this error, try `rustc --explain E0308`.
error: could not compile `alloc` (test "collectionstests") due to previous error
```
This PR lifts this limitation
remove unused field
Followup to #104455. The field is no longer needed since ExtractIf (previously DrainFilter) doesn't keep draining in its drop impl.
Implement PartialOrd for `Vec`s over different allocators
It is already possible to `PartialEq` `Vec`s with different allocators, but that is not the case with `PartialOrd`.
This is an `Rc` that is guaranteed to only have one strong reference.
Because it is uniquely owned, it can safely implement `DerefMut`, which
allows programs to have an initialization phase where structures inside
the `Rc` can be mutated.
The `UniqueRc` can then be converted to a regular `Rc`, allowing sharing
and but read-only access.
During the "initialization phase," weak references can be created, but
attempting to upgrade these will fail until the `UniqueRc` has been
converted to a regular `Rc`. This feature can be useful to create
cyclic data structures.
This API is an implementation based on the feedback provided to the ACP
at https://github.com/rust-lang/libs-team/issues/90.
Remove `box_free` lang item
This PR removes the `box_free` lang item, replacing it with `Box`'s `Drop` impl. Box dropping is still slightly magic because the contained value is still dropped by the compiler.
Stabilize String::leak
Stabilizes the following API:
```Rust
impl String {
pub fn leak(self) -> &'static mut str;
}
```
closes#102929
blocked by having an FCP for stabilization.
Ignore `core`, `alloc` and `test` tests that require unwinding on `-C panic=abort`
Some of the tests for `core` and `alloc` require unwinding through their use of `catch_unwind`. These tests fail when testing using `-C panic=abort` (in my case through a target without unwinding support, and `-Z panic-abort-tests`), while they should be ignored as they don't indicate a failure.
This PR marks all of these tests with this attribute:
```rust
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
```
I'm not aware of a way to test this on rust-lang/rust's CI, as we don't test any target with `-C panic=abort`, but I tested this locally on a Ferrocene target and it does indeed make the test suite pass.
Support #[global_allocator] without the allocator shim
This makes it possible to use liballoc/libstd in combination with `--emit obj` if you use `#[global_allocator]`. This is what rust-for-linux uses right now and systemd may use in the future. Currently they have to depend on the exact implementation of the allocator shim to create one themself as `--emit obj` doesn't create an allocator shim.
Note that currently the allocator shim also defines the oom error handler, which is normally required too. Once `#![feature(default_alloc_error_handler)]` becomes the only option, this can be avoided. In addition when using only fallible allocator methods and either `--cfg no_global_oom_handling` for liballoc (like rust-for-linux) or `--gc-sections` no references to the oom error handler will exist.
To avoid this feature being insta-stable, you will have to define `__rust_no_alloc_shim_is_unstable` to avoid linker errors.
(Labeling this with both T-compiler and T-lang as it originally involved both an implementation detail and had an insta-stable user facing change. As noted above, the `__rust_no_alloc_shim_is_unstable` symbol requirement should prevent unintended dependence on this unstable feature.)
Mark internal functions and traits unsafe to reflect preconditions
No semantics are changed in this PR; I only mark some functions and and a trait `unsafe` which already had implicit preconditions. Although it seems somewhat redundant for `numfmt::Part::Copy` to contain a `&[u8]` instead of a `&str`, given that all of its current consumers ultimately expect valid UTF-8. Is the type also intended to work for byte-slice formatting in the future?
Fix duplicate `arcinner_layout_for_value_layout` calls when using the uninit `Arc` constructors
What this fixes is the duplicate calls to `arcinner_layout_for_value_layout` seen here: https://godbolt.org/z/jr5Gxozhj
The issue was discovered alongside #111603 but is otherwise unrelated to the duplicate `alloca`s, which remain unsolved. Everything I tried to solve said main issue has failed.
As for the duplicate layout calculations, I also tried slapping `#[inline]` and `#[inline(always)]` on everything in sight but the only thing that worked in the end is to dedup the calls by hand.
Specialize ToString implementation for fmt::Arguments
Generates far fewer instructions by formatting into a String with `fmt::format` directly instead of going through the `fmt::Display` impl. This change is insta-stable.
Change Vec examples to not assert exact capacity except where it is guaranteed
It was [brought up on discord](https://discord.com/channels/273534239310479360/818964227783262209/1107633959329878077) that the `Vec::into_boxed_slice` example contradicted the `Vec::with_capacity` docs in that the returned `Vec` might have _more_ capacity than requested.
So, to reduce confusion change all the `assert_eq!(vec.capacity(), _)` to `assert!(vec.capacity() >= _)`, except in 4 examples that have guaranteed capacities: `Vec::from_raw_parts`, `Vec::from_raw_parts_in`, `Vec::<()>::with_capacity`,`Vec::<(), _>::with_capacity_in`.
