Improve the function pointer docs
This is #97842 but for function pointers instead of tuples. The concept is basically the same.
* Reduce duplicate impls; show `fn (T₁, T₂, …, Tₙ)` and include a sentence saying that there exists up to twelve of them.
* Show `Copy` and `Clone`.
* Show auto traits like `Send` and `Sync`, and blanket impls like `Any`.
https://notriddle.com/notriddle-rustdoc-test/std/primitive.fn.html
* Reduce duplicate impls; show only the `fn (T)` and include a sentence
saying that there exists up to twelve of them.
* Show `Copy` and `Clone`.
* Show auto traits like `Send` and `Sync`, and blanket impls like `Any`.
core::any: replace some generic types with impl Trait
This gives a cleaner API since the caller only specifies the concrete type they usually want to.
r? `@yaahc`
- Explicitly mention that `AsRef` and `AsMut` do not auto-dereference
generally for all dereferencable types (but only if inner type is a
shared and/or mutable reference)
- Give advice to not use `AsRef` or `AsMut` for the sole purpose of
dereferencing
- Suggest providing a transitive `AsRef` or `AsMut` implementation for
types which implement `Deref`
- Add new section "Reflexivity" in documentation comments for `AsRef`
and `AsMut`
- Provide better example for `AsMut`
- Added heading "Relation to `Borrow`" in `AsRef`'s docs to improve
structure
Issue #45742 and a corresponding FIXME in the libcore suggest that
`AsRef` and `AsMut` should provide a blanket implementation over
`Deref`. As that is difficult to realize at the moment, this commit
updates the documentation to better describe the status-quo and to give
advice on how to use `AsRef` and `AsMut`.
Fix `Skip::next` for non-fused inner iterators
`iter.skip(n).next()` will currently call `nth` and `next` in succession on `iter`, without checking whether `nth` exhausts the iterator. Using `?` to propagate a `None` value returned by `nth` avoids this.
Use split_once in FromStr docs
Current implementation:
```rust
fn from_str(s: &str) -> Result<Self, Self::Err> {
let coords: Vec<&str> = s.trim_matches(|p| p == '(' || p == ')' )
.split(',')
.collect();
let x_fromstr = coords[0].parse::<i32>()?;
let y_fromstr = coords[1].parse::<i32>()?;
Ok(Point { x: x_fromstr, y: y_fromstr })
}
```
Creating the vector is not necessary, `split_once` does the job better.
Alternatively we could also remove `trim_matches` with `strip_prefix` and `strip_suffix`:
```rust
let (x, y) = s
.strip_prefix('(')
.and_then(|s| s.strip_suffix(')'))
.and_then(|s| s.split_once(','))
.unwrap();
```
The question is how much 'correctness' is too much and distracts from the example. In a real implementation you would also not unwrap (or originally access the vector without bounds checks), but implementing a custom Error and adding a `From<ParseIntError>` and implementing the `Error` trait adds a lot of code to the example which is not relevant to the `FromStr` trait.
Add assertion that `transmute_copy`'s U is not larger than T
This is called out as a safety requirement in the docs, but because knowing this can be done at compile time and constant folded (just like the `align_of` branch is removed), we can just panic here.
I've looked at the asm (using `cargo-asm`) of a function that both is correct and incorrect, and the panic is completely removed, or is unconditional, without needing build-std.
I don't expect this to cause much breakage in the wild. I scanned through https://miri.saethlin.dev/ub for issues that would look like this (error: Undefined Behavior: memory access failed: alloc1768 has size 1, so pointer to 8 bytes starting at offset 0 is out-of-bounds), but couldn't find any.
That doesn't rule out it happening in crates tested that fail earlier for some other reason, though, but it indicates that doing this is rare, if it happens at all. A crater run for this would need to be build and test, since this is a runtime thing.
Also added a few more transmute_copy tests.
Rearrange slice::split_mut to remove bounds check
Closes https://github.com/rust-lang/rust/issues/86313
Turns out that all we need to do here is reorder the bounds checks to convince LLVM that all the bounds checks can be removed. It seems like LLVM just fails to propagate the original length information past the first bounds check and into the second one. With this implementation it doesn't need to, each check can be proven inbounds based on the one immediately previous.
I've gradually convinced myself that this implementation is unambiguously better based on the above logic, but maybe this is still deserving of a codegen test?
Also the mentioned borrowck limitation no longer seems to exist.
Add a special case for align_offset /w stride != 1
This generalizes the previous `stride == 1` special case to apply to any
situation where the requested alignment is divisible by the stride. This
in turn allows the test case from #98809 produce ideal assembly, along
the lines of:
leaq 15(%rdi), %rax
andq $-16, %rax
This also produces pretty high quality code for situations where the
alignment of the input pointer isn’t known:
pub unsafe fn ptr_u32(slice: *const u32) -> *const u32 {
slice.offset(slice.align_offset(16) as isize)
}
// =>
movl %edi, %eax
andl $3, %eax
leaq 15(%rdi), %rcx
andq $-16, %rcx
subq %rdi, %rcx
shrq $2, %rcx
negq %rax
sbbq %rax, %rax
orq %rcx, %rax
leaq (%rdi,%rax,4), %rax
Here LLVM is smart enough to replace the `usize::MAX` special case with
a branch-less bitwise-OR approach, where the mask is constructed using
the neg and sbb instructions. This appears to work across various
architectures I’ve tried.
This change ends up introducing more branches and code in situations
where there is less knowledge of the arguments. For example when the
requested alignment is entirely unknown. This use-case was never really
a focus of this function, so I’m not particularly worried, especially
since llvm-mca is saying that the new code is still appreciably faster,
despite all the new branching.
Fixes#98809.
Sadly, this does not help with #72356.
This generalizes the previous `stride == 1` special case to apply to any
situation where the requested alignment is divisible by the stride. This
in turn allows the test case from #98809 produce ideal assembly, along
the lines of:
leaq 15(%rdi), %rax
andq $-16, %rax
This also produces pretty high quality code for situations where the
alignment of the input pointer isn’t known:
pub unsafe fn ptr_u32(slice: *const u32) -> *const u32 {
slice.offset(slice.align_offset(16) as isize)
}
// =>
movl %edi, %eax
andl $3, %eax
leaq 15(%rdi), %rcx
andq $-16, %rcx
subq %rdi, %rcx
shrq $2, %rcx
negq %rax
sbbq %rax, %rax
orq %rcx, %rax
leaq (%rdi,%rax,4), %rax
Here LLVM is smart enough to replace the `usize::MAX` special case with
a branch-less bitwise-OR approach, where the mask is constructed using
the neg and sbb instructions. This appears to work across various
architectures I’ve tried.
This change ends up introducing more branches and code in situations
where there is less knowledge of the arguments. For example when the
requested alignment is entirely unknown. This use-case was never really
a focus of this function, so I’m not particularly worried, especially
since llvm-mca is saying that the new code is still appreciably faster,
despite all the new branching.
Fixes#98809.
Sadly, this does not help with #72356.
Stabilize `core::ffi::CStr`, `alloc::ffi::CString`, and friends
Stabilize the `core_c_str` and `alloc_c_string` feature gates.
Change `std::ffi` to re-export these types rather than creating type
aliases, since they now have matching stability.
Stabilize the `core_c_str` and `alloc_c_string` feature gates.
Change `std::ffi` to re-export these types rather than creating type
aliases, since they now have matching stability.
The `Iterator::scan` documentation seemed a little misleading to my newcomer
eyes, and this tries to address that.
* I found “similar to `fold`” unhelpful because (a) the similarity is only that
they maintain state between iterations, and (b) the _dissimilarity_ is no less
important: one returns a final value and the other an iterator. So this
replaces that with “which, like `fold`, holds internal state, but unlike
`fold`, produces a new iterator.
* I found “the return value from the closure, an [`Option`], is yielded by the
iterator” to be downright incorrect, because “yielded by the iterator” means
“returned by the `next` method wrapped in `Some`”, so this implied that `scan`
would convert an input iterator of `T` to an output iterator of `Option<T>`.
So this replaces “yielded by the iterator” with “returned by the `next`
method” and elaborates: “Thus the closure can return `Some(value)` to yield
`value`, or `None` to end the iteration.”
* This also changes the example to illustrate the latter point by returning
`None` to terminate the iteration early based on `state`.
Stabilize `core::ffi:c_*` and rexport in `std::ffi`
This only stabilizes the base types, not the non-zero variants, since
those have their own separate tracking issue and have not gone through
FCP to stabilize.
This only stabilizes the base types, not the non-zero variants, since
those have their own separate tracking issue and have not gone through
FCP to stabilize.
Rollup of 5 pull requests
Successful merges:
- #99045 (improve print styles)
- #99086 (Fix display of search result crate filter dropdown)
- #99100 (Fix binary name in help message for test binaries)
- #99103 (Avoid some `&str` to `String` conversions)
- #99109 (fill new tracking issue for `feature(strict_provenance_atomic_ptr)`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Enforce that layout size fits in isize in Layout
As it turns out, enforcing this _in APIs that already enforce `usize` overflow_ is fairly trivial. `Layout::from_size_align_unchecked` continues to "allow" sizes which (when rounded up) would overflow `isize`, but these are now declared as library UB for `Layout`, meaning that consumers of `Layout` no longer have to check this before making an allocation.
(Note that this is "immediate library UB;" IOW it is valid for a future release to make this immediate "language UB," and there is an extant patch to do so, to allow Miri to catch this misuse.)
See also #95252, [Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Layout.20Isn't.20Enforcing.20The.20isize.3A.3AMAX.20Rule).
Fixes https://github.com/rust-lang/rust/issues/95334
Some relevant quotes:
`@eddyb,` https://github.com/rust-lang/rust/pull/95252#issuecomment-1078513769
> [B]ecause of the non-trivial presence of both of these among code published on e.g. crates.io:
>
> 1. **`Layout` "producers" / `GlobalAlloc` "users"**: smart pointers (including `alloc::rc` copies with small tweaks), collections, etc.
> 2. **`Layout` "consumers" / `GlobalAlloc` "providers"**: perhaps fewer of these, but anything built on top of OS APIs like `mmap` will expose `> isize::MAX` allocations (on 32-bit hosts) if they lack extra checks
>
> IMO the only responsible option is to enforce the `isize::MAX` limit in `Layout`, which:
>
> * makes `Layout` _sound_ in terms of only ever allowing allocations where `(alloc_base_ptr: *mut u8).offset(size)` is never UB
> * frees both "producers" and "consumers" of `Layout` from manually reimplementing the checks
> * manual checks can be risky, e.g. if the final size passed to the allocator isn't the one being checked
> * this applies retroactively, fixing the overall soundness of existing code with zero transition period or _any_ changes required from users (as long as going through `Layout` is mandatory, making a "choke point")
>
>
> Feel free to quote this comment onto any relevant issue, I might not be able to keep track of developments.
`@Gankra,` https://github.com/rust-lang/rust/pull/95252#issuecomment-1078556371
> As someone who spent way too much time optimizing libcollections checks for this stuff and tried to splatter docs about it everywhere on the belief that it was a reasonable thing for people to manually take care of: I concede the point, it is not reasonable. I am wholy spiritually defeated by the fact that _liballoc_ of all places is getting this stuff wrong. This isn't throwing shade at the folks who implemented these Rc features, but rather a statement of how impractical it is to expect anyone out in the wider ecosystem to enforce them if _some of the most audited rust code in the library that defines the very notion of allocating memory_ can't even reliably do it.
>
> We need the nuclear option of Layout enforcing this rule. Code that breaks this rule is _deeply_ broken and any "regressions" from changing Layout's contract is a _correctness_ fix. Anyone who disagrees and is sufficiently motivated can go around our backs but the standard library should 100% refuse to enable them.
cc also `@RalfJung` `@rust-lang/wg-allocators.` Even though this technically supersedes #95252, those potential failure points should almost certainly still get nicer panics than just "unwrap failed" (which they would get by this PR).
It might additionally be worth recommending to users of the `Layout` API that they should ideally use `.and_then`/`?` to complete the entire layout calculation, and then `panic!` from a single location at the end of `Layout` manipulation, to reduce the overhead of the checks and optimizations preserving the exact location of each `panic` which are conceptually just one failure: allocation too big.
Probably deserves a T-lang and/or T-libs-api FCP (this technically solidifies the [objects must be no larger than `isize::MAX`](https://rust-lang.github.io/unsafe-code-guidelines/layout/scalars.html#isize-and-usize) rule further, and the UCG document says this hasn't been RFCd) and a crater run. Ideally, no code exists that will start failing with this addition; if it does, it was _likely_ (but not certainly) causing UB.
Changes the raw_vec allocation path, thus deserves a perf run as well.
I suggest hiding whitespace-only changes in the diff view.
rustdoc: Add more semantic information to impl IDs
Take over of #92745.
I fixed the last remaining issue for the links in the sidebar (mentioned by `@jsha)` and fixed the few links broken in the std/core docs.
cc `@camelid`
r? `@notriddle`
Allow arithmetic and certain bitwise ops on AtomicPtr
This is mainly to support migrating from `AtomicUsize`, for the strict provenance experiment.
This is a pretty dubious set of APIs, but it should be sufficient to allow code that's using `AtomicUsize` to manipulate a tagged pointer atomically. It's under a new feature gate, `#![feature(strict_provenance_atomic_ptr)]`, but I'm not sure if it needs its own tracking issue. I'm happy to make one, but it's not clear that it's needed.
I'm unsure if it needs changes in the various non-LLVM backends. Because we just cast things to integers anyway (and were already doing so), I doubt it.
API change proposal: https://github.com/rust-lang/libs-team/issues/60Fixes#95492
ptr::copy and ptr::swap are doing untyped copies
The consensus in https://github.com/rust-lang/rust/issues/63159 seemed to be that these operations should be "untyped", i.e., they should treat the data as raw bytes, should work when these bytes violate the validity invariant of `T`, and should exactly preserve the initialization state of the bytes that are being copied. This is already somewhat implied by the description of "copying/swapping size*N bytes" (rather than "N instances of `T`").
The implementations mostly already work that way (well, for LLVM's intrinsics the documentation is not precise enough to say what exactly happens to poison, but if this ever gets clarified to something that would *not* perfectly preserve poison, then I strongly assume there will be some way to make a copy that *does* perfectly preserve poison). However, I had to adjust `swap_nonoverlapping`; after ``@scottmcm's`` [recent changes](https://github.com/rust-lang/rust/pull/94212), that one (sometimes) made a typed copy. (Note that `mem::swap`, which works on mutable references, is unchanged. It is documented as "swapping the values at two mutable locations", which to me strongly indicates that it is indeed typed. It is also safe and can rely on `&mut T` pointing to a valid `T` as part of its safety invariant.)
On top of adding a test (that will be run by Miri), this PR then also adjusts the documentation to indeed stably promise the untyped semantics. I assume this means the PR has to go through t-libs (and maybe t-lang?) FCP.
Fixes https://github.com/rust-lang/rust/issues/63159
[core] add `Exclusive` to sync
(discussed here: https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Adding.20.60SyncWrapper.60.20to.20std)
`Exclusive` is a wrapper that exclusively allows mutable access to the inner value if you have exclusive access to the wrapper. It acts like a compile time mutex, and hold an unconditional `Sync` implementation.
## Justification for inclusion into std
- This wrapper unblocks actual problems:
- The example that I hit was a vector of `futures::future::BoxFuture`'s causing a central struct in a script to be non-`Sync`. To work around it, you either write really difficult code, or wrap the futures in a needless mutex.
- Easy to maintain: this struct is as simple as a wrapper can get, and its `Sync` implementation has very clear reasoning
- Fills a gap: `&/&mut` are to `RwLock` as `Exclusive` is to `Mutex`
## Public Api
```rust
// core::sync
#[derive(Default)]
struct Exclusive<T: ?Sized> { ... }
impl<T: ?Sized> Sync for Exclusive {}
impl<T> Exclusive<T> {
pub const fn new(t: T) -> Self;
pub const fn into_inner(self) -> T;
}
impl<T: ?Sized> Exclusive<T> {
pub const fn get_mut(&mut self) -> &mut T;
pub const fn get_pin_mut(Pin<&mut self>) -> Pin<&mut T>;
pub const fn from_mut(&mut T) -> &mut Exclusive<T>;
pub const fn from_pin_mut(Pin<&mut T>) -> Pin<&mut Exclusive<T>>;
}
impl<T: Future> Future for Exclusive { ... }
impl<T> From<T> for Exclusive<T> { ... }
impl<T: ?Sized> Debug for Exclusive { ... }
```
## Naming
This is a big bikeshed, but I felt that `Exclusive` captured its general purpose quite well.
## Stability and location
As this is so simple, it can be in `core`. I feel that it can be stabilized quite soon after it is merged, if the libs teams feels its reasonable to add. Also, I don't really know how unstable feature work in std/core's codebases, so I might need help fixing them
## Tips for review
The docs probably are the thing that needs to be reviewed! I tried my best, but I'm sure people have more experience than me writing docs for `Core`
### Implementation:
The API is mostly pulled from https://docs.rs/sync_wrapper/latest/sync_wrapper/struct.SyncWrapper.html (which is apache 2.0 licenesed), and the implementation is trivial:
- its an unsafe justification for pinning
- its an unsafe justification for the `Sync` impl (mostly reasoned about by ````@danielhenrymantilla```` here: https://github.com/Actyx/sync_wrapper/pull/2)
- and forwarding impls, starting with derivable ones and `Future`
Simplify memory ordering intrinsics
This changes the names of the atomic intrinsics to always fully include their memory ordering arguments.
```diff
- atomic_cxchg
+ atomic_cxchg_seqcst_seqcst
- atomic_cxchg_acqrel
+ atomic_cxchg_acqrel_release
- atomic_cxchg_acqrel_failrelaxed
+ atomic_cxchg_acqrel_relaxed
// And so on.
```
- `seqcst` is no longer implied
- The failure ordering on chxchg is no longer implied in some cases, but now always explicitly part of the name.
- `release` is no longer shortened to just `rel`. That was especially confusing, since `relaxed` also starts with `rel`.
- `acquire` is no longer shortened to just `acq`, such that the names now all match the `std::sync::atomic::Ordering` variants exactly.
- This now allows for more combinations on the compare exchange operations, such as `atomic_cxchg_acquire_release`, which is necessary for #68464.
- This PR only exposes the new possibilities through unstable intrinsics, but not yet through the stable API. That's for [a separate PR](https://github.com/rust-lang/rust/pull/98383) that requires an FCP.
Suffixes for operations with a single memory order:
| Order | Before | After |
|---------|--------------|------------|
| Relaxed | `_relaxed` | `_relaxed` |
| Acquire | `_acq` | `_acquire` |
| Release | `_rel` | `_release` |
| AcqRel | `_acqrel` | `_acqrel` |
| SeqCst | (none) | `_seqcst` |
Suffixes for compare-and-exchange operations with two memory orderings:
| Success | Failure | Before | After |
|---------|---------|--------------------------|--------------------|
| Relaxed | Relaxed | `_relaxed` | `_relaxed_relaxed` |
| Relaxed | Acquire | ❌ | `_relaxed_acquire` |
| Relaxed | SeqCst | ❌ | `_relaxed_seqcst` |
| Acquire | Relaxed | `_acq_failrelaxed` | `_acquire_relaxed` |
| Acquire | Acquire | `_acq` | `_acquire_acquire` |
| Acquire | SeqCst | ❌ | `_acquire_seqcst` |
| Release | Relaxed | `_rel` | `_release_relaxed` |
| Release | Acquire | ❌ | `_release_acquire` |
| Release | SeqCst | ❌ | `_release_seqcst` |
| AcqRel | Relaxed | `_acqrel_failrelaxed` | `_acqrel_relaxed` |
| AcqRel | Acquire | `_acqrel` | `_acqrel_acquire` |
| AcqRel | SeqCst | ❌ | `_acqrel_seqcst` |
| SeqCst | Relaxed | `_failrelaxed` | `_seqcst_relaxed` |
| SeqCst | Acquire | `_failacq` | `_seqcst_acquire` |
| SeqCst | SeqCst | (none) | `_seqcst_seqcst` |
Refactor iter adapters with less macros
Just some code cleanup. Introduced a util `and_then_or_clear` for each of chain, flatten and fuse iter adapter impls. This reduces code nicely for flatten, but admittedly the other modules are more of a lateral move replacing macros with a function. But I think consistency across the modules and avoiding macros when possible is good.
libcore tests: avoid int2ptr casts
We don't need any of these pointers to actually be dereferenceable so using `ptr::invalid` should be fine. And then we can run Miri with strict provenance enforcement on the tests.
This commit adds new methods that combine sequences of existing
formatting methods.
- `Formatter::debug_{tuple,struct}_field[12345]_finish`, equivalent to a
`Formatter::debug_{tuple,struct}` + N x `Debug{Tuple,Struct}::field` +
`Debug{Tuple,Struct}::finish` call sequence.
- `Formatter::debug_{tuple,struct}_fields_finish` is similar, but can
handle any number of fields by using arrays.
These new methods are all marked as `doc(hidden)` and unstable. They are
intended for the compiler's own use.
Special-casing up to 5 fields gives significantly better performance
results than always using arrays (as was tried in #95637).
The commit also changes the `Debug` deriving code to use these new methods. For
example, where the old `Debug` code for a struct with two fields would be like
this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => {
let debug_trait_builder = &mut ::core::fmt::Formatter::debug_struct(f, "S2");
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f1", &&(*__self_0_0));
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f2", &&(*__self_0_1));
::core::fmt::DebugStruct::finish(debug_trait_builder)
}
}
}
```
the new code is like this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => ::core::fmt::Formatter::debug_struct_field2_finish(
f,
"S2",
"f1",
&&(*__self_0_0),
"f2",
&&(*__self_0_1),
),
}
}
```
This shrinks the code produced for `Debug` instances
considerably, reducing compile times and binary sizes.
Co-authored-by: Scott McMurray <scottmcm@users.noreply.github.com>
clarify how Rust atomics correspond to C++ atomics
``@cbeuw`` noted in https://github.com/rust-lang/miri/pull/1963 that the correspondence between C++ atomics and Rust atomics is not quite as obvious as one might think, since in Rust I can use `get_mut` to treat previously non-atomic data as atomic. However, I think using C++20 `atomic_ref`, we can establish a suitable relation between the two -- or do you see problems with that ``@cbeuw?`` (I recall you said there was some issue, but it was deep inside that PR and Github makes it impossible to find...)
Cc ``@thomcc;`` not sure whom else to ping for atomic memory model things.
Rollup of 4 pull requests
Successful merges:
- #98235 (Drop magic value 3 from code)
- #98267 (Don't omit comma when suggesting wildcard arm after macro expr)
- #98276 (Mention formatting macros when encountering `ArgumentV1` method in const)
- #98296 (Add a link to the unstable book page on Generator doc comment)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
It's inconvenient to sort a slice or Vec of floats, compared to sorting
integers. To simplify numeric code, add a convenience method to `[f32]`
and `[f64]` to sort them using `sort_unstable_by` with `total_cmp`.
Add a link to the unstable book page on Generator doc comment
This makes it easier to jump into the Generator section on the unstable book.
Signed-off-by: Yuki Okushi <jtitor@2k36.org>
Mention formatting macros when encountering `ArgumentV1` method in const
Also open to just closing this if it's overkill. There are a lot of other distracting error messages around, so maybe it's not worth fixing just this one.
Fixes#93665
Fix the generator example for `pin!()`
The previous generator example is not actually self-referential, since the reference is created after the yield.
CC #93178 (tracking issue)
Add `core::mem::copy` to complement `core::mem::drop`.
This is useful for combinators. I didn't add `clone` since you can already
use `Clone::clone` in its place; copy has no such corresponding function.
Stabilize checked slice->str conversion functions
This PR stabilizes the following APIs as `const` functions in Rust 1.63:
```rust
// core::str
pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error>;
impl Utf8Error {
pub const fn valid_up_to(&self) -> usize;
pub const fn error_len(&self) -> Option<usize>;
}
```
Note that the `from_utf8_mut` function is not stabilized as unique references (`&mut _`) are [unstable in const context].
FCP: https://github.com/rust-lang/rust/issues/91006#issuecomment-1134593095
[unstable in const context]: https://github.com/rust-lang/rust/issues/57349
once cell renamings
This PR does the renamings proposed in https://github.com/rust-lang/rust/issues/74465#issuecomment-1153703128
- Move/rename `lazy::{OnceCell, Lazy}` to `cell::{OnceCell, LazyCell}`
- Move/rename `lazy::{SyncOnceCell, SyncLazy}` to `sync::{OnceLock, LazyLock}`
(I used `Lazy...` instead of `...Lazy` as it seems to be more consistent, easier to pronounce, etc)
```@rustbot``` label +T-libs-api -T-libs
Make `std::mem::needs_drop` accept `?Sized`
This change attempts to make `needs_drop` work with types like `[u8]` and `str`.
This enables code in types like `Arc<T>` that was not possible before, such as https://github.com/rust-lang/rust/pull/97676.
Inline `const_eval_select`
To avoid circular link time dependency between core and compiler
builtins when building with `-Zshare-generics`.
r? ```@Amanieu```
In cases where the nth element is not unique within the slice, it is not
correct to say that the values in the returned triplet include ones for
"all elements" less/greater than that at the given index: indeed one (or
more) such values would then laso contain values equal to that at the
given index.