You will need to add the following as replacement for the old __rust_*
definitions when not using the alloc shim.
#[no_mangle]
static __rust_no_alloc_shim_is_unstable: u8 = 0;
enable `rust_2018_idioms` lint group for doctests
With this change, `rust_2018_idioms` lint group will be enabled for compiler/libstd doctests.
Resolves#106086Resolves#99144
Signed-off-by: ozkanonur <work@onurozkan.dev>
Make sure that some stdlib method signatures aren't accidental refinements
In the process of implementing https://rust-lang.github.io/rfcs/3245-refined-impls.html, I found a bunch of stdlib implementations that accidentally "refined" their method signatures by dropping (unnecessary) bounds.
This isn't currently a problem, but may become one if/when method signature refining is stabilized in the future. Shouldn't hurt to make these signatures a bit more accurate anyways.
NOTE (just to be clear lol): This does not affect behavior at all, since we don't actually take advantage of refined implementations yet!
Spelling library
Split per https://github.com/rust-lang/rust/pull/110392
I can squash once people are happy w/ the changes. It's really uncommon for large sets of changes to be perfectly acceptable w/o at least some changes.
I probably won't have time to respond until tomorrow or the next day
Updating Wake example to use new 'pin!' macro
Closes: https://github.com/rust-lang/rust/issues/109965
I have already had this reviewed and approved here: https://github.com/rust-lang/rust/pull/110026 . But because I had some git issues and chose the "nuke it" option as my solution it didn't get merged. I nuked it too quickly. I am sorry for trouble of reviewing twice.
Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
More `IS_ZST` in `library`
I noticed that `post_inc_start` and `pre_dec_end` were doing this check in different ways
d19b64fb54/library/core/src/slice/iter/macros.rs (L76-L93)
so started making this PR, then added a few more I found since I was already making changes anyway.
I noticed that `post_inc_start` and `pre_dec_end` were doing this check in different ways
d19b64fb54/library/core/src/slice/iter/macros.rs (L76-L93)
so started making this PR, then added a few more I found since I was already making changes anyway.
Add `tidy-alphabetical` to features in `alloc` & `std`
So that people have to keep them sorted in future, rather than just sticking them on the end where they conflict more often.
Follow-up to #110269
cc `@jyn514`
binary_heap: Optimize Extend implementation.
This PR makes the `Extend` implementation for `BinaryHeap` no longer rely on specialization, so that it always use the bulk rebuild optimization that was previously only available for the `Vec` specialization.
Improve documentation for str::replace() and str::replacen()
Currently, to know what the function will return when the pattern doesn't match, the docs require the reader to understand the implementation detail and mentally evaluate or run the example code. It is not immediately clear.
This PR makes it more explicit so the reader can quickly find the information.
Enhanced doucmentation of binary search methods for `slice` and `VecDeque` for unsorted instances
Fixes#106746. Issue #106746 raises the concern that the binary search methods for slices and deques aren't explicit enough about the fact that they are only applicable to sorted slices/deques. I changed the explanation for these methods. I took the relatively harsh description of the behaviour of binary search on unsorted collections ("unspecified and meaningless") from the description of the [`partition_point`](https://doc.rust-lang.org/std/primitive.slice.html#method.partition_point) method:
> If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
Remove ~const from alloc
There is currently an effort underway to stop using `~const Trait`, temporarily, so as to refactor the logic underlying const traits with relative ease. This means it has to go from the standard library, as well.
I have taken the initial step of just removing these impls from alloc, as removing them from core is a much more tangled task. In addition, all of these implementations are one more-or-less logically-connected group, so reverting their deconstification as a group seems like it will also be sensible.
r? `@fee1-dead`
Change advance(_back)_by to return the remainder instead of the number of processed elements
When advance_by can't advance the iterator by the number of requested elements it now returns the amount by which it couldn't be advanced instead of the amount by which it did.
This simplifies adapters like chain, flatten or cycle because the remainder doesn't have to be calculated as the difference between requested steps and completed steps anymore.
Additionally switching from `Result<(), usize>` to `Result<(), NonZeroUsize>` reduces the size of the result and makes converting from/to a usize representing the number of remaining steps cheap.
A successful advance is now signalled by returning `0` and other values now represent the remaining number
of steps that couldn't be advanced as opposed to the amount of steps that have been advanced during a partial advance_by.
This simplifies adapters a bit, replacing some `match`/`if` with arithmetic. Whether this is beneficial overall depends
on whether `advance_by` is mostly used as a building-block for other iterator methods and adapters or whether
we also see uses by users where `Result` might be more useful.
Stabilize `nonnull_slice_from_raw_parts`
FCP is done: https://github.com/rust-lang/rust/issues/71941#issuecomment-1100910416
Note that this doesn't const-stabilize `NonNull::slice_from_raw_parts` as `slice_from_raw_parts_mut` isn't const-stabilized yet. Given #67456 and #57349, it's not likely available soon, meanwhile, stabilizing only the feature makes some sense, I think.
Closes#71941
Currently, to know what the function will return when the pattern
doesn't match, the docs require the reader to understand the
implementation detail and mentally evaluate or run the example
code. It is not immediately clear.
This PR makes it more explicit so the reader can quickly find the
information.
Implement Default for some alloc/core iterators
Add `Default` impls to the following collection iterators:
* slice::{Iter, IterMut}
* binary_heap::IntoIter
* btree::map::{Iter, IterMut, Keys, Values, Range, IntoIter, IntoKeys, IntoValues}
* btree::set::{Iter, IntoIter, Range}
* linked_list::IntoIter
* vec::IntoIter
and these adapters:
* adapters::{Chain, Cloned, Copied, Rev, Enumerate, Flatten, Fuse, Rev}
For iterators which are generic over allocators it only implements it for the global allocator because we can't conjure an allocator from nothing or would have to turn the allocator field into an `Option` just for this change.
These changes will be insta-stable.
ACP: https://github.com/rust-lang/libs-team/issues/77
Remove the assume(!is_null) from Vec::as_ptr
At a guess, this code is leftover from LLVM was worse at keeping track of the niche information here. In any case, we don't need this anymore: Removing this `assume` doesn't get rid of the `nonnull` attribute on the return type.
Introduce `Rc::into_inner`, as a parallel to `Arc::into_inner`
Unlike `Arc`, `Rc` doesn't have the same race condition to avoid, but
maintaining an equivalent API still makes it easier to work with both
`Rc` and `Arc`.
Unlike `Arc`, `Rc` doesn't have the same race condition to avoid, but
maintaining an equivalent API still makes it easier to work with both
`Rc` and `Arc`.
Rollup of 9 pull requests
Successful merges:
- #104363 (Make `unused_allocation` lint against `Box::new` too)
- #106633 (Stabilize `nonzero_min_max`)
- #106844 (allow negative numeric literals in `concat!`)
- #108071 (Implement goal caching with the new solver)
- #108542 (Force parentheses around `match` expression in binary expression)
- #108690 (Place size limits on query keys and values)
- #108708 (Prevent overflow through Arc::downgrade)
- #108739 (Prevent the `start_bx` basic block in codegen from having two `Builder`s at the same time)
- #108806 (Querify register_tools and post-expansion early lints)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Make `unused_allocation` lint against `Box::new` too
Previously it only linted against `box` syntax, which likely won't ever be stabilized, which is pretty useless. Even now I'm not sure if it's a meaningful lint, but it's at least something 🤷
This means that code like the following will be linted against:
```rust
Box::new([1, 2, 3]).len();
f(&Box::new(1)); // where f : &i32 -> ()
```
The lint works by checking if a `Box::new` (or `box`) expression has an a borrow adjustment, meaning that the code that first stores the box in a variable won't be linted against:
```rust
let boxed = Box::new([1, 2, 3]); // no lint
boxed.len();
```
Fix `vec_deque::Drain` FIXME
In my original `VecDeque` rewrite, I didn't use `VecDeque::slice_ranges` in `Drain::as_slices`, even though that's basically the exact use case for `slice_ranges`. The reason for this was that a `VecDeque` wrapped in a `Drain` actually has its length set to `drain_start`, so that there's no potential use after free if you `mem::forget` the `Drain`. I modified `slice_ranges` to accept an explicit `len` parameter instead, which it now uses to bounds check the given range. This way, `Drain::as_slices` can use `slice_ranges` internally instead of having to basically just copy paste the `slice_ranges` code. Since `slice_ranges` is just an internal helper function, this shouldn't change the user facing behavior in any way.
Remove or document uses of #[rustc_box] in library
r? `@thomcc`
Only one of these uses is tested for in the rustc-perf benchmark suite. The impact there on compile time is somewhat dramatic, but I am inclined to make this change as a simplification to the library and wait for people to complain if it explodes their compilation time. I think in the absence of data or reports from users about what code paths really matter, if we are optimizing for compilation time, it's hard to argue against using `#[rustc_box]` everywhere we currently call `Box::new`.
This adds both a test specific to #108453 as well as an exhaustive test
that goes through all possible combinations of head index, length and target capacity
for a deque with capacity 16.