The text proposed here clarifies exactly what is returned, but in so
doing it is also documenting an implementation detail that previously
wasn't detailed: namely that the return slices are slices into the
reordered slice. I don't think this can be contentious, because the
lifetimes of those returned slices are bound to that of the original
(now reordered) slice—so there really isn't any other reasonable
implementation that could have this behaviour; but nevertheless it's
probably best if @rust-lang/libs-api give it a nod?
Fixes#97982
r? m-ou-se
@rustbot label +A-docs C-bug +T-libs-api
line 1352, change `self` to `*self`, other to `*other`
The current code will not results bug, but it difficult to understand. These code result to call &f32::partial_cmp(), and the performance will be lower than the changed code. I'm not sure why the current code don't use (*self) (*other), if you have some idea, please let me know.
The current code will not results bug, but it difficult to understand. These code result to call &f32::partial_cmp(), and the performance will be lower than the changed code. I'm not sure why the current code don't use (*self) (*other), if you have some idea, please let me know.
update docs for `std::future::IntoFuture`
Ref https://github.com/rust-lang/rust/issues/67644.
This updates the docs for `IntoFuture` providing a bit more guidance on how to use it. Thanks!
Add the Provider api to core::any
This is an implementation of [RFC 3192](https://github.com/rust-lang/rfcs/pull/3192) ~~(which is yet to be merged, thus why this is a draft PR)~~. It adds an API for type-driven requests and provision of data from trait objects. A primary use case is for the `Error` trait, though that is not implemented in this PR. The only major difference to the RFC is that the functionality is added to the `any` module, rather than being in a sibling `provide_any` module (as discussed in the RFC thread).
~~Still todo: improve documentation on items, including adding examples.~~
cc `@yaahc`
This commit adds a new unstable attribute, `#[doc(tuple_varadic)]`, that
shows a 1-tuple as `(T, ...)` instead of just `(T,)`, and links to a section
in the tuple primitive docs that talks about these.
Suggest using `iter()` or `into_iter()` for `Vec`
We cannot do that for `&Vec` because `#[rustc_on_unimplemented]` is limited (it does not clean generic instantiation for references, only for ADTs).
`@rustbot` label +A-diagnostics
Use repr(C) when depending on struct layout in ptr tests
The test depends on the layout of this struct `Pair`, so it should use `repr(C)` instead of the default `repr(Rust)`.
Improve the safety docs for `CStr`
Namely, the two functions `from_ptr` and `from_bytes_with_nul_unchecked`.
Before, these functions didn't state the requirements clearly enough,
and I was not immediately able to find them like for other functions.
This doesn't change the content of the docs, but simply rewords them for
clarity.
note: I'm not entirely sure about the '`ptr` must be valid for reads of `u8`.', there might be room for improvement for this (and maybe for the other docs as well 😄)
Namely, the two functions `from_ptr` and `from_bytes_with_nul_unchecked`.
Before, this functions didn't state the requirements clearly enough,
and I was not immediately able to find them like for other functions.
This doesn't change the content of the docs, but simply rewords them for
clarity.
use strict provenance APIs
The stdlib was adjusted to avoid bare int2ptr casts, but recently some casts of that sort have sneaked back in. Let's fix that. :)
implement ptr.addr() via transmute
As per the discussion in https://github.com/rust-lang/unsafe-code-guidelines/issues/286, the semantics for ptr-to-int transmutes that we are going with for now is to make them strip provenance without exposing it. That's exactly what `ptr.addr()` does! So we can implement `ptr.addr()` via `transmute`. This also means that once https://github.com/rust-lang/rust/pull/97684 lands, Miri can distinguish `ptr.addr()` from `ptr.expose_addr()`, and the following code will correctly be called out as having UB (if permissive provenance mode is enabled, which will become the default once the [implementation is complete](https://github.com/rust-lang/miri/issues/2133)):
```rust
fn main() {
let x: i32 = 3;
let x_ptr = &x as *const i32;
let x_usize: usize = x_ptr.addr();
// Cast back an address that did *not* get exposed.
let ptr = std::ptr::from_exposed_addr::<i32>(x_usize);
assert_eq!(unsafe { *ptr }, 3); //~ ERROR Undefined Behavior: dereferencing pointer failed
}
```
This completes the Miri implementation of the new distinctions introduced by strict provenance. :)
Cc `@Gankra` -- for now I left in your `FIXME(strict_provenance_magic)` saying these should be intrinsics, but I do not necessarily agree that they should be. Or if we have an intrinsic, I think it should behave exactly like the `transmute` does, which makes one wonder why the intrinsic should be needed.
Stabilize `{slice,array}::from_ref`
This PR stabilizes the following APIs as `const` functions in Rust `1.63`:
```rust
// core::array
pub const fn from_ref<T>(s: &T) -> &[T; 1];
// core::slice
pub const fn from_ref<T>(s: &T) -> &[T];
```
Note that the `mut` versions are not stabilized as unique references (`&mut _`) are [unstable in const context].
FCP: https://github.com/rust-lang/rust/issues/90206#issuecomment-1134586665
r? rust-lang/libs-api `@rustbot` label +T-libs-api -T-libs
[unstable in const context]: https://github.com/rust-lang/rust/issues/57349
Additional `*mut [T]` methods
Split out from #94247
This adds the following methods to raw slices that already exist on regular slices
* `*mut [T]::is_empty`
* `*mut [T]::split_at_mut`
* `*mut [T]::split_at_mut_unchecked`
These methods reduce the amount of unsafe code needed to migrate `ChunksMut` and related iterators
to raw slices (#94247)
r? `@m-ou-se`
Corrected EBNF grammar for from_str
Hello! This is my first time contributing to an open-source project. I'm excited to have the chance to contribute to the rust community 🥳
I noticed an issue with the documentation for `from_str` in `f32` and `f64`. It states that "All strings that adhere to the following [EBNF](https://www.w3.org/TR/REC-xml/#sec-notation) grammar when lowercased will result in an `Ok` being returned. I believe this is incorrect for the string `"."`, which is valid for the given EBNF grammar, but does not result in an `Ok` being returned ([playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=09f891aa87963a56d3b0d715d8cbc2b4)). I have simplified the grammar in a way which fixes that, but is otherwise identical.
Previously, the `Number` part of the EBNF grammar had an option for `'.' Digit*`, which would include the string `"."`. This is not valid, and does not return an Ok as stated. The corrected version removes this, and still allows for the `'.' Digit+` case with the already existing `Digit* '.' Digit+` case.
Add unicode fast path to `is_printable`
Before, it would enter the full expensive check even for normal ascii characters. Now, it skips the check for the ascii characters in `32..127`. This range was checked manually from the current behavior.
I ran the `tracing` test suite in miri, and it was really slow. I looked at a profile, and miri spent most of the time in `core::char::methods::escape_debug_ext`, where half of that was dominated by `core::unicode::printable::is_printable`. So I optimized it here.
The tracing profile:

Before, it would enter the full expensive check even for normal ascii
characters. Now, it skips the check for the ascii characters in
`32..127`. This range was checked manually from the current behavior.
Use Box::new() instead of box syntax in library tests
The tests inside `library/*` have no reason to use `box` syntax as they have 0 performance relevance. Therefore, we can safely remove them (instead of having to use alternatives like the one in #97293).
Replace `#[default_method_body_is_const]` with `#[const_trait]`
pulled out of #96077
related issues: #67792 and #92158
cc `@fee1-dead`
This is groundwork to only allowing `impl const Trait` for traits that are marked with `#[const_trait]`. This is necessary to prevent adding a new default method from becoming a breaking change (as it could be a non-const fn).
Finish bumping stage0
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
This now brings us to cfg-clean, with the exception of check-cfg-features in bootstrap;
I'd prefer to leave that for a separate PR at this time since it's likely to be more tricky.
cc https://github.com/rust-lang/rust/pull/97147#issuecomment-1132845061
r? `@pietroalbini`
ptr::invalid is not equivalent to a int2ptr cast
I just realized I forgot to update these docs when adding `from_exposed_addr`.
Right now the docs say `invalid` and `from_exposed_addr` are both equivalent to a cast, and that is clearly not what we want.
Cc ``@Gankra``
Previously, the `Number` part of the EBNF grammar had an option for `'.' Digit*`, which would include the string "." (a single decimal point). This is not valid, and does not return an Ok as stated. The corrected version removes this, and still allows for the `'.' Digit+` case with the already existing `Digit* '.' Digit+` case.
Partially stabilize `(const_)slice_ptr_len` feature by stabilizing `NonNull::len`
This PR partially stabilizes features `const_slice_ptr_len` and `slice_ptr_len` by only stabilizing `NonNull::len`. This partial stabilization is tracked under features `slice_ptr_len_nonnull` and `const_slice_ptr_len_nonnull`, for which this PR can serve as the tracking issue.
To summarize the discussion from #71146 leading up to this partial stabilization request:
It's currently a bit footgunny to obtain the length of a raw slice pointer, stabilization of `NonNull:len` will help with removing these footguns. Some example footguns are:
```rust
/// # Safety
/// The caller must ensure that `ptr`:
/// 1. does not point to memory that was previously allocated but is now deallocated;
/// 2. is within the bounds of a single allocated object;
/// 3. does not to point to a slice for which the length exceeds `isize::MAX` bytes;
/// 4. points to a properly aligned address;
/// 5. does not point to uninitialized memory;
/// 6. does not point to a mutably borrowed memory location.
pub unsafe fn ptr_len<T>(ptr: core::ptr::NonNull<[T]>) -> usize {
(&*ptr.as_ptr()).len()
}
```
A slightly less complicated version (but still more complicated than it needs to be):
```rust
/// # Safety
/// The caller must ensure that the start of `ptr`:
/// 1. does not point to memory that was previously allocated but is now deallocated;
/// 2. must be within the bounds of a single allocated object.
pub unsafe fn ptr_len<T>(ptr: NonNull<[T]>) -> usize {
(&*(ptr.as_ptr() as *const [()])).len()
}
```
This PR does not stabilize `<*const [T]>::len` and `<*mut [T]>::len` because the tracking issue #71146 list a potential blocker for these methods, but this blocker [does not apply](https://github.com/rust-lang/rust/issues/71146#issuecomment-808735714) to `NonNull::len`.
We should probably also ping the [Constant Evaluation WG](https://github.com/rust-lang/const-eval) since this PR includes a `#[rustc_allow_const_fn_unstable(const_slice_ptr_len)]`. My instinct here is that this will probably be okay because the pointer is not actually dereferenced and `len()` does not touch the address component of the pointer, but would be best to double check :)
One potential down-side was raised that stabilizing `NonNull::len` could lead to encouragement of coding patterns like:
```
pub fn ptr_len<T>(ptr: *mut [T]) -> usize {
NonNull::new(ptr).unwrap().len()
}
```
which unnecessarily assert non-nullness. However, these are much less of a footgun than the above examples and this should be resolved when `slice_ptr_len` fully stabilizes eventually.
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
Add section on common message styles for Result::expect
Based on a question from https://github.com/rust-lang/project-error-handling/issues/50#issuecomment-1092339937
~~One thing I haven't decided on yet, should I duplicate this section on `Option::expect`, link to this section, or move it somewhere else and link to that location from both docs?~~: I ended up moving the section to `std::error` and referencing it from both `Result::expect` and `Option::expect`'s docs.
I think this section, when combined with the similar update I made on [`std::panic!`](https://doc.rust-lang.org/nightly/std/macro.panic.html#when-to-use-panic-vs-result) implies that we should possibly more aggressively encourage and support the "expect as precondition" style described in this section. The consensus among the libs team seems to be that panic should be used for bugs, not expected potential failure modes. The "expect as error message" style seems to align better with the panic for unrecoverable errors style where they're seen as normal errors where the only difference is a desire to kill the current execution unit (aka erlang style error handling). I'm wondering if we should be providing a panic hook similar to `human-panic` or more strongly recommending the "expect as precondition" style of expect message.
Extend ptr::null and null_mut to all thin (including extern) types
Fixes https://github.com/rust-lang/rust/issues/93959
This change was accepted in https://rust-lang.github.io/rfcs/2580-ptr-meta.html
Note that this changes the signature of **stable** functions. The change should be backward-compatible, but it is **insta-stable** since it cannot (easily, at all?) be made available only through a `#![feature(…)]` opt-in.
The RFC also proposed the same change for `NonNull::dangling`, which makes sense it terms of its signature but not in terms of its implementation. `dangling` uses `align_of()` as an address. But what `align_of()` should be for extern types or whether it should be allowed at all remains an open question.
This commit depends on https://github.com/rust-lang/rust/pull/93977, which is not yet part of the bootstrap compiler. So `#[cfg]` is used to only apply the change in stage 1+. As far a I know bounds cannot be made conditional with `#[cfg]`, so the entire functions are duplicated. This is unfortunate but temporary.
Since this duplication makes it less obvious in the diff, the new definitions differ in:
* More permissive bounds (`Thin` instead of implied `Sized`)
* Different implementation
* Having `rustc_allow_const_fn_unstable(const_fn_trait_bound)`
* Having `rustc_allow_const_fn_unstable(ptr_metadata)`
[RFC 2011] Library code
CC https://github.com/rust-lang/rust/pull/96496
Based on https://github.com/dtolnay/case-studies/tree/master/autoref-specialization.
Basically creates two traits with the same method name. One trait is generic over any `T` and the other is specialized to any `T: Printable`.
The compiler will then call the corresponding trait method through auto reference.
```rust
fn main() {
let mut a = Capture::new();
let mut b = Capture::new();
(&Wrapper(&1i32)).try_capture(&mut a); // `try_capture` from `TryCapturePrintable`
(&Wrapper(&vec![1i32])).try_capture(&mut b); // `try_capture` from `TryCaptureGeneric`
assert_eq!(format!("{:?}", a), "1");
assert_eq!(format!("{:?}", b), "N/A");
}
```
r? `@scottmcm`
Change orderings of `Debug` for the Atomic types to `Relaxed`.
This reduces synchronization between threads when debugging the atomic types. Reducing the synchronization means that executions with and without the debug calls will be more consistent, making it easier to debug.
We discussed this on the Rust Community Discord with `@ibraheemdev` before.
explain how to turn integers into fn ptrs
(with an intermediate raw ptr, not a direct transmute)
Direct int2ptr transmute, under the semantics I am imagining, will produce a ptr with "invalid" provenance that is invalid to deref or call. We cannot give it the same semantics as int2ptr casts since those do [something complicated](https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html).
To my great surprise, that is already what the example in the `transmute` docs does. :) I still added a comment to say that that part is important, and I added a section explicitly talking about this to the `fn()` type docs.
With https://github.com/rust-lang/miri/pull/2151, Miri will start complaining about direct int-to-fnptr transmutes (in the sense that it is UB to call the resulting pointer).
Document rounding for floating-point primitive operations and string parsing
The docs for floating point don't have much to say at present about either the precision of their results or rounding behaviour.
As I understand it[^1][^2], Rust doesn't support operating with non-default rounding directions, so we need only describe roundTiesToEven.
[^1]: https://github.com/rust-lang/rust/issues/41753#issuecomment-299322887
[^2]: https://github.com/llvm/llvm-project/issues/8472#issuecomment-980888781
This PR makes a start by documenting that for primitive operations and `from_str()`.
Clarify slice and Vec iteration order
While already being inferable from the doc examples, it wasn't fully specified. This is the only logical way to do a slice iterator, so I think this should be uncontroversial. It also improves the `Vec::into_iter` example to better show the order and that the iterator returns owned values.
Change `NonNull::as_uninit_*` to take self by value (as opposed to reference), matching primitive pointers.
Copied from my comment on [#75402](https://github.com/rust-lang/rust/issues/75402#issuecomment-1100496823):
> I noticed that `as_uninit_*` on pointers take `self` by value (and pointers are `Copy`), e.g. see [`as_uninit_mut`](https://doc.rust-lang.org/core/primitive.pointer.html#method.as_uninit_mut).
>
> However, on `NonNull`, these functions take `self` by reference, e.g. see the function with the same name by for `NonNull`: [`as_uninit_mut`](https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_uninit_mut) takes `self` by mutable reference. Even more inconsistent, [`as_uninit_slice_mut`](https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_uninit_slice_mut) returns a mutable reference, but takes `self` by immutable reference.
>
> I think these methods should take `self` by value for consistency. The returned lifetime is unbounded anyways and not tied to the pointer/NonNull value anyways
I realized the change is trivial (if desired) so here I am creating my first PR. I think it's not a breaking change since (it's on nightly and) `NonNull` is `Copy`; all previous usages of these methods taking `self` by reference should continue to compile. However, it might cause warnings to appear on usages of `NonNull::as_uninit_mut`, which used to require the the `NonNull` variable be declared `mut`, but now it's not necessary.
Fix `Display` for `cell::{Ref,RefMut}`
These guards changed to pointers in #97027, but their `Display` was
formatting that field directly, which made it show the raw pointer
value. Now we go through `Deref` to display the real value again.
Miri noticed this change, #97204, so hopefully that will be fixed.
Stabilize `array_from_fn`
## Overall
Stabilizes `core::array::from_fn` ~~and `core::array::try_from_fn`~~ to allow the creation of custom infallible ~~and fallible~~ arrays.
Signature proposed for stabilization here, tweaked as requested in the meeting:
```rust
// in core::array
pub fn from_fn<T, const N: usize, F>(_: F) -> [T; N];
```
Examples in https://doc.rust-lang.org/nightly/std/array/fn.from_fn.html
## History
* On 2020-08-17, implementation was [proposed](https://github.com/rust-lang/rust/pull/75644).
* On 2021-09-29, tracking issue was [created](https://github.com/rust-lang/rust/issues/89379).
* On 2021-10-09, the proposed implementation was [merged](bc8ad24020).
* On 2021-12-03, the return type of `try_from_fn` was [changed](https://github.com/rust-lang/rust/pull/91286#issuecomment-985513407).
## Considerations
* It is being assumed that indices are useful and shouldn't be removed from the callbacks
* The fact that `try_from_fn` returns an unstable type `R: Try` does not prevent stabilization. Although I'm honestly not sure about it.
* The addition or not of repeat-like variants is orthogonal to this PR.
These considerations are not ways of saying what is better or what is worse. In reality, they are an attempt to move things forward, anything really.
cc https://github.com/rust-lang/rust/issues/89379
Implement Copy, Clone, PartialEq and Eq for core::fmt::Alignment
Alignment is a fieldless exhaustive enum, so it is already possible to
clone and compare it by matching, but it is inconvenient to do so. For
example, if one would like to create a struct describing a formatter
configuration and provide a clone implementation:
```rust
pub struct Format {
fill: char,
width: Option<usize>,
align: fmt::Alignment,
}
impl Clone for Format {
fn clone(&self) -> Self {
Format {
align: match self.align {
fmt::Alignment::Left => fmt::Alignment::Left,
fmt::Alignment::Right => fmt::Alignment::Right,
fmt::Alignment::Center => fmt::Alignment::Center,
},
.. *self
}
}
}
```
Derive Copy, Clone, PartialEq, and Eq for Alignment for convenience.
make ptr::invalid not the same as a regular int2ptr cast
In Miri, we would like to distinguish `ptr::invalid` from `ptr::from_exposed_provenance`, so that we can provide better diagnostics issues like https://github.com/rust-lang/miri/issues/2134, and so that we can detect the UB in programs like
```rust
fn main() {
let x = 0u8;
let original_ptr = &x as *const u8;
let addr = original_ptr.expose_addr();
let new_ptr: *const u8 = core::ptr::invalid(addr);
unsafe {
dbg!(*new_ptr);
}
}
```
To achieve that, the two functions need to have different implementations. Currently, both are just `as` casts. We *could* add an intrinsic for this, but it turns out `transmute` already has the right behavior, at least as far as Miri is concerned. So I propose we just use that.
Cc `@Gankra`
Add implicit call to from_str via parse in documentation
The documentation mentions "FromStr’s from_str method is often used implicitly,
through str’s parse method. See parse’s documentation for examples.".
It may be nicer to show that in the code example as well.
These guards changed to pointers in #97027, but their `Display` was
formatting that field directly, which made it show the raw pointer
value. Now we go through `Deref` to display the real value again.
Say "last" instead of "rightmost" in the documentation for `std::str:rfind`
In the documentation comment for `std::str::rfind`, say "last" instead
of "rightmost" to describe the match that `rfind` finds. This follows the
spirit of #30459, for which `trim_left` and `trim_right` were replaced by
`trim_start` and `trim_end` to be more clear about how they work on
text which is displayed right-to-left.
Use pointers in `cell::{Ref,RefMut}` to avoid `noalias`
When `Ref` and `RefMut` were based on references, they would get LLVM `noalias` attributes that were incorrect, because that alias guarantee is only true until the guard drops. A `&RefCell` on the same value can get a new borrow that aliases the previous guard, possibly leading to miscompilation. Using `NonNull` pointers in `Ref` and `RefCell` avoids `noalias`.
Fixes the library side of #63787, but we still might want to explore language solutions there.
In the documentation comment for `std::str::rfind`, say "last" instead
of "rightmost" to describe the match that `rfind` finds. This follows the
spirit of #30459, for which `trim_left` and `trim_right` were replaced by
`trim_start` and `trim_end` to be more clear about how they work on
text which is displayed right-to-left.
The documentation mentions "FromStr’s from_str method is often used implicitly,
through str’s parse method. See parse’s documentation for examples.".
It may be nicer to show that in the code example as well.
Remove potentially misleading realloc parenthetical
This parenthetical is problematic, because it suggests that the following is sound:
```rust
let layout = Layout:🆕:<[u8; 32]>();
let p1 = alloc(layout);
let p2 = realloc(p1, layout, 32);
if p1 == p2 {
p1.write([0; 32]);
dealloc(p1, layout);
} else {
dealloc(p2, layout);
}
```
At the very least, this isn't the case for [ANSI `realloc`](https://en.cppreference.com/w/c/memory/realloc)
> The original pointer `ptr` is invalidated and any access to it is undefined behavior (even if reallocation was in-place).
and [Windows `HeapReAlloc`](https://docs.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heaprealloc) is unclear at best (`HEAP_REALLOC_IN_PLACE_ONLY`'s description may imply that the old pointer may be used if `HEAP_REALLOC_IN_PLACE_ONLY` is provided).
The conservative position is to just remove the parenthetical.
cc `@rust-lang/wg-unsafe-code-guidelines` `@rust-lang/wg-allocators`
This reduces synchronization between threads when
debugging the atomic types.
Reducing the synchronization means that executions with and
without the debug calls will be more consistent,
making it easier to debug.
Fixes https://github.com/rust-lang/rust/issues/93959
This change was accepted in https://rust-lang.github.io/rfcs/2580-ptr-meta.html
Note that this changes the signature of **stable** functions.
The change should be backward-compatible, but it is **insta-stable**
since it cannot (easily, at all?) be made available only
through a `#![feature(…)]` opt-in.
The RFC also proposed the same change for `NonNull::dangling`,
which makes sense it terms of its signature but not in terms of its implementation.
`dangling` uses `align_of()` as an address. But what `align_of()` should be for
extern types or whether it should be allowed at all remains an open question.
This commit depends on https://github.com/rust-lang/rust/pull/93977, which is not yet
part of the bootstrap compiler. So `#[cfg]` is used to only apply the change in
stage 1+. As far a I know bounds cannot be made conditional with `#[cfg]`, so the
entire functions are duplicated. This is unfortunate but temporary.
Since this duplication makes it less obvious in the diff,
the new definitions differ in:
* More permissive bounds (`Thin` instead of implied `Sized`)
* Different implementation
* Having `rustc_allow_const_fn_unstable(ptr_metadata)`
Expand core::hint::unreachable_unchecked() docs
Rework the docs for `unreachable_unchecked`, encouraging deliberate use, and providing a better example for action at a distance.
Fixes#95865
Apparently LLVM is unable to understand that if count_ones() == 1 then self != 0.
Adding `assume(align != 0)` helps generating better asm:
https://rust.godbolt.org/z/ja18YKq91
Since they work on byte pointers (by `.cast::<u8>()`ing them), there is
no need to know the size of `T` and so there is no need for `T: Sized`.
The `is_aligned_to` is similar, though it doesn't need the _alignment_
of `T`.
Like we have `add`/`sub` which are the `usize` version of `offset`, this adds the `usize` equivalent of `offset_from`. Like how `.add(d)` replaced a whole bunch of `.offset(d as isize)`, you can see from the changes here that it's fairly common that code actually knows the order between the pointers and *wants* a `usize`, not an `isize`.
As a bonus, this can do `sub nuw`+`udiv exact`, rather than `sub`+`sdiv exact`, which can be optimized slightly better because it doesn't have to worry about negatives. That's why the slice iterators weren't using `offset_from`, though I haven't updated that code in this PR because slices are so perf-critical that I'll do it as its own change.
This is an intrinsic, like `offset_from`, so that it can eventually be allowed in CTFE. It also allows checking the extra safety condition -- see the test confirming that CTFE catches it if you pass the pointers in the wrong order.
Warn on unused `#[doc(hidden)]` attributes on trait impl items
[Zulip conversation](https://rust-lang.zulipchat.com/#narrow/stream/266220-rustdoc/topic/.E2.9C.94.20Validy.20checks.20for.20.60.23.5Bdoc.28hidden.29.5D.60).
Whether an associated item in a trait impl is shown or hidden in the documentation entirely depends on the corresponding item in the trait declaration. Rustdoc completely ignores `#[doc(hidden)]` attributes on impl items. No error or warning is emitted:
```rust
pub trait Tr { fn f(); }
pub struct Ty;
impl Tr for Ty { #[doc(hidden)] fn f() {} }
// ^^^^^^^^^^^^^^ ignored by rustdoc and currently
// no error or warning issued
```
This may lead users to the wrong belief that the attribute has an effect. In fact, several such cases are found in the standard library (I've removed all of them in this PR).
There does not seem to exist any incentive to allow this in the future either: Impl'ing a trait for a type means the type *fully* conforms to its API. Users can add `#[doc(hidden)]` to the whole impl if they want to hide the implementation or add the attribute to the corresponding associated item in the trait declaration to hide the specific item. Hiding an implementation of an associated item does not make much sense: The associated item can still be found on the trait page.
This PR emits the warn-by-default lint `unused_attribute` for this case with a future-incompat warning.
`@rustbot` label T-compiler T-rustdoc A-lint
Improve floating point documentation
This is my attempt to improve/solve https://github.com/rust-lang/rust/issues/95468 and https://github.com/rust-lang/rust/issues/73328 .
Added/refined explanations:
- Refine the "NaN as a special value" top level explanation of f32
- Refine `const NAN` docstring: add an explanation about there being multitude of NaN bitpatterns and disclaimer about the portability/stability guarantees.
- Refine `fn is_sign_positive` and `fn is_sign_negative` docstrings: add disclaimer about the sign bit of NaNs.
- Refine `fn min` and `fn max` docstrings: explain the semantics and their relationship to the standard and libm better.
- Refine `fn trunc` docstrings: explain the semantics slightly more.
- Refine `fn powi` docstrings: add disclaimer that the rounding behaviour might be different from `powf`.
- Refine `fn copysign` docstrings: add disclaimer about payloads of NaNs.
- Refine `minimum` and `maximum`: add disclaimer that "propagating NaN" doesn't mean that propagating the NaN bit patterns is guaranteed.
- Refine `max` and `min` docstrings: add "ignoring NaN" to bring the one-row explanation to parity with `minimum` and `maximum`.
Cosmetic changes:
- Reword `NaN` and `NAN` as plain "NaN", unless they refer to the specific `const NAN`.
- Reword "a number" to `self` in function docstrings to clarify.
- Remove "Returns NAN if the number is NAN" from `abs`, as this is told to be the default behavior in the top explanation.
Remove `#[rustc_deprecated]`
This removes `#[rustc_deprecated]` and introduces diagnostics to help users to the right direction (that being `#[deprecated]`). All uses of `#[rustc_deprecated]` have been converted. CI is expected to fail initially; this requires #95958, which includes converting `stdarch`.
I plan on following up in a short while (maybe a bootstrap cycle?) removing the diagnostics, as they're only intended to be short-term.
Further elaborate the lack of guarantees from `Hasher`
I realized that I got too excited in #94598 by adding new methods, and forgot to do the documentation to really answer the core question in #94026.
This PR just has that doc update.
r? `@Amanieu`
Add more diagnostic items
This just adds a handful diagnostic items I noticed were missing.
Would it be worth doing this for all of the remaining types? I'm willing to do it if it'd be helpful.
Link to correct `as_mut` in docs for `pointer::as_ref`
It previously linked to the unstable const-mut-cast method instead of
the `mut` counterpart for `as_ref`.
Closes#96327
Add a dedicated length-prefixing method to `Hasher`
This accomplishes two main goals:
- Make it clear who is responsible for prefix-freedom, including how they should do it
- Make it feasible for a `Hasher` that *doesn't* care about Hash-DoS resistance to get better performance by not hashing lengths
This does not change rustc-hash, since that's in an external crate, but that could potentially use it in future.
Fixes#94026
r? rust-lang/libs
---
The core of this change is the following two new methods on `Hasher`:
```rust
pub trait Hasher {
/// Writes a length prefix into this hasher, as part of being prefix-free.
///
/// If you're implementing [`Hash`] for a custom collection, call this before
/// writing its contents to this `Hasher`. That way
/// `(collection![1, 2, 3], collection![4, 5])` and
/// `(collection![1, 2], collection![3, 4, 5])` will provide different
/// sequences of values to the `Hasher`
///
/// The `impl<T> Hash for [T]` includes a call to this method, so if you're
/// hashing a slice (or array or vector) via its `Hash::hash` method,
/// you should **not** call this yourself.
///
/// This method is only for providing domain separation. If you want to
/// hash a `usize` that represents part of the *data*, then it's important
/// that you pass it to [`Hasher::write_usize`] instead of to this method.
///
/// # Examples
///
/// ```
/// #![feature(hasher_prefixfree_extras)]
/// # // Stubs to make the `impl` below pass the compiler
/// # struct MyCollection<T>(Option<T>);
/// # impl<T> MyCollection<T> {
/// # fn len(&self) -> usize { todo!() }
/// # }
/// # impl<'a, T> IntoIterator for &'a MyCollection<T> {
/// # type Item = T;
/// # type IntoIter = std::iter::Empty<T>;
/// # fn into_iter(self) -> Self::IntoIter { todo!() }
/// # }
///
/// use std:#️⃣:{Hash, Hasher};
/// impl<T: Hash> Hash for MyCollection<T> {
/// fn hash<H: Hasher>(&self, state: &mut H) {
/// state.write_length_prefix(self.len());
/// for elt in self {
/// elt.hash(state);
/// }
/// }
/// }
/// ```
///
/// # Note to Implementers
///
/// If you've decided that your `Hasher` is willing to be susceptible to
/// Hash-DoS attacks, then you might consider skipping hashing some or all
/// of the `len` provided in the name of increased performance.
#[inline]
#[unstable(feature = "hasher_prefixfree_extras", issue = "88888888")]
fn write_length_prefix(&mut self, len: usize) {
self.write_usize(len);
}
/// Writes a single `str` into this hasher.
///
/// If you're implementing [`Hash`], you generally do not need to call this,
/// as the `impl Hash for str` does, so you can just use that.
///
/// This includes the domain separator for prefix-freedom, so you should
/// **not** call `Self::write_length_prefix` before calling this.
///
/// # Note to Implementers
///
/// The default implementation of this method includes a call to
/// [`Self::write_length_prefix`], so if your implementation of `Hasher`
/// doesn't care about prefix-freedom and you've thus overridden
/// that method to do nothing, there's no need to override this one.
///
/// This method is available to be overridden separately from the others
/// as `str` being UTF-8 means that it never contains `0xFF` bytes, which
/// can be used to provide prefix-freedom cheaper than hashing a length.
///
/// For example, if your `Hasher` works byte-by-byte (perhaps by accumulating
/// them into a buffer), then you can hash the bytes of the `str` followed
/// by a single `0xFF` byte.
///
/// If your `Hasher` works in chunks, you can also do this by being careful
/// about how you pad partial chunks. If the chunks are padded with `0x00`
/// bytes then just hashing an extra `0xFF` byte doesn't necessarily
/// provide prefix-freedom, as `"ab"` and `"ab\u{0}"` would likely hash
/// the same sequence of chunks. But if you pad with `0xFF` bytes instead,
/// ensuring at least one padding byte, then it can often provide
/// prefix-freedom cheaper than hashing the length would.
#[inline]
#[unstable(feature = "hasher_prefixfree_extras", issue = "88888888")]
fn write_str(&mut self, s: &str) {
self.write_length_prefix(s.len());
self.write(s.as_bytes());
}
}
```
With updates to the `Hash` implementations for slices and containers to call `write_length_prefix` instead of `write_usize`.
`write_str` defaults to using `write_length_prefix` since, as was pointed out in the issue, the `write_u8(0xFF)` approach is insufficient for hashers that work in chunks, as those would hash `"a\u{0}"` and `"a"` to the same thing. But since `SipHash` works byte-wise (there's an internal buffer to accumulate bytes until a full chunk is available) it overrides `write_str` to continue to use the add-non-UTF-8-byte approach.
---
Compatibility:
Because the default implementation of `write_length_prefix` calls `write_usize`, the changed hash implementation for slices will do the same thing the old one did on existing `Hasher`s.
We might want to change the default before stabilizing (or maybe even after), but for getting in the new unstable methods, leave it as-is for now. That way it won't break cargo and such.
This accomplishes two main goals:
- Make it clear who is responsible for prefix-freedom, including how they should do it
- Make it feasible for a `Hasher` that *doesn't* care about Hash-DoS resistance to get better performance by not hashing lengths
This does not change rustc-hash, since that's in an external crate, but that could potentially use it in future.
Fix typo in `offset_from` documentation
Small fix for what I think is a typo in the `offset_from` documentation.
Someone reading this may understand that the distance in bytes is obtained by dividing the distance by `mem::size_of::<T>()`, but here we just want to define "units of T" in terms of bytes (i.e., units of T == bytes / `mem::size_of::<T>()`).
Update `int_roundings` methods from feedback
This updates `#![feature(int_roundings)]` (#88581) from feedback. All methods now take `NonZeroX`. The documentation makes clear that they panic in debug mode and wrap in release mode.
r? `@joshtriplett`
`@rustbot` label +T-libs +T-libs-api +S-waiting-on-review
Include nonexported macro_rules! macros in the doctest target
Fixes#88038
This PR aims to include nonexported `macro_rules!` macros in the doctest target. For more details, please see the above issue.
Avoid using `rand::thread_rng` in the stdlib benchmarks.
This is kind of an anti-pattern because it introduces extra nondeterminism for no real reason. In thread_rng's case this comes both from the random seed and also from the reseeding operations it does, which occasionally does syscalls (which adds additional nondeterminism). The impact of this would be pretty small in most cases, but it's a good practice to avoid (particularly because avoiding it was not hard).
Anyway, several of our benchmarks already did the right thing here anyway, so the change was pretty easy and mostly just applying it more universally. That said, the stdlib benchmarks aren't particularly stable (nor is our benchmark framework particularly great), so arguably this doesn't matter that much in practice.
~~Anyway, this also bumps the `rand` dev-dependency to 0.8, since it had fallen somewhat out of date.~~ Nevermind, too much of a headache.
The one I care about and actually saw in the wild not getting inlined is
clone(). We ended up doing a whole function call for something that just
copies two pointers.
I ended up marking as_slice / as_ref as well because make_slice is
inline(always) itself, and is also the kind of think that can kill
performance in hot loops if you expect it to get inlined. But happy to
undo those.
library/core: Fixes implement of c_uint, c_long, c_ulong
Fixes: aa67016624 ("make memcmp return a value of c_int_width instead of i32")
Introduce c_num_definition to getting the cfg_if logic easier to maintain
Add newlines for easier code reading
Signed-off-by: Yonggang Luo <luoyonggang@gmail.com>
It improves the performance of iterators using unchecked access when building in incremental mode
(due to the larger CGU count?). It might negatively affect incremental compile times for better runtime results,
but considering that the equivalent `next()` implementations also are `#[inline]` and usually are more complex this
should be ok.
```
./x.py bench library/core -i --stage 0 --test-args bench_trusted_random_access
OLD: 119,172 ns/iter
NEW: 17,714 ns/iter
```
rustdoc: Resolve doc links referring to `macro_rules` items
cc https://github.com/rust-lang/rust/issues/81633
UPD: the fallback to considering *all* `macro_rules` in the crate for unresolved names is not removed in this PR, it will be removed separately and will be run through crater.
Using an obviously-placeholder syntax. An RFC would still be needed before this could have any chance at stabilization, and it might be removed at any point.
But I'd really like to have it in nightly at least to ensure it works well with try_trait_v2, especially as we refactor the traits.
Fix some confusing wording and improve slice-search-related docs
This adds more links between `contains` and `binary_search` because I do think they have some relevant connections. If your (big) slice happens to be sorted and you know it, surely you should be using `[3; 100].binary_search(&5).is_ok()` over `[3; 100].contains(&5)`?
This also fixes the confusing "searches this sorted X" wording which just sounds really weird because it doesn't know whether it's actually sorted. It should be but it may not be. The new wording should make it clearer that you will probably want to sort it and in the same sentence it also mentions the related function `contains`.
Similarly, this mentions `binary_search` on `contains`' docs.
This also fixes some other minor stuff and inconsistencies.
Unstably constify `impl<I: Iterator> IntoIterator for I`
This constifies the default `IntoIterator` implementation under the `const_intoiterator_identity` feature.
Tracking Issue: #90603
No "weird" floats in const fn {from,to}_bits
I suspect this code is subtly incorrect and that we don't even e.g. use x87-style floats in CTFE, so I don't have to guard against that case. A future PR will be hopefully removing them from concern entirely, anyways. But at the moment I wanted to get this rolling because small questions like that one seem best answered by review.
r? `@oli-obk`
cc `@eddyb` `@thomcc`
Fixes: aa67016624 ("make memcmp return a value of c_int_width instead of i32")
Introduce c_num_definition to getting the cfg_if logic easier to maintain
Add newlines for easier code reading
Signed-off-by: Yonggang Luo <luoyonggang@gmail.com>
Add slice::remainder
This adds a remainder function to the Slice iterator, so that a caller can access unused
elements if iteration stops.
Addresses #91733
Make some `usize`-typed masks definitions agnostic to the size of `usize`
Some masks where defined as
```rust
const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize;
```
where it was assumed that `usize` is never wider than 64, which is currently true.
To make those constants valid in a hypothetical 128-bit target, these constants have been redefined in an `usize`-width-agnostic way
```rust
const NONASCII_MASK: usize = usize::from_ne_bytes([0x80; size_of::<usize>()]);
```
There are already some cases where Rust anticipates the possibility of supporting 128-bit targets, such as not implementing `From<usize>` for `u64`.
docs: add link from zip to unzip
The docs for `Iterator::unzip` explain that it is kind of an inverse operation to `Iterator::zip` and guide the reader to the `zip` docs, but the `zip` docs don't let the user know that they can undo the `zip` operation with `unzip`. This change modifies the docs to help the user find `unzip`.
reference to taking `self` by value. This is consistent with the methods
of the same names on primitive pointers. The returned lifetime was
already previously unbounded.
Create (unstable) 2024 edition
[On Zulip](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Deprecating.20macro.20scoping.20shenanigans/near/272860652), there was a small aside regarding creating the 2024 edition now as opposed to later. There was a reasonable amount of support and no stated opposition.
This change creates the 2024 edition in the compiler and creates a prelude for the 2024 edition. There is no current difference between the 2021 and 2024 editions. Cargo and other tools will need to be updated separately, as it's not in the same repository. This change permits the vast majority of work towards the next edition to proceed _now_ instead of waiting until 2024.
For sanity purposes, I've merged the "hello" UI tests into a single file with multiple revisions. Otherwise we'd end up with a file per edition, despite them being essentially identical.
````@rustbot```` label +T-lang +S-waiting-on-review
Not sure on the relevant team, to be honest.
Stabilize `derive_default_enum`
This stabilizes `#![feature(derive_default_enum)]`, as proposed in [RFC 3107](https://github.com/rust-lang/rfcs/pull/3107) and tracked in #87517. In short, it permits you to `#[derive(Default)]` on `enum`s, indicating what the default should be by placing a `#[default]` attribute on the desired variant (which must be a unit variant in the interest of forward compatibility).
```````@rustbot``````` label +S-waiting-on-review +T-lang
Some masks where defined as
```rust
const NONASCII_MASK: usize = 0x80808080_80808080u64 as usize;
```
where it was assumed that `usize` is never wider than 64, which is currently true.
To make those constants valid in a hypothetical 128-bit target, these constants have been redefined in an `usize`-width-agnostic way
```rust
const NONASCII_MASK: usize = usize::from_ne_bytes([0x80; size_of::<usize>()]);
```
There are already some cases where Rust anticipates the possibility of supporting 128-bit targets, such as not implementing `From<usize>` for `u64`.
The docs for `Iterator::unzip` explain that it is kind of an inverse operation to `Iterator::zip` and guide the reader to the `zip` docs, but the `zip` docs don't let the user know that they can undo the `zip` operation with `unzip`. This change modifies the docs to help the user find `unzip`.
Implement tuples using recursion
Because it is c00l3r™, requires less repetition and can be used as a reference for external people.
This change is non-essential and I am not sure about potential performance impacts so feel free to close this PR if desired.
r? `@petrochenkov`
Faster parsing for lower numbers for radix up to 16 (cont.)
( Continuation of https://github.com/rust-lang/rust/pull/83371 )
With LingMan's change I think this is potentially ready.
Clarify str::from_utf8_unchecked's invariants
Specifically, make it clear that it is immediately UB to pass ill-formed UTF-8 into the function. The previous wording left space to interpret that the UB only occurred when calling another function, which "assumes that `&str`s are valid UTF-8."
This does not change whether str being UTF-8 is a safety or a validity invariant. (As per previous discussion, it is a safety invariant, not a validity invariant.) It just makes it clear that valid UTF-8 is a precondition of str::from_utf8_unchecked, and that emitting an Abstract Machine fault (e.g. UB or a sanitizer error) on invalid UTF-8 is a valid thing to do.
If user code wants to create an unsafe `&str` pointing to ill-formed UTF-8, it must be done via transmutes. Also, just, don't.
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/136281-t-lang.2Fwg-unsafe-code-guidelines/topic/str.3A.3Afrom_utf8_unchecked.20Safety.20requirement
Update binary_search example to instead redirect to partition_point
Inspired by discussion in the tracking issue for `Result::into_ok_or_err`: https://github.com/rust-lang/rust/issues/82223#issuecomment-1067098167
People are surprised by us not providing a `Result<T, T> -> T` conversion, and the main culprit for this confusion seems to be the `binary_search` API. We should instead redirect people to the equivalent API that implicitly does that `Result<T, T> -> T` conversion internally which should obviate the need for the `into_ok_or_err` function and give us time to work towards a more general solution that applies to all enums rather than just `Result` such as making or_patterns usable for situations like this via postfix `match`.
I choose to duplicate the example rather than simply moving it from `binary_search` to partition point because most of the confusion seems to arise when people are looking at `binary_search`. It makes sense to me to have the example presented immediately rather than requiring people to click through to even realize there is an example. If I had to put it in only one place I'd leave it in `binary_search` and remove it from `partition_point` but it seems pretty obviously relevant to `partition_point` so I figured the best option would be to duplicate it.
Specifically, make it clear that it is immediately UB to pass ill-formed UTF-8 into the function. The previous wording left space to interpret that the UB only occurred when calling another function, which "assumes that `&str`s are valid UTF-8."
This does not change whether str being UTF-8 is a safety or a validity invariant. (As per previous discussion, it is a safety invariant, not a validity invariant.) It just makes it clear that valid UTF-8 is a precondition of str::from_utf8_unchecked, and that emitting an Abstract Machine fault (e.g. UB or a sanitizer error) on invalid UTF-8 is a valid thing to do.
If user code wants to create an unsafe `&str` pointing to ill-formed UTF-8, it must be done via transmutes. Also, just, don't.
Avoid duplication of doc comments in `std::char` constants and functions
For those consts and functions, only the summary is kept and a reference to the `char` associated const/method is included.
Additionaly, re-exported functions have been converted to function definitions that call the previously re-exported function. This makes it easier to add a deprecated attribute to these functions in the future.
Use bitwise XOR in to_ascii_uppercase
This saves an instruction compared to the previous approach, which
was to unset the fifth bit with bitwise OR.
Comparison of generated assembly on x86: https://godbolt.org/z/GdfvdGs39
This can also affect autovectorization, saving SIMD instructions as well: https://godbolt.org/z/cnPcz75T9
Not sure if `u8::to_ascii_lowercase` should also be changed, since using bitwise OR for that function does not require an extra bitwise negate since the code is setting a bit rather than unsetting a bit. `char::to_ascii_uppercase` already uses XOR, so no change seems to be required there.
Left overs of #95761
These are just nits. Feel free to close this PR if all modifications are not worth merging.
* `#![feature(decl_macro)]` is not needed anymore in `rustc_expand`
* `tuple_impls` does not require `$Tuple:ident`. I guess it is there to enhance readability?
r? ```@petrochenkov```
Make non-power-of-two alignments a validity error in `Layout`
Inspired by the zulip conversation about how `Layout` should better enforce `size <= isize::MAX as usize`, this uses an N-variant enum on N-bit platforms to require at the validity level that the existing invariant of "must be a power of two" is upheld.
This was MIRI can catch it, and means there's a more-specific type for `Layout` to store than just `NonZeroUsize`.
It's left as `pub(crate)` here; a future PR could consider giving it a tracking issue for non-internal usage.
Inspired by the zulip conversation about how `Layout` should better enforce `size < isize::MAX as usize`, this uses an N-variant enum on N-bit platforms to require at the validity level that the existing invariant of "must be a power of two" is upheld.
This was MIRI can catch it, and means there's a more-specific type for `Layout` to store than just `NonZeroUsize`.
Correct safety reasoning in `str::make_ascii_{lower,upper}case()`
I don't understand why the previous comment was used (it was inserted in #66564), but it doesn't explain why these functions are safe, only why `str::as_bytes{_mut}()` are safe.
If someone thinks they make perfect sense, I'm fine with closing this PR.
Bump bootstrap compiler to 1.61.0 beta
This PR bumps the bootstrap compiler to the 1.61.0 beta. The first commit changes the stage0 compiler, the second commit applies the "mechanical" changes and the third and fourth commits apply changes explained in the relevant comments.
r? `@Mark-Simulacrum`
Mention `std::env::var` in `env!`
When searching for how to read an environment variable, I first encountered the `env!` macro. It would have been useful to me if the documentation had included a link to `std::env::var`, which is what I was actually looking for.
When searching for how to read an environment variable, I first encountered the `env!` macro. It would have been useful to me if the documentation had included a link to `std::env::var`, which is what I was actually looking for.
caution against ptr-to-int transmutes
I don't know how strong of a statement we want to make here, but I am very concerned that the current docs could be interpreted as saying that ptr-to-int transmutes are just as okay as transmuting `*mut T` into an `&mut T`.
Examples [like this](https://github.com/rust-lang/unsafe-code-guidelines/issues/286#issuecomment-1085144431) show that ptr-to-int transmutes are deeply suspicious -- they are either UB, or they don't round-trip properly, or we have to basically say that `transmute` will actively look for pointers and do all the things a ptr-to-int cast does (which includes a global side-effect of marking the pointed-to allocation as 'exposed').
Another alternative might be to simply not talk about them... but we *do* want people to use casts rather than transmutes for this.
Cc `@rust-lang/lang`
Update panic docs to make it clearer when to use panic vs Result
This is based on a question that came up in one of my [error handling office hours](https://twitter.com/yaahc_/status/1506376624509374467?s=20&t=Sp-cEjrx5kpMdNsAGPOo9w) meetings. I had a user who was fairly familiar with error type design, thiserror and anyhow, and rust in general, but who was still confused about when to use panics vs when to use Result and `Error`.
This will also be cross referenced in an error handling FAQ that I will be creating in the https://github.com/rust-lang/project-error-handling repo shortly.
explicitly distinguish pointer::addr and pointer::expose_addr
``@bgeron`` pointed out that the current docs promise that `ptr.addr()` and `ptr as usize` are equivalent. I don't think that is a promise we want to make. (Conceptually, `ptr as usize` might 'escape' the provenance to enable future `usize as ptr` casts, but `ptr.addr()` dertainly does not do that.)
So I propose we word the docs a bit more carefully here. ``@Gankra`` what do you think?
Mention implementers of unsatisfied trait
When encountering an unsatisfied trait bound, if there are no other
suggestions, mention all the types that *do* implement that trait:
```
error[E0277]: the trait bound `f32: Foo` is not satisfied
--> $DIR/impl_wf.rs:22:6
|
LL | impl Baz<f32> for f32 { }
| ^^^^^^^^ the trait `Foo` is not implemented for `f32`
|
= help: the trait `Foo` is implemented for `i32`
note: required by a bound in `Baz`
--> $DIR/impl_wf.rs:18:31
|
LL | trait Baz<U: ?Sized> where U: Foo { }
| ^^^ required by this bound in `Baz`
```
```
error[E0277]: the trait bound `u32: Foo` is not satisfied
--> $DIR/associated-types-path-2.rs:29:5
|
LL | f1(2u32, 4u32);
| ^^ the trait `Foo` is not implemented for `u32`
|
= help: the trait `Foo` is implemented for `i32`
note: required by a bound in `f1`
--> $DIR/associated-types-path-2.rs:13:14
|
LL | pub fn f1<T: Foo>(a: T, x: T::A) {}
| ^^^ required by this bound in `f1`
```
Suggest dereferencing in more cases.
Fix#87437, fix#90970.
When encountering an unsatisfied trait bound, if there are no other
suggestions, mention all the types that *do* implement that trait:
```
error[E0277]: the trait bound `f32: Foo` is not satisfied
--> $DIR/impl_wf.rs:22:6
|
LL | impl Baz<f32> for f32 { }
| ^^^^^^^^ the trait `Foo` is not implemented for `f32`
|
= help: the following other types implement trait `Foo`:
Option<T>
i32
str
note: required by a bound in `Baz`
--> $DIR/impl_wf.rs:18:31
|
LL | trait Baz<U: ?Sized> where U: Foo { }
| ^^^ required by this bound in `Baz`
```
Mention implementers of traits in `ImplObligation`s.
Do not mention other `impl`s for closures, ranges and `?`.
Add SyncUnsafeCell.
This adds `SyncUnsafeCell`, which is just `UnsafeCell` except it implements `Sync`.
This was first proposed under the name `RacyUnsafeCell` here: https://github.com/rust-lang/rust/issues/53639#issuecomment-415515748 and here: https://github.com/rust-lang/rust/issues/53639#issuecomment-432741659 and here: https://github.com/rust-lang/rust/issues/53639#issuecomment-888435728
It allows you to create an UnsafeCell that is Sync without having to wrap it in a struct first (and then implement Sync for that struct).