Previously the bulk rebuild specialization was only available with Vec, and
for general iterators Extend only provided pre-allocation through reserve().
By using a drop guard, we can safely bulk rebuild even if the iterator may
panic. This allows benefiting from the bulk rebuild optimization without
collecting iterator elements into a Vec beforehand, which would nullify any
performance gains from bulk rebuild.
Implement more methods for `vec_deque::IntoIter`
This implements a couple `Iterator` methods on `vec_deque::IntoIter` (`(try_)fold`, `(try_)rfold` `advance_(back_)by`, `next_chunk`, `count` and `last`) to allow these to be more efficient than their default implementations, also allowing many other `Iterator` methods that use these under the hood to take advantage of these manual implementations. `vec::IntoIter` has similar implementations for many of these methods. This PR does not yet implement `TrustedRandomAccess` and friends, as I'm not very familiar with the required safety guarantees.
r? `@the8472` (since you also took over my last PR)
Use associated items of `char` instead of freestanding items in `core::char`
The associated functions and constants on `char` have been stable since 1.52 and the freestanding items have soft-deprecated since 1.62 (https://github.com/rust-lang/rust/pull/95566). This PR ~~marks them as "deprecated in future", similar to the integer and floating point modules (`core::{i32, f32}` etc)~~ replaces all uses of `core::char::*` with `char::*` to prepare for future deprecation of `core::char::*`.
simplify layout calculations in rawvec
The use of `Layout::array` was introduced in #83706 which lead to a [perf regression](https://github.com/rust-lang/rust/pull/83706#issuecomment-1048377719).
This PR basically reverts that change since rust currently only supports stride == size types, but to be on the safe side it leaves a const-assert there to make sure this gets caught if those assumptions ever change.
Stabilize feature `cstr_from_bytes_until_nul`
This PR seeks to stabilize `cstr_from_bytes_until_nul`.
Partially addresses #95027
This function has only been on nightly for about 10 months, but I think it is simple enough that there isn't harm discussing stabilization. It has also had at least a handful of mentions on both the user forum and the discord, so it seems like it's already in use or at least known.
This needs FCP still.
Comment on potential discussion points:
- eventual conversion of `CStr` to be a single thin pointer: this function will still be useful to provide a safe way to create a `CStr` after this change.
- should this return a length too, to address concerns about the `CStr` change? I don't see it as being particularly useful, and it seems less ergonomic (i.e. returning `Result<(&CStr, usize), FromBytesUntilNulError>`). I think users that also need this length without the additional `strlen` call are likely better off using a combination of other methods, but this is up for discussion
- `CString::from_vec_until_nul`: this is also useful, but it doesn't even have a nightly implementation merged yet. I propose feature gating that separately, as opposed to blocking this `CStr` implementation on that
Possible alternatives:
A user can use `from_bytes_with_nul` on a slice up to `my_slice[..my_slice.iter().find(|c| c == 0).unwrap()]`. However; that is significantly less ergonomic, and is a bit more work for the compiler to optimize compared the direct `memchr` call that this wraps.
## New stable API
```rs
// both in core::ffi
pub struct FromBytesUntilNulError(());
impl CStr {
pub const fn from_bytes_until_nul(
bytes: &[u8]
) -> Result<&CStr, FromBytesUntilNulError>
}
```
cc ```@ericseppanen``` original author, ```@Mark-Simulacrum``` original reviewer, ```@m-ou-se``` brought up some issues on the thin pointer CStr
```@rustbot``` modify labels: +T-libs-api +needs-fcp
Implement cursors for BTreeMap
See the ACP for an overview of the API: https://github.com/rust-lang/libs-team/issues/141
The implementation is split into 2 commits:
- The first changes the internal insertion functions to return a handle to the newly inserted element. The lifetimes involved are a bit hairy since we need a mutable handle to both the `BTreeMap` itself (which holds the root) and the nodes allocated in memory. I have tested that this passes the standard library testsuite under miri.
- The second commit implements the cursor API itself. This is more straightforward to follow but still involves some unsafe code to deal with simultaneous mutable borrows of the tree root and the node that is currently being iterated.
Bump bootstrap compiler to 1.68
This also changes our stage0.json to include the rustc component for the rustfmt pinned nightly toolchain, which is currently necessary due to rustfmt dynamically linking to that toolchain's librustc_driver and libstd.
r? `@pietroalbini`
Make Vec::clone_from and slice::clone_into share the same code
In the past, `Vec::clone_from` was implemented using `slice::clone_into`. The code from `clone_into` was later duplicated into `clone_from` in 8725e4c337, which is the commit that adds custom allocator support to Vec. Presumably this was done because the `slice::clone_into` method only works for vecs with the default allocator so it would have the wrong type to clone into `Vec<T, A>`.