E.g. `static X: SyncUnsafeCell<i32>`. Using a regular `UnsafeCell` as `static` is not possible, because it isn't `Sync`. We have a language workaround for it called `static mut`, but it's nice to be able to use the proper type for such unsafety instead.
It also makes implementing synchronization primitives based on unsafe cells slightly less verbose, because by using `SyncUnsafeCell` for `UnsafeCell`s that are shared between threads, you don't need a separate `impl<..> Sync for ..`. Using this type also clearly documents that the cell is expected to be accessed from multiple threads.
Mark Location::caller() as #[inline]
This function gets compiled to a single register move as it actually gets it's return value passed in as argument.
Fix &mut invalidation in ptr::swap doctest
Under Stacked Borrows with raw pointer tagging, the previous code was UB
because the code which creates the the second pointer borrows the array
through a tag in the borrow stacks below the Unique tag that our first
pointer is based on, thus invalidating the first pointer.
This is not definitely a bug and may never be real UB, but I desperately
want people to write code that conforms to SB with raw pointer tagging
so that I can write good diagnostics. The alternative aliasing models
aren't possible to diagnose well due to state space explosion.
Therefore, it would be super cool if the standard library nudged people
towards writing code that is valid with respect to SB with raw pointer
tagging.
The diagnostics that I want to write are implemented in a branch of Miri and the one for this case is below:
```
error: Undefined Behavior: attempting a read access using <2170> at alloc1068[0x0], but that tag does not exist in the borrow stack for this location
--> /home/ben/rust/library/core/src/intrinsics.rs:2103:14
|
2103 | unsafe { copy_nonoverlapping(src, dst, count) }
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
| |
| attempting a read access using <2170> at alloc1068[0x0], but that tag does not exist in the borrow stack for this location
| this error occurs as part of an access at alloc1068[0x0..0x8]
|
= help: this indicates a potential bug in the program: it performed an invalid operation, but the rules it violated are still experimental
= help: see https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md for further information
help: <2170> was created due to a retag at offsets [0x0..0x10]
--> ../libcore/src/ptr/mod.rs:640:9
|
8 | let x = array[0..].as_mut_ptr() as *mut [u32; 2]; // this is `array[0..2]`
| ^^^^^^^^^^^^^^^^^^^^^^^
help: <2170> was later invalidated due to a retag at offsets [0x0..0x10]
--> ../libcore/src/ptr/mod.rs:641:9
|
9 | let y = array[2..].as_mut_ptr() as *mut [u32; 2]; // this is `array[2..4]`
| ^^^^^
= note: inside `std::intrinsics::copy_nonoverlapping::<[u32; 2]>` at /home/ben/rust/library/core/src/intrinsics.rs:2103:14
= note: inside `std::ptr::swap::<[u32; 2]>` at /home/ben/rust/library/core/src/ptr/mod.rs:685:9
note: inside `main::_doctest_main____libcore_src_ptr_mod_rs_635_0` at ../libcore/src/ptr/mod.rs:12:5
--> ../libcore/src/ptr/mod.rs:644:5
|
12 | ptr::swap(x, y);
| ^^^^^^^^^^^^^^^
note: inside `main` at ../libcore/src/ptr/mod.rs:15:3
--> ../libcore/src/ptr/mod.rs:647:3
|
15 | } _doctest_main____libcore_src_ptr_mod_rs_635_0() }
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
note: some details are omitted, run with `MIRIFLAGS=-Zmiri-backtrace=full` for a verbose backtrace
error: aborting due to previous error
```
Changing to those doesn't introduce any new unsoundness over the existing ones, so they're the better "if you won't want to think about it" replacement. But also mention the strict provenance APIs, as that's what we'd rather they use instead.
Under Stacked Borrows with raw pointer tagging, the previous code was UB
because the code which creates the the second pointer borrows the array
through a tag in the borrow stacks below the Unique tag that our first
pointer is based on, thus invalidating the first pointer.
This is not definitely a bug and may never be real UB, but I desperately
want people to write code that conforms to SB with raw pointer tagging
so that I can write good diagnostics. The alternative aliasing models
aren't possible to diagnose well due to state space explosion.
Therefore, it would be super cool if the standard library nudged people
towards writing code that is valid with respect to SB with raw pointer
tagging.
Improve doc example of DerefMut
It is more illustrative, after using `*x` to modify the field, to show
in the assertion that the field has indeed been modified.
Add debug assertions to some unsafe functions
As suggested by https://github.com/rust-lang/rust/issues/51713
~~Some similar code calls `abort()` instead of `panic!()` but aborting doesn't work in a `const fn`, and the intrinsic for doing dispatch based on whether execution is in a const is unstable.~~
This picked up some invalid uses of `get_unchecked` in the compiler, and fixes them.
I can confirm that they do in fact pick up invalid uses of `get_unchecked` in the wild, though the user experience is less-than-awesome:
```
Running unittests (target/x86_64-unknown-linux-gnu/debug/deps/rle_decode_fast-04b7918da2001b50)
running 6 tests
error: test failed, to rerun pass '--lib'
Caused by:
process didn't exit successfully: `/home/ben/rle-decode-helper/target/x86_64-unknown-linux-gnu/debug/deps/rle_decode_fast-04b7918da2001b50` (signal: 4, SIGILL: illegal instruction)
```
~~As best I can tell these changes produce a 6% regression in the runtime of `./x.py test` when `[rust] debug = true` is set.~~
Latest commit (6894d559bd) brings the additional overhead from this PR down to 0.5%, while also adding a few more assertions. I think this actually covers all the places in `core` that it is reasonable to check for safety requirements at runtime.
Thoughts?
`&mut [T]` implies validity which automatically makes `ptr::add` ok within its bounds.
But `*mut [T]` does not. Since we still want the benefits of in-bounds pointer arithmetic
`split_at_must` must require the caller to pass valid pointers and therefore it is `unsafe`.
Split out from #94247
This adds the following methods to raw slices that already exist on regular slices
* `*mut [T]::is_empty`
* `*mut [T]::split_at_mut`
* `*mut [T]::split_at_unchecked`
These methods reduce the amount of unsafe code needed to migrate ChunksMut and related iterators
to raw slices (#94247)
Co-authored-by:: The 8472 <git@infinite-source.de>
The strict provenance APIs are a better version of these, and things like `.addr()` work for the "that cast looks sketchy" case even if the full strict provenance stuff never happens. So I think it's fine to move away from these, and encourage the others instead.
Implement provenance preserving methods on NonNull
### Description
Add the `addr`, `with_addr`, `map_addr` methods to the `NonNull` type, and map the address type to `NonZeroUsize`.
### Motivation
The `NonNull` type is useful for implementing pointer types which have the 0-niche. It is currently possible to implement these provenance preserving functions by calling `NonNull::as_ptr` and `new_unchecked`. The adding these methods makes it more ergonomic.
### Testing
Added a unit test of a non-null tagged pointer type. This is based on some real code I have elsewhere, that currently routes the pointer through a `NonZeroUsize` and back out to produce a usable pointer. I wanted to produce an ideal version of the same tagged pointer struct that preserved pointer provenance.
### Related
Extension of APIs proposed in #95228 . I can also split this out into a separate tracking issue if that is better (though I may need some pointers on how to do that).
Handle rustc_const_stable attribute in library feature collector
The library feature collector in [compiler/rustc_passes/src/lib_features.rs](551b4fa395/compiler/rustc_passes/src/lib_features.rs) has only been looking at `#[stable(…)]`, `#[unstable(…)]`, and `#[rustc_const_unstable(…)]` attributes, while ignoring `#[rustc_const_stable(…)]`. The consequences of this were:
- When any const feature got stabilized (changing one or more `rustc_const_unstable` to `rustc_const_stable`), users who had previously enabled that unstable feature using `#![feature(…)]` would get told "unknown feature", rather than rustc's nicer "the feature … has been stable since … and no longer requires an attribute to enable".
This can be seen in the way that https://github.com/rust-lang/rust/pull/93957#issuecomment-1079794660 failed after rebase:
```console
error[E0635]: unknown feature `const_ptr_offset`
--> $DIR/offset_from_ub.rs:1:35
|
LL | #![feature(const_ptr_offset_from, const_ptr_offset)]
| ^^^^^^^^^^^^^^^^
```
- We weren't enforcing that a particular feature is either stable everywhere or unstable everywhere, and that a feature that has been stabilized has the same stabilization version everywhere, both of which we enforce for the other stability attributes.
This PR updates the library feature collector to handle `rustc_const_stable`, and fixes places in the standard library and test suite where `rustc_const_stable` was being used in a way that does not meet the rules for a stability attribute.
For those consts and functions, only the summary is kept and a reference to the `char` associated const/method is included.
Additionaly, re-exported functions have been converted to function definitions that call the previously re-exported function. This makes it easier to add a deprecated attribute to these functions in the future.
add notes about alignment-altering reallocations to Allocator docs
As I said in https://github.com/rust-lang/wg-allocators/issues/97, the fact that calls to `grow`, `grow_zeroed`, and `shrink` may request altered alignments is surprising and may be a pitfall for implementors of `Allocator` if it's left implicit. This pull request adds a note to the "Safety" section of each function's docs making it explicit.
skip slow int_log tests in Miri
Iterating over i16::MAX many things takes a long time in Miri, let's not do that.
I added https://github.com/rust-lang/miri/pull/2044 on the Miri side to still give us some test coverage.
ptr_metadata test: avoid ptr-to-int transmutes
Pointers can have provenance, integers don't, so transmuting pointers to integers creates "non-standard" values and it is unclear how well those can be supported (https://github.com/rust-lang/unsafe-code-guidelines/issues/286).
So for this test let's take the safer option and use a pointer type instead. That also makes Miri happy. :)
**Description**
Add the `addr`, `with_addr, `map_addr` methods to the `NonNull` type,
and map the address type to `NonZeroUsize`.
**Motiviation**
The `NonNull` type is useful for implementing pointer types which have
the 0-niche. It is currently possible to implement these provenance
preserving functions by calling `NonNull::as_ptr` and `new_unchecked`.
The addition of these methods simply make it more ergonomic to use.
**Testing**
Added a unit test of a nonnull tagged pointer type. This is based on
some real code I have elsewhere, that currently routes the pointer
through a `NonZeroUsize` and back out to produce a usable pointer.
Update target_has_atomic documentation for stabilization
`cfg(target_has_atomic)` was stabilized in #93824, but this small note in the docs was not updated at the time.
- Refine the "NaN as a special value" top level explanation of f32
- Refine `const NAN` docstring.
- Refine `fn is_sign_positive` and `fn is_sign_negative` docstrings.
- Refine `fn min` and `fn max` docstrings.
- Refine `fn trunc` docstrings.
- Refine `fn powi` docstrings.
- Refine `fn copysign` docstrings.
- Reword `NaN` and `NAN` as plain "NaN", unless they refer to the specific `const NAN`.
- Reword "a number" to `self` in function docstrings to clarify.
- Remove "Returns NAN if the number is NAN" as this is told to be the default behavior in the top explanation.
- Remove "propagating NaNs", as full propagation (preservation of payloads) is not guaranteed.
allow arbitrary inherent impls for builtin types in core
Part of https://github.com/rust-lang/compiler-team/issues/487. Slightly adjusted after some talks with `@m-ou-se` about the requirements of `t-libs-api`.
This adds a crate attribute `#![rustc_coherence_is_core]` which allows arbitrary impls for builtin types in core.
For other library crates impls for builtin types should be avoided if possible. We do have to allow the existing stable impls however. To prevent us from accidentally adding more of these in the future, there is a second attribute `#[rustc_allow_incoherent_impl]` which has to be added to **all impl items**. This only supports impls for builtin types but can easily be extended to additional types in a future PR.
This implementation does not check for overlaps in these impls. Perfectly checking that requires us to check the coherence of these incoherent impls in every crate, as two distinct dependencies may add overlapping methods. It should be easy enough to detect if it goes wrong and the attribute is only intended for use inside of std.
The first two commits are mostly unrelated cleanups.
This patch series examines the question: how bad would it be if we adopted
an extremely strict pointer provenance model that completely banished all
int<->ptr casts.
The key insight to making this approach even *vaguely* pallatable is the
ptr.with_addr(addr) -> ptr
function, which takes a pointer and an address and creates a new pointer
with that address and the provenance of the input pointer. In this way
the "chain of custody" is completely and dynamically restored, making the
model suitable even for dynamic checkers like CHERI and Miri.
This is not a formal model, but lots of the docs discussing the model
have been updated to try to the *concept* of this design in the hopes
that it can be iterated on.
These debug assertions are all implemented only at runtime using
`const_eval_select`, and in the error path they execute
`intrinsics::abort` instead of being a normal debug assertion to
minimize the impact of these assertions on code size, when enabled.
Of all these changes, the bounds checks for unchecked indexing are
expected to be most impactful (case in point, they found a problem in
rustc).
Refactor set_ptr_value as with_metadata_of
Replaces `set_ptr_value` (#75091) with methods of reversed argument order:
```rust
impl<T: ?Sized> *mut T {
pub fn with_metadata_of<U: ?Sized>(self, val: *mut U) -> *mut U;
}
impl<T: ?Sized> *const T {
pub fn with_metadata_of<U: ?Sized>(self, val: *const U) -> *const U;
}
```
By reversing the arguments we achieve several clarifications:
- The function closely resembles `cast` with an argument to
initialize the metadata. This is easier to teach and answers a long
outstanding question that had restricted cast to `Sized` pointee
targets. See multiples reviews of
<https://github.com/rust-lang/rust/pull/47631>
- The 'object identity', in the form of provenance, is now preserved
from the receiver argument to the result. This helps explain the method as
a builder-style, instead of some kind of setter that would modify
something in-place. Ensuring that the result has the identity of the
`self` argument is also beneficial for an intuition of effects.
- An outstanding concern, 'Correct argument type', is avoided by not
committing to any specific argument type. This is consistent with cast
which does not require its receiver to be a 'raw address'.
Hopefully the usage examples in `sync/rc.rs` serve as sufficient examples of the style to convince the reader of the readability improvements of this style, when compared to the previous order of arguments.
I want to take the opportunity to motivate inclusion of this method _separate_ from metadata API, separate from `feature(ptr_metadata)`. It does _not_ involve the `Pointee` trait in any form. This may be regarded as a very, very light form that does not commit to any details of the pointee trait, or its associated metadata. There are several use cases for which this is already sufficient and no further inspection of metadata is necessary.
- Storing the coercion of `*mut T` into `*mut dyn Trait` as a way to dynamically cast some an arbitrary instance of the same type to a dyn trait instance. In particular, one can have a field of type `Option<*mut dyn io::Seek>` to memorize if a particular writer is seekable. Then a method `fn(self: &T) -> Option<&dyn Seek>` can be provided, which does _not_ involve the static trait bound `T: Seek`. This makes it possible to create an API that is capable of utilizing seekable streams and non-seekable streams (instead of a possible less efficient manner such as more buffering) through the same entry-point.
- Enabling more generic forms of unsizing for no-`std` smart pointers. Using the stable APIs only few concrete cases are available. One can unsize arrays to `[T]` by `ptr::slice_from_raw_parts` but unsizing a custom smart pointer to, e.g., `dyn Iterator`, `dyn Future`, `dyn Debug`, can't easily be done generically. Exposing `with_metadata_of` would allow smart pointers to offer their own `unsafe` escape hatch with similar parameters where the caller provides the unsized metadata. This is particularly interesting for embedded where `dyn`-trait usage can drastically reduce code size.
Clarify that ManuallyDrop<T> has same layout as T
This PR implements the documentation change under discussion in https://github.com/rust-lang/unsafe-code-guidelines/issues/302. It should not be approved or merged until the discussion there is resolved.
add diagnostic items for clippy's `trim_split_whitespace`
Adding the following diagnostic items:
* str_split_whitespace,
* str_trim,
* str_trim_start,
* str_trim_end
They are needed for https://github.com/rust-lang/rust-clippy/pull/8575
r? `@flip1995`
add module-level documentation for vec's in-place iteration
As requested in the last libs team meeting and during previous reviews.
Feel free to point out any gaps you encounter, after all non-obvious things may with hindsight seem obvious to me.
r? `@yaahc`
CC `@steffahn`
By reversing the arguments we achieve several clarifications:
- The function closely resembles `cast` but with an argument to
initialized the metadata. This is easier to teach and answers an long
outstanding question that had restricted cast to `Sized` targets
initially. See multiples reviews of
<https://github.com/rust-lang/rust/pull/47631>
- The 'object identity', in the form or provenance, is now preserved
from the call receiver to the result. This helps explain the method as
a builder-style, instead of some kind of setter that would modify
something in-place. Ensuring that the result has the identity of the
`self` argument is also beneficial for an intuition of effects.
- An outstanding concern, 'Correct argument type', is avoided by not
committing to any specific argument type. This is consistent with cast
which does not require its receiver to be a raw address.
Rename `~const Drop` to `~const Destruct`
r? `@oli-obk`
Completely switching to `~const Destructible` would be rather complicated, so it seems best to add it for now and wait for it to be backported to beta in the next release.
The rationale is to prevent complications such as #92149 and #94803 by introducing an entirely new trait. And `~const Destructible` reads a bit better than `~const Drop`. Name Bikesheddable.
Add u16::is_utf16_surrogate
Right now, there are methods in the standard library for encoding and decoding UTF-16, but at least for the moment, there aren't any methods specifically for `u16` to help work with UTF-16 data. Since the full logic already exists, this wouldn't really add any code, just expose what's already there.
This method in particular is useful for working with the data returned by Windows `OsStrExt::encode_wide`. Initially, I was planning to also offer a `TryFrom<u16> for char`, but decided against it for now. There is plenty of code in rustc that could be rewritten to use this method, but I only checked within the standard library to replace them.
I think that offering more UTF-16-related methods to u16 would be useful, but I think this one is a good start. For example, one useful method might be `u16::is_pattern_whitespace`, which would check if something is the Unicode `Pattern_Whitespace` category. We can get away with this because all of the `Pattern_Whitespace` characters are in the basic multilingual plane, and hence we don't need to check for surrogates.
Provide more useful documentation of conversion methods
I thought that the documentation for these methods needed to be a bit more explanatory for new users. For advanced users, the comments are relatively unnecessary. I think it would be useful to explain precisely what the method does. As a new user, when you see the `into` method, where the type is inferred, if you are new you don't even know what you convert to, because it is implicit. I believe this can help new users understand.
I thought that the documentation for these methods needed to be a bit more explanatory for new users. For advanced users, the comments are relatively unnecessary. I think it would be useful to explain precisely what the method does. As a new user, when you see the `into` method, where the type is inferred, if you are new you don't even know what you convert to, because it is implicit. I believe this can help new users understand.
Document that `Option<extern "abi" fn>` discriminant elision applies for any ABI
The current phrasing was not very clear on that aspect.
r? `@RalfJung`
`@rustbot` modify labels: A-docs A-ffi
Derive Eq for std::cmp::Ordering, instead of using manual impl.
This allows consts of type Ordering to be used in patterns, and with feature(adt_const_params) allows using `Ordering` as a const generic parameter.
Currently, `std::cmp::Ordering` implements `Eq` using a manually written `impl Eq for Ordering {}`, instead of `derive(Eq)`. This means that it does not implement `StructuralEq`.
This commit removes the manually written impl, and adds `derive(Eq)` to `Ordering`, so that it will implement `StructuralEq`.
Let `try_collect` take advantage of `try_fold` overrides
No public API changes.
With this change, `try_collect` (#94047) is no longer going through the `impl Iterator for &mut impl Iterator`, and thus will be able to use `try_fold` overrides instead of being forced through `next` for every element.
Here's the test added, to see that it fails before this PR (once a new enough nightly is out): https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=462f2896f2fed2c238ee63ca1a7e7c56
This might as well go to the same person as my last `try_process` PR (#93572), so
r? ``@yaahc``
Stabilize ADX target feature
This is a continuation of #60109, which noted that while the ADX intrinsics were stabilized, the corresponding target feature never was.
This PR follows the same general structure and stabilizes the ADX target feature.
See also https://github.com/rust-lang/rust/issues/44839 - tracking issue for target feature
Format core and std macro rules, removing needless surrounding blocks
Many of the asserting and printing macros in `core` and `std` are written with prehistoric-looking formatting, like this:
335ffbfa54/library/std/src/macros.rs (L96-L101)
In modern Rust style this would conventionally be written as follows instead, always using braces and a trailing semicolon on the macro arms:
af53809c87/library/std/src/macros.rs (L98-L105)
Getting rid of the unneeded braces inside the expansion reduces extraneous indentation in macro-expanded code. For example:
```rust
println!("repro {}", true);
```
```rust
// before:
{
::std::io::_print(
::core::fmt::Arguments::new_v1(
&["repro ", "\n"],
&[::core::fmt::ArgumentV1::new_display(&true)],
),
);
};
```
```rust
// after:
::std::io::_print(
::core::fmt::Arguments::new_v1(
&["repro ", "\n"],
&[::core::fmt::ArgumentV1::new_display(&true)],
),
);
```
This is a continuation of #60109, which noted that while the ADX
intrinsics were stabilized, the corresponding target feature never was.
This PR follows the same general structure and stabilizes the ADX target
feature.
Add `Atomic*::get_mut_slice`
This PR adds the inverse of `Atomic*::from_mut_slice` introduced in #94384 with the following API:
```rust
// core::sync::atomic
impl Atomic* {
fn get_mut_slice(this: &mut [Self]) -> &mut [*];
}
```
cc `@cuviper`
-----
For now I've used the same tracking issue as `Atomic*::from_mut_slice`, should I open a new one?
Enable conditional checking of values in the Rust codebase
This pull-request enable conditional checking of (well known) values in the Rust codebase.
Well known values were added in https://github.com/rust-lang/rust/pull/94362. All the `target_*` values are taken from all the built-in targets which is why some extra values were needed do be added as they are not (yet ?) defined in any built-in targets.
r? `@Mark-Simulacrum`
Make float parsing docs more comprehensive
I was working on some code with some specialized restrictions on float parsing. I noticed the doc comments for `f32::from_str` and `f64::from_str` were missing several cases of valid inputs that are otherwise difficult to discover without looking at source code.
I'm not sure if the doc comments were initially intended to contain a comprehensive description of valid inputs, but I figured it's useful to include these extra cases for reference.
Rename `IntoFuture::Future` to `IntoFuture::IntoFuture`
Ref: https://github.com/rust-lang/rust/issues/67644#issuecomment-1051401459
This renames `IntoFuture::Future` to `IntoFuture::IntoFuture`. This adds the `Into*` prefix to the associated type, similar to the [`IntoIterator::IntoIter`](https://doc.rust-lang.org/std/iter/trait.IntoIterator.html#associatedtype.IntoIter) associated type. It's my mistake we didn't do so in the first place. This fixes that and brings the two closer together. Thanks!
### References
__`IntoIterator` trait def__
```rust
pub trait IntoIterator {
type Item;
type IntoIter: Iterator<Item = Self::Item>;
fn into_iter(self) -> Self::IntoIter;
}
```
__`IntoFuture` trait def__
```rust
pub trait IntoFuture {
type Output;
type IntoFuture: Future<Output = Self::Output>; // Prior to this PR: `type Future:`
fn into_future(self) -> Self::IntoFuture;
}
```
cc/ `@eholk` `@rust-lang/wg-async`
Remove unnecessary try_opt for operations that cannot fail
As indicated in the added comments, some operation cannot overflow, so using `try_opt!` for them is unnecessary.
Optimize ascii::escape_default
`ascii::escape_default` showed up as a hot function when compiling `deunicode-1.3.1` in `@nnethercote's` [analysis](https://hackmd.io/mxdn4U58Su-UQXwzOHpHag) of `@lqd's` [rustc-benchmarking-data](https://github.com/lqd/rustc-benchmarking-data).
After taking a look at the generated assembly it looked like a LUT-based approach could be faster for `hexify()`-ing ascii characters, so that's what this PR implements
The patch looks like it provides about a 1-2% improvement in instructions for that particular crate. This should definitely be verified with a perf run as I'm still getting used to the `rustc-perf` tooling and might easily have made an error!
Rename is_{some,ok,err}_with to is_{some,ok,err}_and.
This renames `is_{some,ok,err}_with` to `is_{some,ok,err}_and`. This was discussed on the [tracking issue](https://github.com/rust-lang/rust/issues/93050).
Use modern formatting for format! macros
This updates the standard library's documentation to use the new format_args syntax.
The documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
`eprintln!("{}", e)` becomes `eprintln!("{e}")`, but `eprintln!("{}", e.kind())` remains untouched.
Document new recommended use of `FromIterator::from_iter`
#90107
Most of the added prose was paraphrased from the links provided in the issue. The suggested `VecDeque` example seemed to make the point well enough so I just used that.
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
diagnostics: use rustc_on_unimplemented to recommend `[].iter()`
To make this work, the `#[rustc_on_unimplemented]` data needs to be used to
report method resolution errors, which is most of what this commit does.
Fixes#94581
Constify `Index{,Mut}` for `[T]`, `str`, and `[T; N]`
Several panic functions were rewired (via `const_eval_select`) to simpler implementations that do not require formatting for compile-time usage.
r? ```@oli-obk```
Merge `#[deprecated]` and `#[rustc_deprecated]`
The first commit makes "reason" an alias for "note" in `#[rustc_deprecated]`, while still prohibiting it in `#[deprecated]`.
The second commit changes "suggestion" to not just be a feature of `#[rustc_deprecated]`. This is placed behind the new `deprecated_suggestion` feature. This needs a tracking issue; let me know if this PR will be approved and I can create one.
The third commit is what permits `#[deprecated]` to be used when `#![feature(staged_api)]` is enabled. This isn't yet used in stdlib (only tests), as it would require duplicating all deprecation attributes until a bootstrap occurs. I intend to submit a follow-up PR that replaces all uses and removes the remaining `#[rustc_deprecated]` code after the next bootstrap.
`@rustbot` label +T-libs-api +C-feature-request +A-attributes +S-waiting-on-review
Add Iterator::collect_into
This PR adds `Iterator::collect_into` as proposed by ``@cormacrelf`` in #48597 (see https://github.com/rust-lang/rust/pull/48597#issuecomment-842083688).
Followup of #92982.
This adds the following method to the Iterator trait:
```rust
fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
```
Mention intent of `From` trait in its docs
This pr is a docs modification to add to the documentation of the `From` trait a note about its intent as a perfect conversion. This is already stated in the `TryFrom` docs so this is simply adding that information in a more visible way.
Based on @paolobarbolini's tip that the unsafe block was unnecessary in
this case.
Not much left of `hexify()` after this, so seemed clearer to just inline
it.
To make this work, the `#[rustc_on_unimplemented]` data needs to be used to
report method resolution errors, which is most of what this commit does.
Fixes#94581
Add core::hint::must_use
The example code in this documentation is minimized from a real-world situation in the `anyhow` crate where this function would have been valuable.
Having this provided by the standard library is especially useful for proc macros, even more than for macro_rules. That's because proc macro crates aren't allowed to export anything other than macros, so they couldn't make their own `must_use` function for their macro-generated code to call.
<br>
## Rendered documentation
> An identity function that causes an `unused_must_use` warning to be triggered if the given value is not used (returned, stored in a variable, etc) by the caller.
>
> This is primarily intended for use in macro-generated code, in which a [`#[must_use]` attribute][must_use] either on a type or a function would not be convenient.
>
> [must_use]: https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
>
> ### Example
>
> ```rust
> #![feature(hint_must_use)]
>
> use core::fmt;
>
> pub struct Error(/* ... */);
>
> #[macro_export]
> macro_rules! make_error {
> ($($args:expr),*) => {
> core::hint::must_use({
> let error = $crate::make_error(core::format_args!($($args),*));
> error
> })
> };
> }
>
> // Implementation detail of make_error! macro.
> #[doc(hidden)]
> pub fn make_error(args: fmt::Arguments<'_>) -> Error {
> Error(/* ... */)
> }
>
> fn demo() -> Option<Error> {
> if true {
> // Oops, meant to write `return Some(make_error!("..."));`
> Some(make_error!("..."));
> }
> None
> }
> ```
>
> In the above example, we'd like an `unused_must_use` lint to apply to the value created by `make_error!`. However, neither `#[must_use]` on a struct nor `#[must_use]` on a function is appropriate here, so the macro expands using `core::hint::must_use` instead.
>
> - We wouldn't want `#[must_use]` on the `struct Error` because that would make the following unproblematic code trigger a warning:
>
> ```rust
> fn f(arg: &str) -> Result<(), Error>
>
> #[test]
> fn t() {
> // Assert that `f` returns error if passed an empty string.
> // A value of type `Error` is unused here but that's not a problem.
> f("").unwrap_err();
> }
> ```
>
> - Using `#[must_use]` on `fn make_error` can't help because the return value *is* used, as the right-hand side of a `let` statement. The `let` statement looks useless but is in fact necessary for ensuring that temporaries within the `format_args` expansion are not kept alive past the creation of the `Error`, as keeping them alive past that point can cause autotrait issues in async code:
>
> ```rust
> async fn f() {
> // Using `let` inside the make_error expansion causes temporaries like
> // `unsync()` to drop at the semicolon of that `let` statement, which
> // is prior to the await point. They would otherwise stay around until
> // the semicolon on *this* statement, which is after the await point,
> // and the enclosing Future would not implement Send.
> log(make_error!("look: {:p}", unsync())).await;
> }
>
> async fn log(error: Error) {/* ... */}
>
> // Returns something without a Sync impl.
> fn unsync() -> *const () {
> 0 as *const ()
> }
> ```
Remove argument from closure in thread::Scope::spawn.
This implements ```@danielhenrymantilla's``` [suggestion](https://github.com/rust-lang/rust/issues/93203#issuecomment-1040798286) for improving the scoped threads interface.
Summary:
The `Scope` type gets an extra lifetime argument, which represents basically its own lifetime that will be used in `&'scope Scope<'scope, 'env>`:
```diff
- pub struct Scope<'env> { .. };
+ pub struct Scope<'scope, 'env: 'scope> { .. }
pub fn scope<'env, F, T>(f: F) -> T
where
- F: FnOnce(&Scope<'env>) -> T;
+ F: for<'scope> FnOnce(&'scope Scope<'scope, 'env>) -> T;
```
This simplifies the `spawn` function, which now no longer passes an argument to the closure you give it, and now uses the `'scope` lifetime for everything:
```diff
- pub fn spawn<'scope, F, T>(&'scope self, f: F) -> ScopedJoinHandle<'scope, T>
+ pub fn spawn<F, T>(&'scope self, f: F) -> ScopedJoinHandle<'scope, T>
where
- F: FnOnce(&Scope<'env>) -> T + Send + 'env,
+ F: FnOnce() -> T + Send + 'scope,
- T: Send + 'env;
+ T: Send + 'scope;
```
The only difference the user will notice, is that their closure now takes no arguments anymore, even when spawning threads from spawned threads:
```diff
thread::scope(|s| {
- s.spawn(|_| {
+ s.spawn(|| {
...
});
- s.spawn(|s| {
+ s.spawn(|| {
...
- s.spawn(|_| ...);
+ s.spawn(|| ...);
});
});
```
<details><summary>And, as a bonus, errors get <em>slightly</em> better because now any lifetime issues point to the outermost <code>s</code> (since there is only one <code>s</code>), rather than the innermost <code>s</code>, making it clear that the lifetime lasts for the entire <code>thread::scope</code>.
</summary>
```diff
error[E0373]: closure may outlive the current function, but it borrows `a`, which is owned by the current function
--> src/main.rs:9:21
|
- 7 | s.spawn(|s| {
- | - has type `&Scope<'1>`
+ 6 | thread::scope(|s| {
+ | - lifetime `'1` appears in the type of `s`
9 | s.spawn(|| println!("{:?}", a)); // might run after `a` is dropped
| ^^ - `a` is borrowed here
| |
| may outlive borrowed value `a`
|
note: function requires argument type to outlive `'1`
--> src/main.rs:9:13
|
9 | s.spawn(|| println!("{:?}", a)); // might run after `a` is dropped
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: to force the closure to take ownership of `a` (and any other referenced variables), use the `move` keyword
|
9 | s.spawn(move || println!("{:?}", a)); // might run after `a` is dropped
| ++++
"
```
</details>
The downside is that the signature of `scope` and `Scope` gets slightly more complex, but in most cases the user wouldn't need to write those, as they just use the argument provided by `thread::scope` without having to name its type.
Another downside is that this does not work nicely in Rust 2015 and Rust 2018, since in those editions, `s` would be captured by reference and not by copy. In those editions, the user would need to use `move ||` to capture `s` by copy. (Which is what the compiler suggests in the error.)
Add Result::{ok, err, and, or, unwrap_or} as const
Already opened tracking issue #92384.
I don't think that this should actually cause any issues as long as the constness is unstable, but we may want to double-check that this doesn't get interpreted as a weird `Drop` bound even for non-const usages.
Rollup of 5 pull requests
Successful merges:
- #94362 (Add well known values to `--check-cfg` implementation)
- #94577 (only disable SIMD for doctests in Miri (not for the stdlib build itself))
- #94595 (Fix invalid `unresolved imports` errors for a single-segment import)
- #94596 (Delay bug in expr adjustment when check_expr is called multiple times)
- #94618 (Don't round stack size up for created threads in Windows)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Alignment is a fieldless exhaustive enum, so it is already possible to
clone and compare it by matching, but it is inconvenient to do so. For
example, if one would like to create a struct describing a formatter
configuration and provide a clone implementation:
```rust
pub struct Format {
fill: char,
width: Option<usize>,
align: fmt::Alignment,
}
impl Clone for Format {
fn clone(&self) -> Self {
Format {
align: match self.align {
fmt::Alignment::Left => fmt::Alignment::Left,
fmt::Alignment::Right => fmt::Alignment::Right,
fmt::Alignment::Center => fmt::Alignment::Center,
},
.. *self
}
}
}
```
Derive Copy, Clone, PartialEq, and Eq for Alignment for convenience.
only disable SIMD for doctests in Miri (not for the stdlib build itself)
Also we can enable library/core/tests/simd.rs now, Miri supports enough SIMD for that.
Miri/CTFE: properly treat overflow in (signed) division/rem as UB
To my surprise, it looks like LLVM treats overflow of signed div/rem as UB. From what I can tell, MIR `Div`/`Rem` directly lowers to the corresponding LLVM operation, so to make that correct we also have to consider these overflows UB in the CTFE/Miri interpreter engine.
r? `@oli-obk`
When CStr moves to core with an alias in std, this can link to
`crate::ffi::CStr`. However, linking in the reverse direction (from core
to std) requires a relative path, and that path can't work from both
core::ffi and std::os::raw (different number of `../` traversals
required).
The ability to interoperate with C code via FFI is not limited to crates
using std; this allows using these types without std.
The existing types in `std::os::raw` become type aliases for the ones in
`core::ffi`. This uses type aliases rather than re-exports, to allow the
std types to remain stable while the core types are unstable.
This also moves the currently unstable `NonZero_` variants and
`c_size_t`/`c_ssize_t`/`c_ptrdiff_t` types to `core::ffi`, while leaving
them unstable.
core can't depend on external crates the way std can. Rather than revert
usage of cfg_if, add a copy of it to core. This does not export our
copy, even unstably; such a change could occur in a later commit.
Add Atomic*::from_mut_slice
Tracking issue #76314 for `from_mut` has a question about the possibility of `from_mut_slice`, and I found a real case for it. A user in the forum had a parallelism problem that could be solved by open-indexing updates to a vector of atomics, but they didn't want to affect the other code using that vector. Using `from_mut_slice`, they could borrow that data as atomics just long enough for their parallel loop.
ref: https://users.rust-lang.org/t/sharing-vector-with-rayon-par-iter-correctly/72022
Rollup of 5 pull requests
Successful merges:
- #93603 (Populate liveness facts when calling `get_body_with_borrowck_facts` without `-Z polonius`)
- #93870 (Fix switch on discriminant detection in a presence of coverage counters)
- #94355 (Add one more case to avoid ICE)
- #94363 (Remove needless borrows from core::fmt)
- #94377 (`check_used` should only look at actual `used` attributes)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
This function was updated in a recent PR (92911) to be called without the caller
information passed in, but the function signature itself was not altered with
cfg_attr at the time.
Stop manually SIMDing in `swap_nonoverlapping`
Like I previously did for `reverse` (#90821), this leaves it to LLVM to pick how to vectorize it, since it can know better the chunk size to use, compared to the "32 bytes always" approach we currently have.
A variety of codegen tests are included to confirm that the various cases are still being vectorized.
It does still need logic to type-erase in some cases, though, as while LLVM is now smart enough to vectorize over slices of things like `[u8; 4]`, it fails to do so over slices of `[u8; 3]`.
As a bonus, this change also means one no longer gets the spurious `memcpy`(s?) at the end up swapping a slice of `__m256`s: <https://rust.godbolt.org/z/joofr4v8Y>
<details>
<summary>ASM for this example</summary>
## Before (from godbolt)
note the `push`/`pop`s and `memcpy`
```x86
swap_m256_slice:
push r15
push r14
push r13
push r12
push rbx
sub rsp, 32
cmp rsi, rcx
jne .LBB0_6
mov r14, rsi
shl r14, 5
je .LBB0_6
mov r15, rdx
mov rbx, rdi
xor eax, eax
.LBB0_3:
mov rcx, rax
vmovaps ymm0, ymmword ptr [rbx + rax]
vmovaps ymm1, ymmword ptr [r15 + rax]
vmovaps ymmword ptr [rbx + rax], ymm1
vmovaps ymmword ptr [r15 + rax], ymm0
add rax, 32
add rcx, 64
cmp rcx, r14
jbe .LBB0_3
sub r14, rax
jbe .LBB0_6
add rbx, rax
add r15, rax
mov r12, rsp
mov r13, qword ptr [rip + memcpy@GOTPCREL]
mov rdi, r12
mov rsi, rbx
mov rdx, r14
vzeroupper
call r13
mov rdi, rbx
mov rsi, r15
mov rdx, r14
call r13
mov rdi, r15
mov rsi, r12
mov rdx, r14
call r13
.LBB0_6:
add rsp, 32
pop rbx
pop r12
pop r13
pop r14
pop r15
vzeroupper
ret
```
## After (from my machine)
Note no `rsp` manipulation, sorry for different ASM syntax
```x86
swap_m256_slice:
cmpq %r9, %rdx
jne .LBB1_6
testq %rdx, %rdx
je .LBB1_6
cmpq $1, %rdx
jne .LBB1_7
xorl %r10d, %r10d
jmp .LBB1_4
.LBB1_7:
movq %rdx, %r9
andq $-2, %r9
movl $32, %eax
xorl %r10d, %r10d
.p2align 4, 0x90
.LBB1_8:
vmovaps -32(%rcx,%rax), %ymm0
vmovaps -32(%r8,%rax), %ymm1
vmovaps %ymm1, -32(%rcx,%rax)
vmovaps %ymm0, -32(%r8,%rax)
vmovaps (%rcx,%rax), %ymm0
vmovaps (%r8,%rax), %ymm1
vmovaps %ymm1, (%rcx,%rax)
vmovaps %ymm0, (%r8,%rax)
addq $2, %r10
addq $64, %rax
cmpq %r10, %r9
jne .LBB1_8
.LBB1_4:
testb $1, %dl
je .LBB1_6
shlq $5, %r10
vmovaps (%rcx,%r10), %ymm0
vmovaps (%r8,%r10), %ymm1
vmovaps %ymm1, (%rcx,%r10)
vmovaps %ymm0, (%r8,%r10)
.LBB1_6:
vzeroupper
retq
```
</details>
This does all its copying operations as either the original type or as `MaybeUninit`s, so as far as I know there should be no potential abstract machine issues with reading padding bytes as integers.
<details>
<summary>Perf is essentially unchanged</summary>
Though perhaps with more target features this would help more, if it could pick bigger chunks
## Before
```
running 10 tests
test slice::swap_with_slice_4x_usize_30 ... bench: 894 ns/iter (+/- 11)
test slice::swap_with_slice_4x_usize_3000 ... bench: 99,476 ns/iter (+/- 2,784)
test slice::swap_with_slice_5x_usize_30 ... bench: 1,257 ns/iter (+/- 7)
test slice::swap_with_slice_5x_usize_3000 ... bench: 139,922 ns/iter (+/- 959)
test slice::swap_with_slice_rgb_30 ... bench: 328 ns/iter (+/- 27)
test slice::swap_with_slice_rgb_3000 ... bench: 16,215 ns/iter (+/- 176)
test slice::swap_with_slice_u8_30 ... bench: 312 ns/iter (+/- 9)
test slice::swap_with_slice_u8_3000 ... bench: 5,401 ns/iter (+/- 123)
test slice::swap_with_slice_usize_30 ... bench: 368 ns/iter (+/- 3)
test slice::swap_with_slice_usize_3000 ... bench: 28,472 ns/iter (+/- 3,913)
```
## After
```
running 10 tests
test slice::swap_with_slice_4x_usize_30 ... bench: 868 ns/iter (+/- 36)
test slice::swap_with_slice_4x_usize_3000 ... bench: 99,642 ns/iter (+/- 1,507)
test slice::swap_with_slice_5x_usize_30 ... bench: 1,194 ns/iter (+/- 11)
test slice::swap_with_slice_5x_usize_3000 ... bench: 139,761 ns/iter (+/- 5,018)
test slice::swap_with_slice_rgb_30 ... bench: 324 ns/iter (+/- 6)
test slice::swap_with_slice_rgb_3000 ... bench: 15,962 ns/iter (+/- 287)
test slice::swap_with_slice_u8_30 ... bench: 281 ns/iter (+/- 5)
test slice::swap_with_slice_u8_3000 ... bench: 5,324 ns/iter (+/- 40)
test slice::swap_with_slice_usize_30 ... bench: 275 ns/iter (+/- 5)
test slice::swap_with_slice_usize_3000 ... bench: 28,277 ns/iter (+/- 277)
```
</detail>
remove feature gate in control_flow examples
Stabilization was done in https://github.com/rust-lang/rust/pull/91091, but the two examples weren't updated accordingly.
Probably too late to put it into stable, but it should be in the next release :)
Some improvements to the async docs
The goal here is to make the docs overall a little bit more comprehensive and add more links between the things.
One thing that's not working yet is the links to the keywords. Somehow I couldn't get them to work.
r? ````@GuillaumeGomez```` do you know how I could get the keyword links to work?
Like I previously did for `reverse`, this leaves it to LLVM to pick how to vectorize it, since it can know better the chunk size to use, compared to the "32 bytes always" approach we currently have.
It does still need logic to type-erase where appropriate, though, as while LLVM is now smart enough to vectorize over slices of things like `[u8; 4]`, it fails to do so over slices of `[u8; 3]`.
As a bonus, this also means one no longer gets the spurious `memcpy`(s?) at the end up swapping a slice of `__m256`s: <https://rust.godbolt.org/z/joofr4v8Y>
core: Implement ASCII trim functions on byte slices
Hi ````````@rust-lang/libs!```````` This is a feature that I wished for when implementing serial protocols with microcontrollers. Often these protocols may contain leading or trailing whitespace, which needs to be removed. Because oftentimes drivers will operate on the byte level, decoding to unicode and checking for unicode whitespace is unnecessary overhead.
This PR adds three new methods to byte slices:
- `trim_ascii_start`
- `trim_ascii_end`
- `trim_ascii`
I did not find any pre-existing discussions about this, which surprises me a bit. Maybe I'm missing something, and this functionality is already possible through other means? There's https://github.com/rust-lang/rfcs/issues/2547 ("Trim methods on slices"), but that has a different purpose.
As per the [std dev guide](https://std-dev-guide.rust-lang.org/feature-lifecycle/new-unstable-features.html), this is a proposed implementation without any issue / RFC. If this is the wrong process, please let me know. However, I thought discussing code is easier than discussing a mere idea, and hacking on the stdlib was fun.
Tracking issue: https://github.com/rust-lang/rust/issues/94035
Guard against unwinding in cleanup code
Currently the only safe guard we have against double unwind is the panic count (which is local to Rust). When double unwinds indeed happen (e.g. C++ exception + Rust panic, or two C++ exceptions), then the second unwind actually goes through and the first unwind is leaked. This can cause UB. cc rust-lang/project-ffi-unwind#6
E.g. given the following C++ code:
```c++
extern "C" void foo() {
throw "A";
}
extern "C" void execute(void (*fn)()) {
try {
fn();
} catch(...) {
}
}
```
This program is well-defined to terminate:
```c++
struct dtor {
~dtor() noexcept(false) {
foo();
}
};
void a() {
dtor a;
dtor b;
}
int main() {
execute(a);
return 0;
}
```
But this Rust code doesn't catch the double unwind:
```rust
extern "C-unwind" {
fn foo();
fn execute(f: unsafe extern "C-unwind" fn());
}
struct Dtor;
impl Drop for Dtor {
fn drop(&mut self) {
unsafe { foo(); }
}
}
extern "C-unwind" fn a() {
let _a = Dtor;
let _b = Dtor;
}
fn main() {
unsafe { execute(a) };
}
```
To address this issue, this PR adds an unwind edge to an abort block, so that the Rust example aborts. This is similar to how clang guards against double unwind (except clang calls terminate per C++ spec and we abort).
The cost should be very small; it's an additional trap instruction (well, two for now, since we use TrapUnreachable, but that's a different issue) for each function with landing pads; if LLVM gains support to encode "abort/terminate" info directly in LSDA like GCC does, then it'll be free. It's an additional basic block though so compile time may be worse, so I'd like a perf run.
r? `@ghost`
`@rustbot` label: F-c_unwind
Add a `try_collect()` helper method to `Iterator`
Implement `Iterator::try_collect()` as a helper around `Iterator::collect()` as discussed [here](https://internals.rust-lang.org/t/idea-fallible-iterator-mapping-with-try-map/15715/5?u=a.lafrance).
First time contributor so definitely open to any feedback about my implementation! Specifically wondering if I should open a tracking issue for the unstable feature I introduced.
As the main participant in the internals discussion: r? `@scottmcm`
Add documentation to more `From::from` implementations.
For users looking at documentation through IDE popups, this gives them relevant information rather than the generic trait documentation wording “Performs the conversion”. For users reading the documentation for a specific type for any reason, this informs them when the conversion may allocate or copy significant memory versus when it is always a move or cheap copy.
Notes on specific cases:
* The new documentation for `From<T> for T` explains that it is not a conversion at all.
* Also documented `impl<T, U> Into<U> for T where U: From<T>`, the other central blanket implementation of conversion.
* The new documentation for construction of maps and sets from arrays of keys mentions the handling of duplicates. Future work could be to do this for *all* code paths that convert an iterable to a map or set.
* I did not add documentation to conversions of a specific error type to a more general error type.
* I did not add documentation to unstable code.
This change was prepared by searching for the text "From<... for" and so may have missed some cases that for whatever reason did not match. I also looked for `Into` impls but did not find any worth documenting by the above criteria.
Destabilize cfg(target_has_atomic_load_store = ...)
This was not intended to be stabilized yet.
This keeps the cfg_target_has_atomic feature gate name since compiler-builtins otherwise depends on it and I'd rather not try to manage a bump across a crates.io published repository given the time-sensitivity here (we need to land this quickly to avoid a beta backport).
Closes https://github.com/rust-lang/rust/issues/32976
r? `@Amanieu`
Make [u8]::cmp implementation branchless
The current implementation generates rather ugly assembly code, branching when the common parts are equal. By performing the comparison of the lengths upfront using a subtraction, the assembly gets much prettier: https://godbolt.org/z/4e5fnEKGd.
This will probably not impact speed too much, as the expensive part is in most cases the `memcmp`, but it sure looks better (I'm porting a sorting algorithm currently, and that branch just bothered me).
Since `decl_macro`s and/or `Span::def_site()` is deemed quite unstable,
no public-facing macro that relies on it can hope to be, itself, stabilized.
We circumvent the issue by no longer relying on field privacy for safety and,
instead, relying on an unstable feature-gate to act as the gate keeper for
non users of the macro (thanks to `allow_internal_unstable`).
This is technically not correct (since a `nightly` user could technically enable
the feature and cause unsoundness with it); or, in other words, this makes the
feature-gate used to gate the access to the field be (technically unsound, and
in practice) `unsafe`. Hence it having `unsafe` in its name.
Back to the macro, we go back to `macro_rules!` / `mixed_site()`-span rules thanks
to declaring the `decl_macro` as `semitransparent`, which is a hack to basically have
`pub macro_rules!`
Co-Authored-By: Mara Bos <m-ou.se@m-ou.se>
Stabilise inherent_ascii_escape (FCP in #77174)
Implements #77174, which completed its FCP.
This does *not* deprecate any existing methods or structs, as that is tracked in #93887. That stated, people should prefer using `u8::escape_ascii` to `std::ascii::escape_default`.
More practical examples for `Option::and_then` & `Result::and_then`
To be blatantly honest, I think the current example given for `Option::and_then` is objectively terrible. (No offence to whoever wrote them initially.)
```rust
fn sq(x: u32) -> Option<u32> { Some(x * x) }
fn nope(_: u32) -> Option<u32> { None }
assert_eq!(Some(2).and_then(sq).and_then(sq), Some(16));
assert_eq!(Some(2).and_then(sq).and_then(nope), None);
assert_eq!(Some(2).and_then(nope).and_then(sq), None);
assert_eq!(None.and_then(sq).and_then(sq), None);
```
Current example:
- does not demonstrate that `and_then` converts `Option<T>` to `Option<U>`
- is far removed from any realistic code
- generally just causes more confusion than it helps
So I replaced them with two blocks:
- the first one shows basic usage (including the type conversion)
- the second one shows an example of typical usage
Same thing with `Result::and_then`.
Hopefully this helps with clarity.
Change `ResultShunt` to be generic over `Try`
Just a refactor (and rename) for now, so it's not `Result`-specific.
This could be used for a future `Iterator::try_collect`, or similar, but anything like that is left for a future PR.
Add {floor,ceil}_char_boundary methods to str
This is technically already used internally by the standard library in the form of `truncate_to_char_boundary`.
Essentially these are two building blocks to allow for approximate string truncation, where you want to cut off the string at "approximately" a given length in bytes but don't know exactly where the character boundaries lie. It's also a good candidate for the standard library as it can easily be done naively, but would be difficult to properly optimise. Although the existing code that's done in error messages is done naively, this code will explicitly only check a window of 4 bytes since we know that a boundary must lie in that range, and because it will make it possible to vectorise.