Later on in 361398009b the code for the two methods diverged because the `Vec::clone_from` version gained a specialization to optimize the case when T is Copy. In order to reduce code duplication and make them both be able to take advantage of this specialization, this PR moves the specialization into the slice module and makes vec use it again.
Don't re-export private/unstable ArgumentV1 from `alloc`.
The `alloc::fmt::ArgumentV1` re-export was marked as `#[stable]` even though the original `core::fmt::ArgumentV1` is `#[unstable]` (and `#[doc(hidden)]`).
(It wasn't usable though:
```
error[E0658]: use of unstable library feature 'fmt_internals': internal to format_args!
--> src/main.rs:4:12
|
4 | let _: alloc::fmt::ArgumentV1 = todo!();
| ^^^^^^^^^^^^^^^^^^^^^^
|
= help: add `#![feature(fmt_internals)]` to the crate attributes to enable
```
)
Part of #99012
In the past, Vec::clone_from was implemented using slice::clone_into.
The code from clone_into was later duplicated into clone_from in
8725e4c337, which is the commit that adds custom allocator support to
Vec. Presumably this was done because the slice::clone_into only works
for vecs with the default allocator so it would have the wrong type to
clone into Vec<T, A>.
Now that the clone_into implementation is moved out into a specializable
trait anyway we might as well use that to share the code between the two
methods.
The implementation for the ToOwned::clone_into method on [T] is a copy
of the code for vec::clone_from. In 361398009b the code for
vec::clone_from gained a specialization for when T is Copy. This commit
copies that specialization over to the clone_into implementation.
Add `Arc::into_inner` for safely discarding `Arc`s without calling the destructor on the inner type.
ACP: rust-lang/libs-team#162
Reviving #79665.
I want to get this merged this time; this does not contain changes (apart from very minor changes in comments/docs).
See #79665 for further description of the PR. The only “unresolved” points that led to that PR being closed, AFAICT, were
* The desire to also implement a `Rc::into_inner` function
* however, this can very well also happen as a subsequent PR
* Possible need for further discussion on the naming “`into_inner`” (?)
* `into_inner` seems fine to me; also, this PR introduces unstable API, and names can be changed later, too
* ~~I don't know if a tracking issue for the feature flag is supposed to be opened before or after this PR gets merged (if *before*, then I can add the issue number to the `#[unstable…]` attribute)~~ There is a [tracking issue](https://github.com/rust-lang/rust/issues/106894) now.
I say “unresolved” in quotation marks because from my point of view, if reviewers agree, the PR can be merged immediately and as-is :-)
Unify stable and unstable sort implementations in same core module
This moves the stable sort implementation to the core::slice::sort module. By virtue of being in core it can't access `Vec`. The two `Vec` used by merge sort, `buf` and `runs`, are modelled as custom types that implement the very limited required `Vec` interface with the help of provided allocation and free functions. This is done to allow future re-use of functions and logic between stable and unstable sort. Such as `insert_head`.
This is in preparation of #100856 and #104116. It only moves code, it *doesn't* change any of the sort related logic. This unlocks the ability to share `insert_head`, `insert_tail`, `swap_if_less` `merge` and more.
Tagging ````@Mark-Simulacrum```` I hope this allows progress on #100856, by moving `merge_sort` here I hope future changes will be easier to review.
Implement `alloc::vec::IsZero` for `Option<$NUM>` types
Fixes#106911
Mirrors the `NonZero$NUM` implementations with an additional `assert_zero_valid`.
`None::<i32>` doesn't stricly satisfy `IsZero` but for the purpose of allocating we can produce more efficient codegen.
Don't do pointer arithmetic on pointers to deallocated memory
vec::Splice can invalidate the slice::Iter inside vec::Drain. So we replace them with dangling pointers which, unlike ones to deallocated memory, are allowed.
Fixes miri test failures.
Fixes https://github.com/rust-lang/miri/issues/2759
vec::Splice can invalidate the slice::Iter inside vec::Drain.
So we replace them with dangling pointers which, unlike ones to
deallocated memory, are allowed.
Leak amplification for peek_mut() to ensure BinaryHeap's invariant is always met
In the libs-api team's discussion around #104210, some of the team had hesitations around exposing malformed BinaryHeaps of an element type whose Ord and Drop impls are trusted, and which does not contain interior mutability.
For example in the context of this kind of code:
```rust
use std::collections::BinaryHeap;
use std::ops::Range;
use std::slice;
fn main() {
let slice = &mut ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
let cut_points = BinaryHeap::from(vec![4, 2, 7]);
println!("{:?}", chop(slice, cut_points));
}
// This is a souped up slice::split_at_mut to split in arbitrary many places.