Although this method doesn't take into account graphemes or other properties, this would still be a required building block for splitting that takes those into account. For example, if you wanted to split at a grapheme boundary, you could take your approximate splitting point and then determine the graphemes immediately following and preceeding the split. If you then notice that these two graphemes could be merged, you can decide to either include the whole grapheme or exclude it depending on whether you decide splitting should shrink or expand the string.
This takes the most conservative approach and just offers the raw indices to the user, and they can decide how to use them. That way, the methods are as useful as possible despite having as few methods as possible.
(Note: I'll add some tests and a tracking issue if it's decided that this is worth including.)
Just a refactor (and rename) for now, so it's not `Result`-specific.
This could be used for a future `Iterator::try_collect`, or similar, but anything like that is left for a future PR.
Impl {Add,Sub,Mul,Div,Rem,BitXor,BitOr,BitAnd}Assign<$t> for Wrapping<$t> for rust 1.60.0
Tracking issue #93204
This is about adding basic integer operations to the `Wrapping` type:
```rust
let mut value = Wrapping(2u8);
value += 3u8;
value -= 1u8;
value *= 2u8;
value /= 2u8;
value %= 2u8;
value ^= 255u8;
value |= 123u8;
value &= 2u8;
```
Because this adds stable impls on a stable type, it runs into the following issue if an `#[unstable(...)]` attribute is used:
```
an `#[unstable]` annotation here has no effect
note: see issue #55436 <https://github.com/rust-lang/rust/issues/55436> for more information
```
This means - if I understood this correctly - the new impls have to be stabilized instantly.
Which in turn means, this PR has to kick of an FCP on the tracking issue as well?
This impl is analog to 1c0dc1810d#92356 for the `Saturating` type ``@dtolnay`` ``@Mark-Simulacrum``
Fix invalid special casing of the unreachable! macro
This pull-request fix an invalid special casing of the `unreachable!` macro in the same way the `panic!` macro was solved, by adding two new internal only macros `unreachable_2015` and `unreachable_2021` edition dependent and turn `unreachable!` into a built-in macro that do dispatching. This logic is stolen from the `panic!` macro.
~~This pull-request also adds an internal feature `format_args_capture_non_literal` that allows capturing arguments from formatted string that expanded from macros. The original RFC #2795 mentioned this as a future possibility. This feature is [required](https://github.com/rust-lang/rust/issues/92137#issuecomment-1018630522) because of concatenation that needs to be done inside the macro:~~
```rust
$crate::concat!("internal error: entered unreachable code: ", $fmt)
```
**In summary** the new behavior for the `unreachable!` macro with this pr is:
Edition 2021:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is 5
```
Edition <= 2018:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is {x}
```
Also note that the change in this PR are **insta-stable** and **breaking changes** but this a considered as being a [bug](https://github.com/rust-lang/rust/issues/92137#issuecomment-998441613).
If someone could start a perf run and then a crater run this would be appreciated.
Fixes https://github.com/rust-lang/rust/issues/92137
Rollup of 2 pull requests
Successful merges:
- #90998 (Require const stability attribute on all stable functions that are `const`)
- #93489 (Mark the panic_no_unwind lang item as nounwind)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Mark the panic_no_unwind lang item as nounwind
This has 2 effects:
- It helps LLVM when inlining since it doesn't need to generate landing pads for `panic_no_unwind`.
- It makes it sound for a panic handler to unwind even if `PanicInfo::can_unwind` returns true. This will simply cause another panic once the unwind tries to go past the `panic_no_unwind` lang item. Eventually this will cause a stack overflow, which is safe.
Require const stability attribute on all stable functions that are `const`
This PR requires all stable functions (of all kinds) that are `const fn` to have a `#[rustc_const_stable]` or `#[rustc_const_unstable]` attribute. Stability was previously implied if omitted; a follow-up PR is planned to change the fallback to be unstable.
Optimize `core::str::Chars::count`
I wrote this a while ago after seeing this function as a bottleneck in a profile, but never got around to contributing it. I saw it again, and so here it is. The implementation is fairly complex, but I tried to explain what's happening at both a high level (in the header comment for the file), and in line comments in the impl. Hopefully it's clear enough.
This implementation (`case00_cur_libcore` in the benchmarks below) is somewhat consistently around 4x to 5x faster than the old implementation (`case01_old_libcore` in the benchmarks below), for a wide variety of workloads, without regressing performance on any of the workload sizes I've tried.
I also improved the benchmarks for this code, so that they explicitly check text in different languages and of different sizes (err, the cross product of language x size). The results of the benchmarks are here:
<details>
<summary>Benchmark results</summary>
<pre>
test str::char_count::emoji_huge::case00_cur_libcore ... bench: 20,216 ns/iter (+/- 3,673) = 17931 MB/s
test str::char_count::emoji_huge::case01_old_libcore ... bench: 108,851 ns/iter (+/- 12,777) = 3330 MB/s
test str::char_count::emoji_huge::case02_iter_increment ... bench: 329,502 ns/iter (+/- 4,163) = 1100 MB/s
test str::char_count::emoji_huge::case03_manual_char_len ... bench: 223,333 ns/iter (+/- 14,167) = 1623 MB/s
test str::char_count::emoji_large::case00_cur_libcore ... bench: 293 ns/iter (+/- 6) = 19331 MB/s
test str::char_count::emoji_large::case01_old_libcore ... bench: 1,681 ns/iter (+/- 28) = 3369 MB/s
test str::char_count::emoji_large::case02_iter_increment ... bench: 5,166 ns/iter (+/- 85) = 1096 MB/s
test str::char_count::emoji_large::case03_manual_char_len ... bench: 3,476 ns/iter (+/- 62) = 1629 MB/s
test str::char_count::emoji_medium::case00_cur_libcore ... bench: 48 ns/iter (+/- 0) = 14750 MB/s
test str::char_count::emoji_medium::case01_old_libcore ... bench: 217 ns/iter (+/- 4) = 3262 MB/s
test str::char_count::emoji_medium::case02_iter_increment ... bench: 642 ns/iter (+/- 7) = 1102 MB/s
test str::char_count::emoji_medium::case03_manual_char_len ... bench: 445 ns/iter (+/- 3) = 1591 MB/s
test str::char_count::emoji_small::case00_cur_libcore ... bench: 18 ns/iter (+/- 0) = 3777 MB/s
test str::char_count::emoji_small::case01_old_libcore ... bench: 23 ns/iter (+/- 0) = 2956 MB/s
test str::char_count::emoji_small::case02_iter_increment ... bench: 66 ns/iter (+/- 2) = 1030 MB/s
test str::char_count::emoji_small::case03_manual_char_len ... bench: 29 ns/iter (+/- 1) = 2344 MB/s
test str::char_count::en_huge::case00_cur_libcore ... bench: 25,909 ns/iter (+/- 39,260) = 13299 MB/s
test str::char_count::en_huge::case01_old_libcore ... bench: 102,887 ns/iter (+/- 3,257) = 3349 MB/s
test str::char_count::en_huge::case02_iter_increment ... bench: 166,370 ns/iter (+/- 12,439) = 2071 MB/s
test str::char_count::en_huge::case03_manual_char_len ... bench: 166,332 ns/iter (+/- 4,262) = 2071 MB/s
test str::char_count::en_large::case00_cur_libcore ... bench: 281 ns/iter (+/- 6) = 19160 MB/s
test str::char_count::en_large::case01_old_libcore ... bench: 1,598 ns/iter (+/- 19) = 3369 MB/s
test str::char_count::en_large::case02_iter_increment ... bench: 2,598 ns/iter (+/- 167) = 2072 MB/s
test str::char_count::en_large::case03_manual_char_len ... bench: 2,578 ns/iter (+/- 55) = 2088 MB/s
test str::char_count::en_medium::case00_cur_libcore ... bench: 44 ns/iter (+/- 1) = 15295 MB/s
test str::char_count::en_medium::case01_old_libcore ... bench: 201 ns/iter (+/- 51) = 3348 MB/s
test str::char_count::en_medium::case02_iter_increment ... bench: 322 ns/iter (+/- 40) = 2090 MB/s
test str::char_count::en_medium::case03_manual_char_len ... bench: 319 ns/iter (+/- 5) = 2109 MB/s
test str::char_count::en_small::case00_cur_libcore ... bench: 15 ns/iter (+/- 0) = 2333 MB/s
test str::char_count::en_small::case01_old_libcore ... bench: 14 ns/iter (+/- 0) = 2500 MB/s
test str::char_count::en_small::case02_iter_increment ... bench: 30 ns/iter (+/- 1) = 1166 MB/s
test str::char_count::en_small::case03_manual_char_len ... bench: 30 ns/iter (+/- 1) = 1166 MB/s
test str::char_count::ru_huge::case00_cur_libcore ... bench: 16,439 ns/iter (+/- 3,105) = 19777 MB/s
test str::char_count::ru_huge::case01_old_libcore ... bench: 89,480 ns/iter (+/- 2,555) = 3633 MB/s
test str::char_count::ru_huge::case02_iter_increment ... bench: 217,703 ns/iter (+/- 22,185) = 1493 MB/s
test str::char_count::ru_huge::case03_manual_char_len ... bench: 157,330 ns/iter (+/- 19,188) = 2066 MB/s
test str::char_count::ru_large::case00_cur_libcore ... bench: 243 ns/iter (+/- 6) = 20905 MB/s
test str::char_count::ru_large::case01_old_libcore ... bench: 1,384 ns/iter (+/- 51) = 3670 MB/s
test str::char_count::ru_large::case02_iter_increment ... bench: 3,381 ns/iter (+/- 543) = 1502 MB/s
test str::char_count::ru_large::case03_manual_char_len ... bench: 2,423 ns/iter (+/- 429) = 2096 MB/s
test str::char_count::ru_medium::case00_cur_libcore ... bench: 42 ns/iter (+/- 1) = 15119 MB/s
test str::char_count::ru_medium::case01_old_libcore ... bench: 180 ns/iter (+/- 4) = 3527 MB/s
test str::char_count::ru_medium::case02_iter_increment ... bench: 402 ns/iter (+/- 45) = 1579 MB/s
test str::char_count::ru_medium::case03_manual_char_len ... bench: 280 ns/iter (+/- 29) = 2267 MB/s
test str::char_count::ru_small::case00_cur_libcore ... bench: 12 ns/iter (+/- 0) = 2666 MB/s
test str::char_count::ru_small::case01_old_libcore ... bench: 12 ns/iter (+/- 0) = 2666 MB/s
test str::char_count::ru_small::case02_iter_increment ... bench: 19 ns/iter (+/- 0) = 1684 MB/s
test str::char_count::ru_small::case03_manual_char_len ... bench: 14 ns/iter (+/- 1) = 2285 MB/s
test str::char_count::zh_huge::case00_cur_libcore ... bench: 15,053 ns/iter (+/- 2,640) = 20067 MB/s
test str::char_count::zh_huge::case01_old_libcore ... bench: 82,622 ns/iter (+/- 3,602) = 3656 MB/s
test str::char_count::zh_huge::case02_iter_increment ... bench: 230,456 ns/iter (+/- 7,246) = 1310 MB/s
test str::char_count::zh_huge::case03_manual_char_len ... bench: 220,595 ns/iter (+/- 11,624) = 1369 MB/s
test str::char_count::zh_large::case00_cur_libcore ... bench: 227 ns/iter (+/- 65) = 20792 MB/s
test str::char_count::zh_large::case01_old_libcore ... bench: 1,136 ns/iter (+/- 144) = 4154 MB/s
test str::char_count::zh_large::case02_iter_increment ... bench: 3,147 ns/iter (+/- 253) = 1499 MB/s
test str::char_count::zh_large::case03_manual_char_len ... bench: 2,993 ns/iter (+/- 400) = 1577 MB/s
test str::char_count::zh_medium::case00_cur_libcore ... bench: 36 ns/iter (+/- 5) = 16388 MB/s
test str::char_count::zh_medium::case01_old_libcore ... bench: 142 ns/iter (+/- 18) = 4154 MB/s
test str::char_count::zh_medium::case02_iter_increment ... bench: 379 ns/iter (+/- 37) = 1556 MB/s
test str::char_count::zh_medium::case03_manual_char_len ... bench: 364 ns/iter (+/- 51) = 1620 MB/s
test str::char_count::zh_small::case00_cur_libcore ... bench: 11 ns/iter (+/- 1) = 3000 MB/s
test str::char_count::zh_small::case01_old_libcore ... bench: 11 ns/iter (+/- 1) = 3000 MB/s
test str::char_count::zh_small::case02_iter_increment ... bench: 20 ns/iter (+/- 3) = 1650 MB/s
</pre>
</details>
I also added fairly thorough tests for different sizes and alignments. This completes on my machine in 0.02s, which is surprising given how thorough they are, but it seems to detect bugs in the implementation. (I haven't run the tests on a 32 bit machine yet since before I reworked the code a little though, so... hopefully I'm not about to embarrass myself).
This uses similar SWAR-style techniques to the `is_ascii` impl I contributed in https://github.com/rust-lang/rust/pull/74066, so I'm going to request review from the same person who reviewed that one. That said am not particularly picky, and might not have the correct syntax for requesting a review from someone (so it goes).
r? `@nagisa`
Document valid values of the char type
As discussed at #93392, the current documentation on what constitutes a valid char isn't very detailed and is partly on the MAX constant rather than the type itself.
This PR expands on that information, stating the actual numerical range, giving examples of what won't work, and also mentions how a `char` might be a valid USV but still not be a defined character (terminology checked against [Unicode 14.0, table 2-3](https://www.unicode.org/versions/Unicode14.0.0/ch02.pdf#M9.61673.TableTitle.Table.22.Types.of.Code.Points)).
Implement `RawWaker` and `Waker` getters for underlying pointers
implement #87021
New APIs:
- `RawWaker::data(&self) -> *const ()`
- `RawWaker::vtable(&self) -> &'static RawWakerVTable`
- ~`Waker::as_raw_waker(&self) -> &RawWaker`~ `Waker::as_raw(&self) -> &RawWaker`
This third one is an auxiliary function to make the two APIs above more useful. Since we can only get `&Waker` in `Future::poll`, without this, we need to `transmute` it into `&RawWaker` (relying on `repr(transparent)`) in order to access its data/vtable pointers.
~Not sure if it should be named `as_raw` or `as_raw_waker`. Seems we always use `as_<something-raw>` instead of just `as_raw`. But `as_raw_waker` seems not quite consistent with `Waker::from_raw`.~ As suggested in https://github.com/rust-lang/rust/pull/91828#discussion_r770729837, use `as_raw`.
Carefully remove bounds checks from some chunk iterator functions
So, I was writing code that requires the equivalent of `rchunks(N).rev()` (which isn't the same as forward `chunks(N)` — in particular, if the buffer length is not a multiple of `N`, I must handle the "remainder" first).
I happened to look at the codegen output of the function (I was actually interested in whether or not a nested loop was being unrolled — it was), and noticed that in the outer `rchunks(n).rev()` loop, LLVM seemed to be unable to remove the bounds checks from the iteration: https://rust.godbolt.org/z/Tnz4MYY8f (this panic was from the split_at in `RChunks::next_back`).
After doing some experimentation, it seems all of the `next_back` in the non-exact chunk iterators have the issue: (`Chunks::next_back`, `RChunks::next_back`, `ChunksMut::next_back`, and `RChunksMut::next_back`)...
Even worse, the forward `rchunks` iterators sometimes have the issue as well (... but only sometimes). For example https://rust.godbolt.org/z/oGhbqv53r has bounds checks, but if I uncomment the loop body, it manages to remove the check (which is bizarre, since I'd expect the opposite...). I suspect it's highly dependent on the surrounding code, so I decided to remove the bounds checks from them anyway. Overall, this change includes:
- All `next_back` functions on the non-`Exact` iterators (e.g. `R?Chunks(Mut)?`).
- All `next` functions on the non-exact rchunks iterators (e.g. `RChunks(Mut)?`).
I wasn't able to catch any of the other chunk iterators failing to remove the bounds checks (I checked iterations over `r?chunks(_exact)?(_mut)?` with constant chunk sizes under `-O3`, `-Os`, and `-Oz`), which makes sense, since these were the cases where it was harder to prove the bounds check correct to remove...
In fact, it took quite a bit of thinking to convince myself that using unchecked_ here was valid — so I'm not really surprised that LLVM had trouble (although compilers are slightly better at this sort of reasoning than humans). A consequence of that is the fact that the `// SAFETY` comment for these are... kinda long...
---
I didn't do this for, or even think about it for, any of the other iteration methods; just `next` and `next_back` (where it mattered). If this PR is accepted, I'll file a follow up for someone (possibly me) to look at the others later (in particular, `nth`/`nth_back` looked like they had similar logic), but I wanted to do this now, as IMO `next`/`next_back` are the most important here, since they're what gets used by the iteration protocol.
---
Note: While I don't expect this to impact performance directly, the panic is a side effect, which would otherwise not exist in these loops. That is, this could prevent the compiler from being able to move/remove/otherwise rework a loop over these iterators (as an example, it could not delete the code for a loop whose body computes a value which doesn't get used).
Also, some like to be able to have confidence this code has no panicking branches in the optimized code, and "no bounds checks" is kinda part of the selling point of Rust's iterators anyway.
Remove deprecated and unstable slice_partition_at_index functions
They have been deprecated since commit 01ac5a97c9
which was part of the 1.49.0 release, so from the point of nightly,
11 releases ago.
review the total_cmp documentation
The documentation has been restructured to split out a brief summary
paragraph out from the following elaborating paragraphs.
I also attempted my hand at wording improvements and adding articles
where I felt them missing, but being non-native english speaker these
may need more thorough review.
cc https://github.com/rust-lang/rust/issues/72599
Clarify documentation on char::MAX
As mentioned in https://github.com/rust-lang/rust/issues/91836#issuecomment-994106874, the documentation on `char::MAX` is not quite correct – USVs are not "only ones within a certain range", they are code points _outside_ a certain range. I have corrected this and given the actual numbers as there is no reason to hide them.
Make `char::DecodeUtf16::size_hist` more precise
New implementation takes into account contents of `self.buf` and rounds lower bound up instead of down.
Fixes#88762
Revival of #88763
Create `core::fmt::ArgumentV1` with generics instead of fn pointer
Split from (and prerequisite of) #90488, as this seems to have perf implication.
`@rustbot` label: +T-libs
The documentation has been restructured to split out a brief summary
paragraph out from the following elaborating paragraphs.
I also attempted my hand at wording improvements and adding articles
where I felt them missing, but being non-native english speaker these
may need more thorough review.
Add `intrinsics::const_deallocate`
Tracking issue: #79597
Related: #91884
This allows deallocation of a memory allocated by `intrinsics::const_allocate`. At the moment, this can be only used to reduce memory usage, but in the future this may be useful to detect memory leaks (If an allocated memory remains after evaluation, raise an error...?).
Unimpl {Add,Sub,Mul,Div,Rem,BitXor,BitOr,BitAnd}<$t> for Saturating<$t>
Tracking issue #92354
Analog to 9648b313cc#93208 reduce `saturating_int_assign_impl` (#93208) to:
```rust
let mut value = Saturating(2u8);
value += 3u8;
value -= 1u8;
value *= 2u8;
value /= 2u8;
value %= 2u8;
value ^= 255u8;
value |= 123u8;
value &= 2u8;
```
See https://github.com/rust-lang/rust/pull/93208#issuecomment-1022564429
Add links to the reference and rust by example for asm! docs and lints
These were previously removed in #91728 due to broken links.
cc ``@ehuss`` since this updates the rust-by-example submodule
This makes `PartialOrd` consistent with the other three traits in this
module, which all include links to their respective mathematical concepts
on Wikipedia.
impl Not for !
The lack of this impl caused trouble for me in some degenerate cases of macro-generated code of the form `if !$cond {...}`, even without `feature(never_type)` on a stable compiler. Namely if `$cond` contains a `return` or `break` or similar diverging expression, which would otherwise be perfectly legal in boolean position, the code previously failed to compile with:
```console
error[E0600]: cannot apply unary operator `!` to type `!`
--> library/core/tests/ops.rs:239:8
|
239 | if !return () {}
| ^^^^^^^^^^ cannot apply unary operator `!`
```
Print a helpful message if unwinding aborts when it reaches a nounwind function
This is implemented by routing `TerminatorKind::Abort` back through the panic handler, but with a special flag in the `PanicInfo` which indicates that the panic handler should *not* attempt to unwind the stack and should instead abort immediately.
This is useful for the planned change in https://github.com/rust-lang/lang-team/issues/97 which would make `Drop` impls `nounwind` by default.
### Code
```rust
#![feature(c_unwind)]
fn panic() {
panic!()
}
extern "C" fn nounwind() {
panic();
}
fn main() {
nounwind();
}
```
### Before
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Illegal instruction (core dumped)
```
### After
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
thread 'main' panicked at 'panic in a function that cannot unwind', test.rs:7:1
stack backtrace:
0: 0x556f8f86ec9b - <std::sys_common::backtrace::_print::DisplayBacktrace as core::fmt::Display>::fmt::hdccefe11a6ac4396
1: 0x556f8f88ac6c - core::fmt::write::he152b28c41466ebb
2: 0x556f8f85d6e2 - std::io::Write::write_fmt::h0c261480ab86f3d3
3: 0x556f8f8654fa - std::panicking::default_hook::{{closure}}::h5d7346f3ff7f6c1b
4: 0x556f8f86512b - std::panicking::default_hook::hd85803a1376cac7f
5: 0x556f8f865a91 - std::panicking::rust_panic_with_hook::h4dc1c5a3036257ac
6: 0x556f8f86f079 - std::panicking::begin_panic_handler::{{closure}}::hdda1d83c7a9d34d2
7: 0x556f8f86edc4 - std::sys_common::backtrace::__rust_end_short_backtrace::h5b70ed0cce71e95f
8: 0x556f8f865592 - rust_begin_unwind
9: 0x556f8f85a764 - core::panicking::panic_no_unwind::h2606ab3d78c87899
10: 0x556f8f85b910 - test::nounwind::hade6c7ee65050347
11: 0x556f8f85b936 - test::main::hdc6e02cb36343525
12: 0x556f8f85b7e3 - core::ops::function::FnOnce::call_once::h4d02663acfc7597f
13: 0x556f8f85b739 - std::sys_common::backtrace::__rust_begin_short_backtrace::h071d40135adb0101
14: 0x556f8f85c149 - std::rt::lang_start::{{closure}}::h70dbfbf38b685e93
15: 0x556f8f85c791 - std::rt::lang_start_internal::h798f1c0268d525aa
16: 0x556f8f85c131 - std::rt::lang_start::h476a7ee0a0bb663f
17: 0x556f8f85b963 - main
18: 0x7f64c0822b25 - __libc_start_main
19: 0x556f8f85ae8e - _start
20: 0x0 - <unknown>
thread panicked while panicking. aborting.
Aborted (core dumped)
```
Add MaybeUninit::(slice_)as_bytes(_mut)
This adds methods to convert between `MaybeUninit<T>` and a slice of `MaybeUninit<u8>`. This is safe since `MaybeUninit<u8>` can correctly handle padding bytes in any `T`.
These methods are added:
```rust
impl<T> MaybeUninit<T> {
pub fn as_bytes(&self) -> &[MaybeUninit<u8>];
pub fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>];
pub fn slice_as_bytes(this: &[MaybeUninit<T>]) -> &[MaybeUninit<u8>];
pub fn slice_as_bytes_mut(this: &mut [MaybeUninit<T>]) -> &mut [MaybeUninit<u8>];
}
```
Change PhantomData type for `BuildHasherDefault` (and more)
Changes `PhantomData<H>` to `PhantomData<fn() -> H>` for `BuildHasherDefault`. This preserves the covariance of `H`, while it lifts the currently inferred unnecessary bounds like [`H: Send` for `BuildHasherDefault<H>: Send`](https://doc.rust-lang.org/1.57.0/std/hash/struct.BuildHasherDefault.html#impl-Send), etc.
_Edit:_ Also does a similar change for `iter::Empty` and `future::Pending`.
add `rustc_diagnostic_item` attribute to `AtomicBool` type
I wanted to use this in clippy and found that it didn't work. So hopefully this addition will fix it.
Use `carrying_{mul|add}` in `num::bignum`
Now that we have (unstable) methods for this, we don't need the bespoke trait methods for it in the `bignum` implementation.
cc #85532
Add `log2` and `log10` to `NonZeroU*`
This version is nice in that it doesn't need to worry about zeros, and thus doesn't have any error cases.
cc `int_log` tracking issue #70887
(I didn't add them to `NonZeroI*` despite it being on `i*` since allowing negatives bring back the error cases again.)
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
fix const_ptr_offset_from tracking issue
The old tracking issue #41079 was for exposing those functions at all, and got closed when they were stabilized. We had nothing tracking their `const`ness so I opened a new tracking issue: https://github.com/rust-lang/rust/issues/92980.
Copy an example to PartialOrd as well
In https://github.com/rust-lang/rust/pull/88202 I added an example for deriving PartialOrd on enums, but only later did I realize that I actually put the example on Ord.
This copies the example to PartialOrd as well, which is where I intended for it to be.
We could also delete the example on Ord, but I see there's already some highly similar examples shared between Ord and PartialOrd, so I figured we could leave it.
I also changed some type annotations in an example from `x : T` to the more common style (in Rust) of `x: T`.
Add diagnostic items for macros
For use in Clippy, it adds diagnostic items to all the stable public macros
Clippy has lints that look for almost all of these (currently by name or path), but there are a few that aren't currently part of any lint, I could remove those if it's preferred to add them as needed rather than ahead of time
Simplification of BigNum::bit_length
As indicated in the comment, the BigNum::bit_length function could be
optimized by using CLZ, which is often a single instruction instead a
loop.