//
// usize's Ord impl is trusted, so 1 single bounds check guarantees all those
// output slices are non-overlapping and in-bounds
fn chop<T>(slice: &mut [T], mut cut_points: BinaryHeap<usize>) -> Vec<&mut [T]> {
let mut vec = Vec::with_capacity(cut_points.len() + 1);
let max = match cut_points.pop() {
Some(max) => max,
None => {
vec.push(slice);
return vec;
}
};
assert!(max <= slice.len());
let len = slice.len();
let ptr: *mut T = slice.as_mut_ptr();
let get_unchecked_mut = unsafe {
|range: Range<usize>| &mut *slice::from_raw_parts_mut(ptr.add(range.start), range.len())
};
vec.push(get_unchecked_mut(max..len));
let mut end = max;
while let Some(start) = cut_points.pop() {
vec.push(get_unchecked_mut(start..end));
end = start;
}
vec.push(get_unchecked_mut(0..end));
vec
}
```
```console
[['7', '8', '9'], ['4', '5', '6'], ['2', '3'], ['0', '1']]
```
In the current BinaryHeap API, `peek_mut()` is the only thing that makes the above function unsound.
```rust
let slice = &mut ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
let mut cut_points = BinaryHeap::from(vec![4, 2, 7]);
{
let mut max = cut_points.peek_mut().unwrap();
*max = 0;
std::mem::forget(max);
}
println!("{:?}", chop(slice, cut_points));
```
```console
[['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], [], ['2', '3'], ['0', '1']]
```
Or worse:
```rust
let slice = &mut ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
let mut cut_points = BinaryHeap::from(vec![100, 100]);
{
let mut max = cut_points.peek_mut().unwrap();
*max = 0;
std::mem::forget(max);
}
println!("{:?}", chop(slice, cut_points));
```
```console
[['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], [], ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '\u{1}', '\0', '?', '翾', '?', '翾', '\0', '\0', '?', '翾', '?', '翾', '?', '啿', '?', '啿', '?', '啿', '?', '啿', '?', '啿', '?', '翾', '\0', '\0', '', '啿', '\u{5}', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\u{8}', '\0', '`@',` '\0', '\u{1}', '\0', '?', '翾', '?', '翾', '?', '翾', '
thread 'main' panicked at 'index out of bounds: the len is 33 but the index is 33', library/core/src/unicode/unicode_data.rs:319:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
---
This PR makes `peek_mut()` use leak amplification (https://doc.rust-lang.org/1.66.0/nomicon/leaking.html#drain) to preserve the heap's invariant even in the situation that `PeekMut` gets leaked.
I'll also follow up in the tracking issue of unstable `drain_sorted()` (#59278) and `retain()` (#71503).
mv binary_heap.rs binary_heap/mod.rs
I confess this request is somewhat selfish, as it's made in order to ease synchronisation with my [copse](https://crates.io/crates/copse) crate (see eggyal/copse#6 for explanation). I wholly understand that such grounds may be insufficient to justify merging this request—but no harm in asking, right?
Document that `Vec::from_raw_parts[_in]` must be given a pointer from the correct allocator.
Currently, the documentation of `Vec::from_raw_parts` and `Vec::from_raw_parts_in` says nothing about what allocator the pointer must come from. This PR adds that missing information explicitly.
Loosen the bound on the Debug implementation of Weak.
Both `rc::Weak<T>` and `sync::Weak<T>` currently require `T: Debug` in their own `Debug` implementations, but they don't currently use it; they only ever print a fixed string.
A general implementation of Debug for Weak that actually attempts to upgrade and rely on the contents is unlikely in the future because it may have unbounded recursion in the presence of reference cycles, which Weak is commonly used in. (This was the justification for why the current implementation [was implemented the way it is](f0976e2cf3)).
When I brought it up [on the forum](https://internals.rust-lang.org/t/could-the-bound-on-weak-debug-be-relaxed/15504), it was suggested that, even if an implementation is specialized in the future that relies on the data stored within the Weak, it would likely rely on specialization anyway, and could therefore easily specialize on the Debug bound as well.
Update `rand` in the stdlib tests, and remove the `getrandom` feature from it.
The main goal is actually removing `getrandom`, so that eventually we can allow running the stdlib test suite on tier3 targets which don't have `getrandom` support. Currently those targets can only run the subset of stdlib tests that exist in uitests, and (generally speaking), we prefer not to test libstd functionality in uitests, which came up recently in https://github.com/rust-lang/rust/pull/104095 and https://github.com/rust-lang/rust/pull/104185. Additionally, the fact that we can't update `rand`/`getrandom` means we're stuck with the old set of tier3 targets, so can't test new ones.