I think the code is also simpler now without the loop.
I added some additional tests for Big8x3 and Big32x40 to ensure that
there were no regressions.
Extend const_convert to rest of blanket core::convert impls
This adds constness to all the blanket impls in `core::convert` under the existing `const_convert` feature, tracked by #88674.
Existing impls under that feature:
```rust
impl<T> const From<T> for T;
impl<T, U> const Into<U> for T where U: ~const From<T>;
impl<T> const ops::Try for Option<T>;
impl<T> const ops::FromResidual for Option<T>;
impl<T, E> const ops::Try for Result<T, E>;
impl<T, E, F> const ops::FromResidual<Result<convert::Infallible, E>> for Result<T, F> where F: ~const From<E>;
```
Additional impls:
```rust
impl<T: ?Sized, U: ?Sized> const AsRef<U> for &T where T: ~const AsRef<U>;
impl<T: ?Sized, U: ?Sized> const AsRef<U> for &mut T where T: ~const AsRef<U>;
impl<T: ?Sized, U: ?Sized> const AsMut<U> for &mut T where T: ~const AsMut<U>;
impl<T, U> const TryInto<U> for T where U: ~const TryFrom<T>;
impl<T, U> const TryFrom<U> for T where U: ~const Into<T>;
```
Partially stabilize `maybe_uninit_extra`
This covers:
```rust
impl<T> MaybeUninit<T> {
pub unsafe fn assume_init_read(&self) -> T { ... }
pub unsafe fn assume_init_drop(&mut self) { ... }
}
```
It does not cover the const-ness of `write` under `const_maybe_uninit_write` nor the const-ness of `assume_init_read` (this commit adds `const_maybe_uninit_assume_init_read` for that).
FCP: https://github.com/rust-lang/rust/issues/63567#issuecomment-958590287.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This covers:
impl<T> MaybeUninit<T> {
pub unsafe fn assume_init_read(&self) -> T { ... }
pub unsafe fn assume_init_drop(&mut self) { ... }
}
It does not cover the const-ness of `write` under
`const_maybe_uninit_write` nor the const-ness of
`assume_init_read` (this commit adds
`const_maybe_uninit_assume_init_read` for that).
FCP: https://github.com/rust-lang/rust/issues/63567#issuecomment-958590287.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Replace usages of vec![].into_iter with [].into_iter
`[].into_iter` is idiomatic over `vec![].into_iter` because its simpler and faster (unless the vec is optimized away in which case it would be the same)
So we should change all the implementation, documentation and tests to use it.
I skipped:
* `src/tools` - Those are copied in from upstream
* `src/test/ui` - Hard to tell if `vec![].into_iter` was used intentionally or not here and not much benefit to changing it.
* any case where `vec![].into_iter` was used because we specifically needed a `Vec::IntoIter<T>`
* any case where it looked like we were intentionally using `vec![].into_iter` to test it.
As indicated in the comment, the BigNum::bit_length function could be
optimized by using CLZ, which is often a single instruction instead a
loop.
I think the code is also simpler now without the loop.
I added some additional tests for Big8x3 and Big32x40 to ensure that
there were no regressions.
Mak DefId to AccessLevel map in resolve for export
hir_id to accesslevel in resolve and applied in privacy
using local def id
removing tracing probes
making function not recursive and adding comments
Move most of Exported/Public res to rustc_resolve
moving public/export res to resolve
fix missing stability attributes in core, std and alloc
move code to access_levels.rs
return for some kinds instead of going through them
Export correctness, macro changes, comments
add comment for import binding
add comment for import binding
renmae to access level visitor, remove comments, move fn as closure, remove new_key
fmt
fix rebase
fix rebase
fmt
fmt
fix: move macro def to rustc_resolve
fix: reachable AccessLevel for enum variants
fmt
fix: missing stability attributes for other architectures
allow unreachable pub in rustfmt
fix: missing impl access level + renaming export to reexport
Missing impl access level was found thanks to a test in clippy
Make `Atomic*::from_mut` return `&mut Atomic*`
```rust
impl Atomic* {
pub fn from_mut(v: &mut bool) -> &mut Self;
// ^^^^---- previously was just a &
}
```
This PR makes `from_mut` atomic methods tracked in #76314 return unique references to atomic types, instead of shared ones. This makes `from_mut` and `get_mut` inverses of each other, allowing to undo either of them by the other.
r? `@RalfJung`
(as Ralf was [concerned](https://github.com/rust-lang/rust/issues/76314#issuecomment-955062593) about this)
Implemented const casts of raw pointers
This adds `as_mut()` method for `*const T` and `as_const()` for `*mut T`
which are intended to make casting of consts safer. This was discussed
in the [internals discussion][discussion].
Given that this is a simple change and multiple people agreed to it including `@RalfJung` I decided to go ahead and open the PR.
[discussion]: https://internals.rust-lang.org/t/casting-constness-can-be-risky-heres-a-simple-fix/15933
Add some missing `#[must_use]` to some `f{32,64}` operations
This PR adds `#[must_use]` to the following methods:
- `f32::recip`
- `f32::max`
- `f32::min`
- `f32::maximum`
- `f32::minimum`
and their equivalents in `f64`.
These methods all produce a new value without modifying the original and so are pointless to call without using the result.
Add note about non_exhaustive to variant_count
Since `variant_count` isn't returning something opaque, I thought it makes sense to explicitly call out that its return value may change for some enums.
cc #73662
Previously suggested in https://github.com/rust-lang/rfcs/issues/2854.
It makes sense to have this since `char` implements `From<u8>`. Likewise
`u32`, `u64`, and `u128` (since #79502) implement `From<char>`.
Rollup of 7 pull requests
Successful merges:
- #92092 (Drop guards in slice sorting derive src pointers from &mut T, which is invalidated by interior mutation in comparison)
- #92388 (Fix a minor mistake in `String::try_reserve_exact` examples)
- #92442 (Add negative `impl` for `Ord`, `PartialOrd` on `LocalDefId`)
- #92483 (Stabilize `result_cloned` and `result_copied`)
- #92574 (Add RISC-V detection macro and more architecture instructions)
- #92575 (ast: Always keep a `NodeId` in `ast::Crate`)
- #92583 (⬆️ rust-analyzer)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add RISC-V detection macro and more architecture instructions
This pull request includes:
- Update `stdarch` dependency to include ratified RISC-V supervisor and hypervisor instruction intrinsics which is useful in Rust kernel development
- Add macro `is_riscv_feature_detected!`
- Modify impl of `core::hint::spin_loop` to comply with latest version of `core::arch`
After this update, users may now develop RISC-V kernels and user applications more freely.
r? `@Amanieu`
Drop guards in slice sorting derive src pointers from &mut T, which is invalidated by interior mutation in comparison
I tried to run https://github.com/rust-lang/miri-test-libstd on `alloc` with `-Zmiri-track-raw-pointers`, and got a failure on the test `slice::panic_safe`. The test failure has nothing to do with panic safety, it's from how the test tests for panic safety.
I minimized the test failure into this very silly program:
```rust
use std::cell::Cell;
use std::cmp::Ordering;
#[derive(Clone)]
struct Evil(Cell<usize>);
fn main() {
let mut input = vec![Evil(Cell::new(0)); 3];
// Hits the bug pattern via CopyOnDrop in core
input.sort_unstable_by(|a, _b| {
a.0.set(0);
Ordering::Less
});
// Hits the bug pattern via InsertionHole in alloc
input.sort_by(|_a, b| {
b.0.set(0);
Ordering::Less
});
}
```
To fix this, I'm just removing the mutability/uniqueness where it wasn't required.
Rollup of 7 pull requests
Successful merges:
- #91587 (core::ops::unsize: improve docs for DispatchFromDyn)
- #91907 (Allow `_` as the length of array types and repeat expressions)
- #92515 (RustWrapper: adapt for an LLVM API change)
- #92516 (Do not use deprecated -Zsymbol-mangling-version in bootstrap)
- #92530 (Move `contains` method of Option and Result lower in docs)
- #92546 (Update books)
- #92551 (rename StackPopClean::None to Root)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Move `contains` method of Option and Result lower in docs
Follow-up to #92444 trying to get the `Option` and `Result` rustdocs in better shape.
This addresses the request in https://github.com/rust-lang/rust/issues/62358#issuecomment-645676285. The `contains` methods are previously too high up in the docs on both `Option` and `Result` — stuff like `ok` and `map` and `and_then` should all be featured higher than `contains`. All of those are more ubiquitously useful than `contains`.
- Do not `#[doc(hidden)]` the `#[derive]` macro attribute
- Add a link to the reference section to `derive`'s inherent docs
- Do the same for `#[test]` and `#[global_allocator]`
- Fix `GlobalAlloc` link (why is it on `core` and not `alloc`?)
- Try `no_inline`-ing the `std` reexports from `core`
- Revert "Try `no_inline`-ing the `std` reexports from `core`"
- Address PR review
- Also document the unstable macros
Consolidate Result's and Option's methods into fewer impl blocks
`Result`'s and `Option`'s methods have historically been separated up into `impl` blocks based on their trait bounds, with the bounds specified on type parameters of the impl block. I find this unhelpful because closely related methods, like `unwrap_or` and `unwrap_or_default`, end up disproportionately far apart in source code and rustdocs:
<pre>
impl<T> Option<T> {
pub fn unwrap_or(self, default: T) -> T {
...
}
<img alt="one eternity later" src="https://user-images.githubusercontent.com/1940490/147780325-ad4e01a4-c971-436e-bdf4-e755f2d35f15.jpg" width="750">
}
impl<T: Default> Option<T> {
pub fn unwrap_or_default(self) -> T {
...
}
}
</pre>
I'd prefer for method to be in as few impl blocks as possible, with the most logical grouping within each impl block. Any bounds needed can be written as `where` clauses on the method instead:
```rust
impl<T> Option<T> {
pub fn unwrap_or(self, default: T) -> T {
...
}
pub fn unwrap_or_default(self) -> T
where
T: Default,
{
...
}
}
```
*Warning: the end-to-end diff of this PR is computed confusingly by git / rendered confusingly by GitHub; it's practically impossible to review that way. I've broken the PR into commits that move small groups of methods for which git behaves better — these each should be easily individually reviewable.*
Track caller of slice split and swap
Improves error location for `slice.split_at*()` and `slice.swap()`.
These are generic inline functions, so the `#[track_caller]` on them is free — only changes a value of an argument already passed to panicking code.
Add `#[inline]` modifier to `TypeId::of`
It was already inlined but it happened only in 4th InlinerPass on my testcase.
With `#[inline]` modifier it happens on 2nd pass.
Closes#74362
disable test with self-referential generator on Miri
Running the libcore test suite in Miri currently fails due to the known incompatibility of self-referential generators with Miri's aliasing checks (https://github.com/rust-lang/unsafe-code-guidelines/issues/148). So let's disable that test in Miri for now.
Use panic() instead of panic!() in some places in core.
See https://github.com/rust-lang/rust/pull/92068 and https://github.com/rust-lang/rust/pull/92140.
This avoids the `panic!()` macro in a few potentially hot paths. This becomes more relevant when switching `core` to Rust 2021, as it'll avoid format_args!() and save some compilation time. (It doesn't make a huge difference, but still.) (Also the errors in const panic become slightly nicer.)
Allow reverse iteration of lowercase'd/uppercase'd chars
The PR implements `DoubleEndedIterator` trait for `ToLowercase` and `ToUppercase`.
This enables reverse iteration of lowercase/uppercase variants of character sequences.
One of use cases: determining whether a char sequence is a suffix of another one.
Example:
```rust
fn endswith_ignore_case(s1: &str, s2: &str) -> bool {
for eob in s1
.chars()
.flat_map(|c| c.to_lowercase())
.rev()
.zip_longest(s2.chars().flat_map(|c| c.to_lowercase()).rev())
{
match eob {
EitherOrBoth::Both(c1, c2) => {
if c1 != c2 {
return false;
}
}
EitherOrBoth::Left(_) => return true,
EitherOrBoth::Right(_) => return false,
}
}
true
}
```
Revert "Temporarily rename int_roundings functions to avoid conflicts"
This reverts commit 3ece63b64e.
This should be okay because #90329 has been merged.
r? `@joshtriplett`
The src pointers in CopyOnDrop and InsertionHole used to be *mut T, and
were derived via automatic conversion from &mut T. According to Stacked
Borrows 2.1, this means that those pointers become invalidated by
interior mutation in the comparison function.
But there's no need for mutability in this code path. Thus, we can
change the drop guards to use *const and derive those from &T.
Add a space and 2 grave accents
I only noticed this because I have this implementation copy pasted in some places in my code and I really can't wait for this to be stabilized...
Mark defaulted `PartialEq`/`PartialOrd` methods as const
WIthout it, `const` impls of these traits are unpleasant to write. I think this kind of change is allowed now. although it looks like it might require some Miri tweaks. Let's find out.
r? ```@fee1-dead```
Do array-slice equality via array equality, rather than always via slices
~~Draft because it needs a rebase after #91766 eventually gets through bors.~~
This enables the optimizations from #85828 to be used for array-to-slice comparisons too, not just array-to-array.
For example, <https://play.rust-lang.org/?version=nightly&mode=release&edition=2021&gist=5f9ba69b3d5825a782f897c830d3a6aa>
```rust
pub fn demo(x: &[u8], y: [u8; 4]) -> bool {
*x == y
}
```
Currently writes the array to stack for no reason:
```nasm
sub rsp, 4
mov dword ptr [rsp], edx
cmp rsi, 4
jne .LBB0_1
mov eax, dword ptr [rdi]
cmp eax, dword ptr [rsp]
sete al
add rsp, 4
ret
.LBB0_1:
xor eax, eax
add rsp, 4
ret
```
Whereas with the change in this PR it just compares it directly:
```nasm
cmp rsi, 4
jne .LBB1_1
cmp dword ptr [rdi], edx
sete al
ret
.LBB1_1:
xor eax, eax
ret
```
Most of these problems originate in use of get_unchecked_mut.
When calling ptr::copy_nonoverlapping, using get_unchecked_mut for both
arguments causes the borrow created to make the second pointer to invalid the
first.
The pairs of identical MaybeUninit::slice_as_mut_ptr calls similarly
invalidate each other.
There was also a similar borrow invalidation problem with the use of
slice::get_unchecked_mut to derive the pointer for the CopyOnDrop.
Constify `bool::then{,_some}`
Note on `~const Drop`: it has no effect when called from runtime functions, when called from const contexts, the trait system ensures that the type can be dropped in const contexts.
Add `[T]::as_simd(_mut)`
SIMD-style optimizations are the most common use for `[T]::align_to(_mut)`, but that's `unsafe`. So these are *safe* wrappers around it, now that we have the `Simd` type available, to make it easier to use.
```rust
impl [T] {
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]);
pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]);
}
```
They're `cfg`'d out for miri because the `simd` module as a whole is unavailable there.
Readd track_caller to Result::from_residual
This is a followup on https://github.com/rust-lang/rust/issues/87401 in and an attempt to move the issue towards resolution.
As part of the overhaul of the Try trait we removed the ability for errors to grab location information during propagation via `?` with the builtin `std::result::Result`. The previously linked issue has a fair bit of discussion into the reasons for and against the usage of `#[track_caller]` on the `FromResidual` impl on `Result` that I will do my best to summarize.
---
### For
- https://github.com/rust-lang/rust/issues/87401#issuecomment-915053533: Difficulties with using non `std::result::Result` like types
- https://github.com/rust-lang/rust/issues/87401#issuecomment-978355102: Inconsistency with functionality provided for recoverable (Result) and non-recoverable errors (panic), where panic provides a location and Result does not, pushing some users towards using panic
### Against
- https://github.com/rust-lang/rust/issues/84277#issuecomment-885322833: concern that this will bloat callers that never use this data
---
Personally, I want to quantify the performance / bloat impact of re-adding this attribute, and fully evaluate the pros and cons before deciding if I need to switch `eyre` to have a custom `Result` type, which would also mean I need `try_trait_v2` to be stabilized, cc `@scottmcm.` If the performance impact is minor enough in the general case I think I would prefer that the default `Result` type has the ability to track location information for consistency with `panic` error reporting, and leave it to applications that need particularly high performance to handle the micro optimizations of introducing their own efficient custom Result type or matching manually.
Alternatively, I wonder if the performance penalty on code that doesn't use the location information on `FromResidual` could be mitigated via new optimizations.
Stabilize `iter::zip`
Hello all!
As the tracking issue (#83574) for `iter::zip` completed the final commenting period without any concerns being raised, I hereby submit this stabilization PR on the issue.
As the pull request that introduced the feature (#82917) states, the `iter::zip` function is a shorter way to zip two iterators. As it's generally a quality-of-life/ergonomic improvement, it has been integrated into the codebase without any trouble, and has been
used in many places across the rust compiler and standard library since March without any issues.
For more details, I would refer to `@cuviper's` original PR, or the [function's documentation](https://doc.rust-lang.org/std/iter/fn.zip.html).
Tweak errors coming from `for`-loop, `?` and `.await` desugaring
* Suggest removal of `.await` on non-`Future` expression
* Keep track of obligations introduced by desugaring
* Remove span pointing at method for obligation errors coming from desugaring
* Point at called local sync `fn` and suggest making it `async`
```
error[E0277]: `()` is not a future
--> $DIR/unnecessary-await.rs:9:10
|
LL | boo().await;
| -----^^^^^^ `()` is not a future
| |
| this call returns `()`
|
= help: the trait `Future` is not implemented for `()`
help: do not `.await` the expression
|
LL - boo().await;
LL + boo();
|
help: alternatively, consider making `fn boo` asynchronous
|
LL | async fn boo () {}
| +++++
```
Fix#66731.
Stabilize asm! and global_asm!
Tracking issue: #72016
It's been almost 2 years since the original [RFC](https://github.com/rust-lang/rfcs/pull/2850) was posted and we're finally ready to stabilize this feature!
The main changes in this PR are:
- Removing `asm!` and `global_asm!` from the prelude as per the decision in #87228.
- Stabilizing the `asm` and `global_asm` features.
- Removing the unstable book pages for `asm` and `global_asm`. The contents are moved to the [reference](https://github.com/rust-lang/reference/pull/1105) and [rust by example](https://github.com/rust-lang/rust-by-example/pull/1483).
- All links to these pages have been removed to satisfy the link checker. In a later PR these will be replaced with links to the reference or rust by example.
- Removing the automatic suggestion for using `llvm_asm!` instead of `asm!` if you're still using the old syntax, since it doesn't work anymore with `asm!` no longer being in the prelude. This only affects code that predates the old LLVM-style `asm!` being renamed to `llvm_asm!`.
- Updating `stdarch` and `compiler-builtins`.
- Updating all the tests.
r? `@joshtriplett`
This'll still go via slices eventually for large arrays, but this way slice comparisons to short arrays can use the same memcmp-avoidance tricks.
Added some tests for all the combinations to make sure I didn't accidentally infinitely-recurse something.
Make split_inclusive() on an empty slice yield an empty output
`[].split_inclusive()` currently yields a single, empty slice. That's
different from `"".split_inslusive()`, which yields no output at
all. I think that makes the slice version harder to use.
The case where I ran into this bug was when writing code for
generating a diff between two slices of bytes. I wanted to prefix
removed lines with "-" and a added lines with "+". Due to
`split_inclusive()`'s current behavior, that means that my code prints
just a "-" or "+" for empty files. I suspect most existing callers
have similar "bugs" (which would be fixed by this patch).
Closes#89716.
Stabilize `ControlFlow::{is_break, is_continue}`
The type itself was stabilized in 1.55, but using it is not ergonomic without these helper functions. Stabilize them.
r? rust-lang/libs-api
They are also removed from the prelude as per the decision in
https://github.com/rust-lang/rust/issues/87228.
stdarch and compiler-builtins are updated to work with the new, stable
asm! and global_asm! macros.
Make certain panicky stdlib functions behave better under panic_immediate_abort
The stdlib has a `panic_immediate_abort` feature that turns panics into immediate aborts, without any formatting/display logic. This feature was [introduced](https://github.com/rust-lang/rust/pull/55011) primarily for codesize-constrained situations.
Unfortunately, this win doesn't quite propagate to `Result::expect()` and `Result::unwrap()`, while the formatting machinery is reduced, `expect()` and `unwrap()` both call `unwrap_failed("msg", &err)` which has a signature of `fn unwrap_failed(msg: &str, error: &dyn fmt::Debug)` and is `#[inline(never)]`. This means that `unwrap_failed` will unconditionally construct a `dyn Debug` trait object even though the object is never used in the function.
Constructing a trait object (even if you never call a method on it!) forces rust to include the vtable and any dependencies. This means that in `panic_immediate_abort` mode, calling expect/unwrap on a Result will pull in a whole bunch of formatting code for the error type even if it's completely unused.
This PR swaps out the function with one that won't require a trait object such that it won't force the inclusion of vtables in the code. It also gates off `#[inline(never)]` in a bunch of other places where allowing the inlining of an abort may be useful (this kind of thing is already done elsewhere in the stdlib).
I don't know how to write a test for this; we don't really seem to have any tests for `panic_immediate_abort` anyway so perhaps it's fine as is.
Minor improvements to `future::join!`'s implementation
This is a follow-up from #91645, regarding [some remarks I made](https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async-foundations/topic/join!/near/264293660).
Mainly:
- it hides the recursive munching through a private `macro`, to avoid leaking such details (a corollary is getting rid of the need to use ``@`` to disambiguate);
- it uses a `match` binding, _outside_ the `async move` block, to better match the semantics from function-like syntax;
- it pre-pins the future before calling into `poll_fn`, since `poll_fn`, alone, cannot guarantee that its capture does not move (to clarify: I believe the previous code was sound, thanks to the outer layer of `async`. But I find it clearer / more robust to refactorings this way 🙂).
- it uses `@ibraheemdev's` very neat `.ready()?`;
- it renames `Took` to `Taken` for consistency with `Done` (tiny nit 😄).
~~TODO~~Done:
- [x] Add unit tests to enforce the function-like `:value` semantics are respected.
r? `@nrc`
Add spin_loop hint for RISC-V architecture
This commit uses the PAUSE instruction (https://github.com/rust-lang/stdarch/pull/1262) to implement RISC-V spin loop, and updates `stdarch` submodule to use the merged PAUSE instruction.
Rollup of 11 pull requests
Successful merges:
- #91668 (Remove the match on `ErrorKind::Other`)
- #91678 (Add tests fixed by #90023)
- #91679 (Move core/stream/stream/mod.rs to core/stream/stream.rs)
- #91681 (fix typo in `intrinsics::raw_eq` docs)
- #91686 (Fix `Vec::reserve_exact` documentation)
- #91697 (Delete Utf8Lossy::from_str)
- #91706 (Add unstable book entries for parts of asm that are not being stabilized)
- #91709 (Replace iterator-based set construction by *Set::From<[T; N]>)
- #91716 (Improve x.py logging and defaults a bit more)
- #91747 (Add pierwill to .mailmap)
- #91755 (Fix since attribute for const_linked_list_new feature)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Delete Utf8Lossy::from_str
This whole type is marked as being for str internals only, but this constructor is never used by str internals. If you had a &str already and wanted to lossy display it or iterate its lossy utf8 chunks, you would simply not use Utf8Lossy because the whole &str is known to be one contiguous valid utf8 chunk.
If code really does need to obtain a value of type &Utf8Lossy somewhere, and has only a &str, `Utf8Lossy::from_bytes(s.as_bytes())` remains available. As currently implemented, there is no performance penalty relative to `from_str` i.e. the Utf8Lossy does not "remember" that it was constructed using `from_str` to bypass later utf8 decoding.
adjust const_eval_select documentation
"The Rust compiler assumes" indicates that this is language UB, but [I don't think that is a good idea](https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/const_eval_select.20assumptions). This UB would be very hard to test for and looks like a way-too-big footgun. ``@oli-obk`` suggested this is meant to be more like "library UB", so I tried to adjust the docs accordingly.
I also removed all references to "referential transparency". That is a rather vague concept used to mean many different things, and I honestly have no idea what exactly is meant by it in this specific instance. But I assume ``@fee1-dead`` had in their mind a property that all `const fn` code upholds, so by demanding that the runtime code and the const-time code are *observably equivalent*, whatever that property is would also be enforced here.
Cc ``@rust-lang/wg-const-eval``
Fix incorrect stability attributes
These two instances were caught in #90356, but that PR isn't going to be merged. I've extracted these to ensure it's still correct.
``@rustbot`` label: +A-stability +C-cleanup +S-waiting-on-review
This is a follow-up from #91645, regarding [some remarks I made](https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async-foundations/topic/join!/near/264293660).
Mainly:
- it hides the recursive munching through a private `macro`, to avoid leaking such details (a corollary is getting rid of the need to use `@` to disambiguate);
- it uses a `match` binding, _outside_ the `async move` block, to better match the semantics from function-like syntax;
- it pre-pins the future before calling into `poll_fn`, since `poll_fn`, alone, cannot guarantee that its capture does not move;
- it uses `.ready()?` since it's such a neat pattern;
- it renames `Took` to `Taken` for consistency with `Done`.
Rollup of 6 pull requests
Successful merges:
- #87599 (Implement concat_bytes!)
- #89999 (Update std::env::temp_dir to use GetTempPath2 on Windows when available.)