~~Anyway, I haven't checked that this actually does allow use on tier3 targets (I think it does not, as some work is needed in stdlib submodules) but it moves us slightly closer to this, and seems to allow at least finally updating our `rand` dep, which definitely improves the status quo.~~ Checked and works now.
For the most part, our tests and benchmarks are fine using hard-coded seeds. A couple tests seem to fail with this (stuff manipulating the environment expecting no collisions, for example), or become pointless (all inputs to a function become equivalent). In these cases I've done a (gross) dance (ab)using `RandomState` and `Location::caller()` for some extra "entropy".
Trying to share that code seems *way* more painful than it's worth given that the duplication is a 7-line function, even if the lines are quite gross. (Keeping in mind that sharing it would require adding `rand` as a non-dev dep to std, and exposing a type from it publicly, all of which sounds truly awful, even if done behind a perma-unstable feature).
See also some previous attempts:
- https://github.com/rust-lang/rust/pull/86963 (in particular https://github.com/rust-lang/rust/pull/86963#issuecomment-885438936 which explains why this is non-trivial)
- https://github.com/rust-lang/rust/pull/89131
- https://github.com/rust-lang/rust/pull/96626#issuecomment-1114562857 (I tried in that PR at the same time, but settled for just removing the usage of `thread_rng()` from the benchmarks, since that was the main goal).
- https://github.com/rust-lang/rust/pull/104185
- Probably more. It's very tempting of a thing to "just update".
r? `@Mark-Simulacrum`
default OOM handler: use non-unwinding panic, to match std handler
The OOM handler in std will by default abort. This adjusts the default in liballoc to do the same, using the `can_unwind` flag on the panic info to indicate a non-unwinding panic.
In practice this probably makes little difference since the liballoc default will only come into play in no-std situations where people write a custom panic handler, which most likely will not implement unwinding. But still, this seems more consistent.
Cc `@rust-lang/wg-allocators,` https://github.com/rust-lang/rust/issues/66741
Revert "Implement allow-by-default `multiple_supertrait_upcastable` lint"
This is a clean revert of #105484.
I confirmed that reverting that PR fixes the regression reported in #106247. ~~I can't say I understand what this code is doing, but maybe it can be re-landed with a different implementation.~~ **Edit:** https://github.com/rust-lang/rust/issues/106247#issuecomment-1367174384 has an explanation of why #105484 ends up surfacing spurious `where_clause_object_safety` errors. The implementation of `where_clause_object_safety` assumes we only check whether a trait is object safe when somebody actually uses that trait with `dyn`. However the implementation of `multiple_supertrait_upcastable` added in the problematic PR involves checking *every* trait for whether it is object-safe.
FYI `@nbdd0121` `@compiler-errors`
Implement allow-by-default `multiple_supertrait_upcastable` lint
The lint detects when an object-safe trait has multiple supertraits.
Enabled in libcore and liballoc as they are low-level enough that many embedded programs will use them.
r? `@nikomatsakis`
Test leaking of BinaryHeap Drain iterators
Add test cases about forgetting the `BinaryHeap::Drain` iterator, and slightly fortifies some other test cases.
Consists of separate commits that I don't think are relevant on their own (but I'll happily turn these into more PRs if desired).
The lint "clippy::uninlined_format_args" recommends inline
variables in format strings. Fix two places in the docs that do
not do this. I noticed this because I copy/pasted one example in
to my project, then noticed this lint error. This fixes:
error: variables can be used directly in the `format!` string
--> src/main.rs:30:22
|
30 | let string = format!("{:.*}", decimals, magnitude);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
error: variables can be used directly in the `format!` string
--> src/main.rs:39:2
|
39 | write!(&mut io::stdout(), "{}", args).unwrap();
Send `VecDeque::from_iter` via `Vec::from_iter`
Since it's O(1) to convert between them now, might as well reuse the logic.
Mostly for the various specializations it does, but might also save some monomorphization work if, say, people collect slice iterators into both `Vec`s and `VecDeque`s.
improve doc of into_boxed_slice and impl From<Vec<T>> for Box<[T]>
Improves description of `into_boxed_slice`, and adds example to `impl From<Vec<T>> for Box<[T]>`.
Fixes#98908
Since it's O(1) to convert between them now, might as well reuse the logic.
Mostly for the various specializations it does, but might also save some monomorphization work if, say, people collect slice iterators into both `Vec`s and `VecDeque`s.
Update VecDeque implementation to use head+len instead of head+tail
(See #99805)
This changes `alloc::collections::VecDeque`'s internal representation from using head and tail indices to using a head index and a length field. It has a few advantages over the current design:
* It allows the buffer to be of length 0, which means the `VecDeque::new` new longer has to allocate and could be changed to a `const fn`
* It allows the `VecDeque` to fill the buffer completely, unlike the old implementation, which always had to leave a free space
* It removes the restriction for the size to be a power of two, allowing it to properly `shrink_to_fit`, unlike the old `VecDeque`
* The above points also combine to allow the `Vec<T> -> VecDeque<T>` conversion to be very cheap and guaranteed O(1). I mention this in the `From<Vec<T>>` impl, but it's not a strong guarantee just yet, as that would likely need some form of API change proposal.
All the tests seem to pass for the new `VecDeque`, with some slight adjustments.
r? `@scottmcm`
Clarify and restrict when `{Arc,Rc}::get_unchecked_mut` is allowed.
(Tracking issue for `{Arc,Rc}::get_unchecked_mut`: #63292)
(I'm using `Rc` in this comment, but it applies for `Arc` all the same).
As currently documented, `Rc::get_unchecked_mut` can lead to unsoundness when multiple `Rc`/`Weak` pointers to the same allocation exist. The current documentation only requires that other `Rc`/`Weak` pointers to the same allocation "must not be dereferenced for the duration of the returned borrow". This can lead to unsoundness in (at least) two ways: variance, and `Rc<str>`/`Rc<[u8]>` aliasing. ([playground link](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=d7e2d091c389f463d121630ab0a37320)).
This PR changes the documentation of `Rc::get_unchecked_mut` to restrict usage to when all `Rc<T>`/`Weak<T>` have the exact same `T` (including lifetimes). I believe this is sufficient to prevent unsoundness, while still allowing `get_unchecked_mut` to be called on an aliased `Rc` as long as the safety contract is upheld by the caller.
## Alternatives
* A less strict, but still sound alternative would be to say that the caller must only write values which are valid for all aliased `Rc`/`Weak` inner types. (This was [mentioned](https://github.com/rust-lang/rust/issues/63292#issuecomment-568284090) in the tracking issue). This may be too complicated to clearly express in the documentation.
* A more strict alternative would be to say that there must not be any aliased `Rc`/`Weak` pointers, i.e. it is required that get_mut would return `Some(_)`. (This was also mentioned in the tracking issue). There is at least one codebase that this would cause to become unsound ([here](be5a164d77/src/memtable.rs (L166)), where additional locking is used to ensure unique access to an aliased `Rc<T>`; I saw this because it was linked on the tracking issue).
This moves the stable sort implementation to the core::slice::sort module. By
virtue of being in core it can't access `Vec`. The two `Vec` used by merge sort,
`buf` and `runs`, are modelled as custom types that implement the very limited
required `Vec` interface with the help of provided allocation and free
functions. This is done to allow future re-use of functions and logic between
stable and unstable sort. Such as `insert_head`.
`VecDeque::resize` should re-use the buffer in the passed-in element
Today it always copies it for *every* appended element, but one of those clones is avoidable.
This adds `iter::repeat_n` (https://github.com/rust-lang/rust/issues/104434) as the primitive needed to do this. If this PR is acceptable, I'll also use this in `Vec` rather than its custom `ExtendElement` type & infrastructure that is harder to share between multiple different containers:
101e1822c3/library/alloc/src/vec/mod.rs (L2479-L2492)
Attempt to reuse `Vec<T>` backing storage for `Rc/Arc<[T]>`
If a `Vec<T>` has sufficient capacity to store the inner `RcBox<[T]>`, we can just reuse the existing allocation and shift the elements up, instead of making a new allocation.
run alloc benchmarks in Miri and fix UB
Miri since recently has a "fake monotonic clock" that works even with isolation. Its measurements are not very meaningful but it means we can run these benches and check them for UB.
And that's a good thing since there was UB here: fixes https://github.com/rust-lang/rust/issues/104096.
r? ``@thomcc``
disable btree size tests on Miri
Seems fine not to run these in Miri, they can't have UB anyway. And this lets us do layout randomization in Miri.
r? ``@thomcc``
The new implementation doesn't use weak lang items and instead changes
`#[alloc_error_handler]` to an attribute macro just like
`#[global_allocator]`.
The attribute will generate the `__rg_oom` function which is called by
the compiler-generated `__rust_alloc_error_handler`. If no `__rg_oom`
function is defined in any crate then the compiler shim will call
`__rdl_oom` in the alloc crate which will simply panic.
This also fixes link errors with `-C link-dead-code` with
`default_alloc_error_handler`: `__rg_oom` was previously defined in the
alloc crate and would attempt to reference the `oom` lang item, even if
it didn't exist. This worked as long as `__rg_oom` was excluded from
linking since it was not called.
This is a prerequisite for the stabilization of
`default_alloc_error_handler` (#102318).