- #90796 (Remove the reg_thumb register class for asm! on ARM)
- #91042 (Use Vec extend instead of repeated pushes on several places)
- #91634 (Do not attempt to suggest help for overly malformed struct/function call)
- #91685 (Install llvm tools to sysroot when assembling local toolchain)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Implement concat_bytes!
This implements the unstable `concat_bytes!` macro, which has tracking issue #87555. It can be used like:
```rust
#![feature(concat_bytes)]
fn main() {
assert_eq!(concat_bytes!(), &[]);
assert_eq!(concat_bytes!(b'A', b"BC", [68, b'E', 70]), b"ABCDEF");
}
```
If strings or characters are used where byte strings or byte characters are required, it suggests adding a `b` prefix. If a number is used outside of an array it suggests arrayifying it. If a boolean is used it suggests replacing it with the numeric value of that number. Doubly nested arrays of bytes are disallowed.
Sync portable-simd to remove autosplats
This PR syncs portable-simd in up to a8385522ad in order to address the type inference breakages documented on nightly in https://github.com/rust-lang/rust/issues/90904 by removing the vector + scalar binary operations (called "autosplats", "broadcasting", or "rank promotion", depending on who you ask) that allow `{scalar} + &'_ {scalar}` to fail in some cases, because it becomes possible the programmer may have meant `{scalar} + &'_ {vector}`.
A few quality-of-life improvements make their way in as well:
- Lane counts can now go to 64, as LLVM seems to have fixed their miscompilation for those.
- `{i,u}8x64` to `__m512i` is now available.
- a bunch of `#[must_use]` notes appear throughout the module.
- Some implementations, mostly instances of `impl core::ops::{Op}<Simd> for Simd` that aren't `{vector} + {vector}` (e.g. `{vector} + &'_ {vector}`), leverage some generics and `where` bounds now to make them easier to understand by reducing a dozen implementations into one (and make it possible for people to open the docs on less burly devices).
- And some internal-only improvements.
None of these changes should affect a beta backport, only actual users of `core::simd` (and most aren't even visible in the programmatic sense), though I can extract an even more minimal changeset for beta if necessary. It seemed simpler to just keep moving forward.
`array::IntoIter` has a bunch of really handy logic for dealing with partial arrays, but it's currently hamstrung by only being creatable from a fully-initialized array.
This PR adds two new constructors:
- a safe & const `empty`, since `[].into_iter()` gives `<T, 0>`, not `<T, N>`.
- an unsafe `from_raw_parts`, to allow experimentation with new uses.
(Slice & vec iterators don't need `from_raw_parts` because you `from_raw_parts` the slice or vec instead, but there's no useful way to made a `<[T; N]>::from_raw_parts`, so I think this is a reasonable place to have one.)
For users looking at documentation through IDE popups, this gives them
relevant information rather than the generic trait documentation wording
“Performs the conversion”. For users reading the documentation for a
specific type for any reason, this informs them when the conversion may
allocate or copy significant memory versus when it is always a move or
cheap copy.
Notes on specific cases:
* The new documentation for `From<T> for T` explains that it is not a
conversion at all.
* Also documented `impl<T, U> Into<U> for T where U: From<T>`, the other
central blanket implementation of conversion.
* I did not add documentation to conversions of a specific error type to
a more general error type.
* I did not add documentation to unstable code.
This change was prepared by searching for the text "From<... for" and so
may have missed some cases that for whatever reason did not match. I
also looked for `Into` impls but did not find any worth documenting by
the above criteria.
Reintroduce `into_future` in `.await` desugaring
This is a reintroduction of the remaining parts from https://github.com/rust-lang/rust/pull/65244 that have not been relanded yet.
This isn't quite ready to merge yet. The last attempt was reverting due to performance regressions, so we need to make sure this does not introduce those issues again.
Issues #67644, #67982
/cc `@yoshuawuyts`
Make `array::{try_from_fn, try_map}` and `Iterator::try_find` generic over `Try`
Fixes#85115
This only updates unstable functions.
`array::try_map` didn't actually exist before; this adds it under the still-open tracking issue #79711 from the old PR #79713.
Tracking issue for the new trait: #91285
This would also solve the return type question in for the proposed `Iterator::try_reduce` in #87054
SIMD-style optimizations are the most common use for `[T]::align_to(_mut)`, but that's `unsafe`. So these are *safe* wrappers around it, now that we have the `Simd` type available, to make it easier to use.
```rust
impl [T] {
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]);
pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]);
}
```
disable tests in Miri that take too long
Comparing slices of length `usize::MAX` diverges in Miri. In fact these tests even diverge in rustc unless `-O` is passed. I tried this code to check that:
```rust
#![feature(slice_take)]
const EMPTY_MAX: &'static [()] = &[(); usize::MAX];
fn main() {
let mut slice: &[_] = &[(); usize::MAX];
println!("1");
assert_eq!(Some(&[] as _), slice.take(usize::MAX..));
println!("2");
let remaining: &[_] = EMPTY_MAX;
println!("3");
assert_eq!(remaining, slice);
println!("4");
}
```
So, disable these tests in Miri for now.
Fixes 85115
This only updates unstable functions.
`array::try_map` didn't actually exist before, despite the tracking issue 79711 still being open from the old PR 79713.
CTFE: support assert_zero_valid and assert_uninit_valid
This ensures the implementation of all three type-based assert_ intrinsics remains consistent in Miri.
`assert_inhabited` recently got stabilized in https://github.com/rust-lang/rust/pull/90896 (meaning stable `const fn` can call it), so do the same with these other intrinsics.
Cc ```@rust-lang/wg-const-eval```
Eliminate bunch of copies of error codepath from Utf8LossyChunksIter
Using a macro to stamp out 7 identical copies of the nontrivial slicing logic to exit this loop didn't seem like a necessary use of a macro. The early return case can be handled by `break` without practically any changes to the logic inside the loop.
All this code is from early 2014 (#12062—nearly 8 years ago; pre-1.0) so it's possible there were compiler limitations that forced the macro way at the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy` is unaffected on my machine.
Stabilize some `MaybeUninit` behavior as const
This stabilizes the `MaybeUninit::as_ptr`, `MaybeUninit::assume_init`, and `MaybeUninit::assume_init_ref` as `const fn`. `MaybeUninit::as_mut_ptr` has been moved to a new flag: `const_maybe_uninit_as_mut_ptr`, which is blocked on #57349. `MaybeUninit::slice_assume_init_ref` can be `const fn` when the method is stabilized in general.
The relevant intrinsic has been stabilized as `const` as well, though this isn't user-visible. Due to the seemingly unrelated feature name I performed `rg const_assert_type` and found no other instances of it being used.
r? `@oli-obk`
`@rustbot` label: +A-const-fn +S-waiting-on-review +T-libs-api
Fix Iterator::advance_by contract inconsistency
The `advance_by(n)` docs state that in the error case `Err(k)` that k is always less than n.
It also states that `advance_by(0)` may return `Err(0)` to indicate an exhausted iterator.
These statements are inconsistent.
Since only one implementation (Skip) actually made use of that I changed it to return Ok(()) in that case too.
While adding some tests I also found a bug in `Take::advance_back_by`.
Document non-guarantees for Hash
Dependence on endianness and type sizes was reported for enum discriminants in #74215 but it is a more general
issue since for example the default implementation of `Hasher::write_usize` uses native endianness.
Additionally the implementations of library types are occasionally changed as their internal fields
change or hashing gets optimized.
## Question
Should this go on the module level documentation instead since it also concerns `Hasher` to some extent and not just `Hash`?
resolves#74215
Weaken guarantee around advancing underlying iterators in zip
The current guarantee (introduced in #52279) is too strong as it prevents adapters from exploiting knowledge about the iterator length and using counted loops for example because they would stop calling `next()` before it ever returned `None`. Additionally several nested zip iterators already fail to uphold this.
This does not yet remove any of the specialization code that tries (and sometimes fails) to uphold the guarantee for `next()`
because removing it would also affect `next_back()` in more surprising ways.
The intent is to be able to remove for example this branch
36bcf40697/library/core/src/iter/adapters/zip.rs (L234-L243)
or this test
36bcf40697/library/core/tests/iter/adapters/zip.rs (L177-L188)
Solves #82303 by declaring it a non-issue.
Faster `Layout::array`
`Layout::array` is called (indirectly) by `Vec::push()`, which is typically instantiated many times, and so making it smaller can help with compile times because less LLVM IR is generated.
r? `@ghost`
The current implementation is much more conservative than it needs to
be, because it's dealing with the size and alignment of a given `T`,
which are more restricted than an arbitrary `Layout`.
For example, imagine a struct with a `u32` and a `u4`. You can safely
create a `Layout { size_: 5, align_: 4 }` by hand, but
`Layout:🆕:<T>` will give `Layout { size_: 8, align_: 4}`, where the
size already has padding that accounts for the alignment. (And the
existing `debug_assert_eq!` in `Layout::array` already demonstrates that
no additional padding is required.)
Using a macro to stamp out 7 identical copies of the nontrivial slicing
logic to exit this loop didn't seem like a necessary use of a macro. The
early return case can be handled by `break` without practically any
changes to the logic inside the loop.
All this code is from early 2014 (7.5 years old, pre-1.0) so it's
possible there were compiler limitations that forced the macro way at
the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy`
is unaffected on my machine.
Print associated types on opaque `impl Trait` types
This PR generalizes #91021, printing associated types for all opaque `impl Trait` types instead of just special-casing for future.
before:
```
error[E0271]: type mismatch resolving `<impl Iterator as Iterator>::Item == u32`
```
after:
```
error[E0271]: type mismatch resolving `<impl Iterator<Item = usize> as Iterator>::Item == u32`
```
---
Questions:
1. I'm kinda lost in binders hell with this one. Is all of the `rebind`ing necessary?
2. Is there a map collection type that will give me a stable iteration order? Doesn't seem like TraitRef is Ord, so I can't just sort later..
3. I removed the logic that suppresses printing generator projection types. It creates outputs like this [gist](https://gist.github.com/compiler-errors/d6f12fb30079feb1ad1d5f1ab39a3a8d). Should I put that back?
4. I also added spaces between traits, `impl A+B` -> `impl A + B`. I quite like this change, but is there a good reason to keep it like that?
r? ````@estebank````
Partially stabilize `duration_consts_2`
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.
The functions are now `unsafe` and they use `Option::unwrap_unchecked` instead of `unwrap_or_0`
`unwrap_or_0` was added in 42357d772b. I guess `unwrap_unchecked` was not available back then.
Given this example:
```rust
pub fn first_char(s: &str) -> Option<char> {
s.chars().next()
}
```
Previously, the following assembly was produced:
```asm
_ZN7example10first_char17ha056ddea6bafad1cE:
.cfi_startproc
test rsi, rsi
je .LBB0_1
movzx edx, byte ptr [rdi]
test dl, dl
js .LBB0_3
mov eax, edx
ret
.LBB0_1:
mov eax, 1114112
ret
.LBB0_3:
lea r8, [rdi + rsi]
xor eax, eax
mov r9, r8
cmp rsi, 1
je .LBB0_5
movzx eax, byte ptr [rdi + 1]
add rdi, 2
and eax, 63
mov r9, rdi
.LBB0_5:
mov ecx, edx
and ecx, 31
cmp dl, -33
jbe .LBB0_6
cmp r9, r8
je .LBB0_9
movzx esi, byte ptr [r9]
add r9, 1
and esi, 63
shl eax, 6
or eax, esi
cmp dl, -16
jb .LBB0_12
.LBB0_13:
cmp r9, r8
je .LBB0_14
movzx edx, byte ptr [r9]
and edx, 63
jmp .LBB0_16
.LBB0_6:
shl ecx, 6
or eax, ecx
ret
.LBB0_9:
xor esi, esi
mov r9, r8
shl eax, 6
or eax, esi
cmp dl, -16
jae .LBB0_13
.LBB0_12:
shl ecx, 12
or eax, ecx
ret
.LBB0_14:
xor edx, edx
.LBB0_16:
and ecx, 7
shl ecx, 18
shl eax, 6
or eax, ecx
or eax, edx
ret
```
After this change, the assembly is reduced to:
```asm
_ZN7example10first_char17h4318683472f884ccE:
.cfi_startproc
test rsi, rsi
je .LBB0_1
movzx ecx, byte ptr [rdi]
test cl, cl
js .LBB0_3
mov eax, ecx
ret
.LBB0_1:
mov eax, 1114112
ret
.LBB0_3:
mov eax, ecx
and eax, 31
movzx esi, byte ptr [rdi + 1]
and esi, 63
cmp cl, -33
jbe .LBB0_4
movzx edx, byte ptr [rdi + 2]
shl esi, 6
and edx, 63
or edx, esi
cmp cl, -16
jb .LBB0_7
movzx ecx, byte ptr [rdi + 3]
and eax, 7
shl eax, 18
shl edx, 6
and ecx, 63
or ecx, edx
or eax, ecx
ret
.LBB0_4:
shl eax, 6
or eax, esi
ret
.LBB0_7:
shl eax, 12
or eax, edx
ret
```
Adds IEEE 754-2019 minimun and maximum functions for f32/f64
IEEE 754-2019 removed the `minNum` (`min` in Rust) and `maxNum` (`max` in Rust) operations in favor of the newly created `minimum` and `maximum` operations due to their [non-associativity](https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/minNum_maxNum_Removal_Demotion_v3.pdf) that cannot be fix in a backwards compatible manner. This PR adds `fN::{minimun,maximum}` functions following the new rules.
### IEEE 754-2019 Rules
> **minimum(x, y)** is x if x < y, y if y < x, and a quiet NaN if either operand is a NaN, according to 6.2.
For this operation, −0 compares less than +0. Otherwise (i.e., when x = y and signs are the same)
it is either x or y.
> **maximum(x, y)** is x if x > y, y if y > x, and a quiet NaN if either operand is a NaN, according to 6.2.
For this operation, +0 compares greater than −0. Otherwise (i.e., when x = y and signs are the
same) it is either x or y.
"IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-2008) , vol., no., pp.1-84, 22 July 2019, doi: 10.1109/IEEESTD.2019.8766229.
### Implementation
This implementation is inspired by the one in [`glibc` ](90f0ac10a7/math/s_fminimum_template.c) (it self derived from the C2X draft) expect that:
- it doesn't use `copysign` because it's not available in `core` and also because `copysign` is unnecessary (we only want to check the sign, no need to create a new float)
- it also prefer `other > self` instead of `self < other` like IEEE 754-2019 does
I originally tried to implement them [using intrinsics](1d8aa13bc3) but LLVM [error out](https://godbolt.org/z/7sMrxW49a) when trying to lower them to machine intructions, GCC doesn't yet have built-ins for them, only cranelift support them nativelly (as it doesn't support the nativelly the old sementics).
Helps with https://github.com/rust-lang/rust/issues/83984
Makes docs for references a little less confusing
- Make clear that the `Pointer` trait is related to formatting
- Make clear that the `Pointer` trait is implemented for references (previously it was confusing to first see that it's implemented and then see it in "expect")
- Make clear that `&T` (shared reference) implements `Send` (if `T: Send + Sync`)
The `advance_by(n)` docs state that in the error case `Err(k)` that k is always less than n.
It also states that `advance_by(0)` may return `Err(0)` to indicate an exhausted iterator.
These statements are inconsistent.
Since only one implementation (Skip) actually made use of that I changed it to return Ok(()) in that case too.
While adding some tests I also found a bug in `Take::advance_back_by`.
Make char conversion functions unstably const
The char conversion functions like `char::from_u32` do trivial computations and can easily be converted into const fns. Only smaller tricks are needed to avoid non-const standard library functions like `Result::ok` or `bool::then_some`.
Tracking issue: https://github.com/rust-lang/rust/issues/89259
Rollup of 8 pull requests
Successful merges:
- #90386 (Add `-Zassert-incr-state` to assert state of incremental cache)
- #90438 (Clean up mess for --show-coverage documentation)
- #90480 (Mention `Vec::remove` in `Vec::swap_remove`'s docs)
- #90607 (Make slice->str conversion and related functions `const`)
- #90750 (rustdoc: Replace where-bounded Clean impl with simple function)
- #90895 (require full validity when determining the discriminant of a value)
- #90989 (Avoid suggesting literal formatting that turns into member access)
- #91002 (rustc: Remove `#[rustc_synthetic]`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
std: Get the standard library compiling for wasm64
This commit goes through and updates various `#[cfg]` as appropriate to
get the wasm64-unknown-unknown target behaving similarly to the
wasm32-unknown-unknown target. Most of this is just updating various
conditions for `target_arch = "wasm32"` to also account for `target_arch
= "wasm64"` where appropriate. This commit also lists `wasm64` as an
allow-listed architecture to not have the `restricted_std` feature
enabled, enabling experimentation with `-Z build-std` externally.
The main goal of this commit is to enable playing around with
`wasm64-unknown-unknown` externally via `-Z build-std` in a way that's
similar to the `wasm32-unknown-unknown` target. These targets are
effectively the same and only differ in their pointer size, but wasm64
is much newer and has much less ecosystem/library support so it'll still
take time to get wasm64 fully-fledged.
Dependence on endianness and type sizes was reported for enum discriminants in #74215 but it is a more general
issue since for example the default implementation of `Hasher::write_usize` uses native endianness.
Additionally the implementations of library types are occasionally changed as their internal fields
change or hashing gets optimized.
This commit makes the following functions from `core::str` `const fn`:
- `from_utf8[_mut]` (`feature(const_str_from_utf8)`)
- `from_utf8_unchecked_mut` (`feature(const_str_from_utf8_unchecked_mut)`)
- `Utf8Error::{valid_up_to,error_len}` (`feature(const_str_from_utf8)`)
Permit const panics in stable const contexts in stdlib
Without this change, it is not possible to use `panic!` and similar (including `assert!`) in stable const contexts inside of stdlib. See #89542 for a real-world case that currently fails for this reason. This does _not_ affect any user code.
For example, this snippet currently fails to compile:
```rust
#[stable(feature = "foo", since = "1.0.0")]
#[rustc_const_stable(feature = "foo", since = "1.0.0")]
const fn foo() {
assert!(false);
assert!(false, "foo");
}
```
With the addition of `#[rustc_const_unstable]` to `core::panicking::panic`, the error no longer occurs. This snippet has been added verbatim in this PR as a UI test.
To avoid needing to add `#![feature(core_panic)]` to libcore, the two instances of direct calls to `core::panicking::panic` have been switched to use the `panic!` macro.
I am requesting prioritization because this is holding up other stabilizations such as #89542 (which is otherwise ready to merge and succeeds with this change)
Remove bigint_helper_methods for *signed* types
This PR inspired by `@cuviper's` comment @ https://github.com/rust-lang/rust/issues/90541#issuecomment-967309808
These are working well for *unsigned* types, so keep those, but for the the *signed* ones there are a bunch of questions about what the semantics and API should be. For the main "helpers for big integer implementations" use, there's no need for the signed versions anyway. There are plenty of other methods which exist for unsigned types but not signed ones, like `next_power_of_two`, so this isn't unusual.
Fixes#90541
Tracking issue #85532
MIRI says `reverse` is UB, so replace it with something LLVM can vectorize
For small types with padding, the current implementation is UB because it does integer operations on uninit values.
```
error: Undefined Behavior: using uninitialized data, but this operation requires initialized memory
--> /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/num/mod.rs:836:5
|
836 | / uint_impl! { u32, u32, i32, 32, 4294967295, 8, "0x10000b3", "0xb301", "0x12345678",
837 | | "0x78563412", "0x1e6a2c48", "[0x78, 0x56, 0x34, 0x12]", "[0x12, 0x34, 0x56, 0x78]", "", "" }
| |________________________________________________________________________________________________^ using uninitialized data, but this operation requires initialized memory
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: inside `core::num::<impl u32>::rotate_left` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/num/uint_macros.rs:211:13
= note: inside `core::slice::<impl [Foo]>::reverse` at /playground/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/slice/mod.rs:701:58
```
<https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=340739f22ca5b457e1da6f361768edc6>
But LLVM has gotten smarter since I wrote the previous implementation in 2017, so this PR removes all the manual magic and just writes it in such a way that LLVM will vectorize. This code is much simpler and has very little `unsafe`, and is actually faster to boot!
If you're curious to see the codegen: <https://rust.godbolt.org/z/Pcn13Y9E3>
Before:
```
running 7 tests
test slice::reverse_simd_f64x4 ... bench: 17,940 ns/iter (+/- 481) = 58448 MB/s
test slice::reverse_u128 ... bench: 17,758 ns/iter (+/- 205) = 59048 MB/s
test slice::reverse_u16 ... bench: 158,234 ns/iter (+/- 6,876) = 6626 MB/s
test slice::reverse_u32 ... bench: 62,047 ns/iter (+/- 1,117) = 16899 MB/s
test slice::reverse_u64 ... bench: 31,582 ns/iter (+/- 552) = 33201 MB/s
test slice::reverse_u8 ... bench: 81,253 ns/iter (+/- 1,510) = 12905 MB/s
test slice::reverse_u8x3 ... bench: 270,615 ns/iter (+/- 11,463) = 3874 MB/s
```
After:
```
running 7 tests
test slice::reverse_simd_f64x4 ... bench: 17,731 ns/iter (+/- 306) = 59137 MB/s
test slice::reverse_u128 ... bench: 17,919 ns/iter (+/- 239) = 58517 MB/s
test slice::reverse_u16 ... bench: 43,160 ns/iter (+/- 607) = 24295 MB/s
test slice::reverse_u32 ... bench: 21,065 ns/iter (+/- 371) = 49778 MB/s
test slice::reverse_u64 ... bench: 21,118 ns/iter (+/- 482) = 49653 MB/s
test slice::reverse_u8 ... bench: 76,878 ns/iter (+/- 1,688) = 13639 MB/s
test slice::reverse_u8x3 ... bench: 264,723 ns/iter (+/- 5,544) = 3961 MB/s
```
Those are the existing benches, <14a2fd640e/library/alloc/benches/slice.rs (L322-L346)>
Stabilize `const_raw_ptr_deref` for `*const T`
This stabilizes dereferencing immutable raw pointers in const contexts.
It does not stabilize `*mut T` dereferencing. This is behind the
same feature gate as mutable references.
closes https://github.com/rust-lang/rust/issues/51911
Re-enable `copy[_nonoverlapping]()` debug-checks
This commit re-enables the debug checks for valid usages of the two functions `copy()` and `copy_nonoverlapping()`. Those checks were commented out in #79684 in order to make the functions const. All that's been left was a FIXME, that could not be resolved until there is was way to only do the checks at runtime.
Since #89247 there is such a way: `const_eval_select()`. This commit uses that new intrinsic in order to either do nothing (at compile time) or to do the old checks (at runtime).
The change itself is rather small: in order to make the checks usable with `const_eval_select`, they are moved into a local function (one for `copy` and one for `copy_nonoverlapping` to keep symmetry).
The change does not break referential transparency, as there is nothing you can do at compile time, which you cannot do on runtime without getting undefined behavior. The CTFE-engine won't allow missuses. The other way round is also fine.
I've refactored the code to use `#[cfg(debug_assertions)]` on the new items. If that is not desired, the second commit can be dropped.
I haven't added any checks, as I currently don't know, how to test this properly.
Closes#90012.
cc `@rust-lang/lang,` `@rust-lang/libs` and `@rust-lang/wg-const-eval` (as those teams are linked in the issue above).
pub use core::simd;
A portable abstraction over SIMD has been a major pursuit in recent years for several programming languages. In Rust, `std::arch` offers explicit SIMD acceleration via compiler intrinsics, but it does so at the cost of having to individually maintain each and every single such API, and is almost completely `unsafe` to use. `core::simd` offers safe abstractions that are resolved to the appropriate SIMD instructions by LLVM during compilation, including scalar instructions if that is all that is available.
`core::simd` is enabled by the `#![portable_simd]` nightly feature tracked in https://github.com/rust-lang/rust/issues/86656 and is introduced here by pulling in the https://github.com/rust-lang/portable-simd repository as a subtree. We built the repository out-of-tree to allow faster compilation and a stochastic test suite backed by the proptest crate to verify that different targets, features, and optimizations produce the same result, so that using this library does not introduce any surprises. As these tests are technically non-deterministic, and thus can introduce overly interesting Heisenbugs if included in the rustc CI, they are visible in the commit history of the subtree but do nothing here. Some tests **are** introduced via the documentation, but these use deterministic asserts.
There are multiple unsolved problems with the library at the current moment, including a want for better documentation, technical issues with LLVM scalarizing and lowering to libm, room for improvement for the APIs, and so far I have not added the necessary plumbing for allowing the more experimental or libm-dependent APIs to be used. However, I thought it would be prudent to open this for review in its current condition, as it is both usable and it is likely I am going to learn something else needs to be fixed when bors tries this out.
The major types are
- `core::simd::Simd<T, N>`
- `core::simd::Mask<T, N>`
There is also the `LaneCount` struct, which, together with the SimdElement and SupportedLaneCount traits, limit the implementation's maximum support to vectors we know will actually compile and provide supporting logic for bitmasks. I'm hoping to simplify at least some of these out of the way as the compiler and library evolve.
These are working well for *unsigned* types, for the the signed ones there are a bunch of questions about what the semantics and API should be. And for the main "helpers for big integer implementations" use, there's no need for the signed versions anyway.
And there are plenty of other methods which exist for unsigned types but not signed ones, like `next_power_of_two`, so this isn't unusual.
Fixes 90541
These tests just verify some basic APIs of core::simd function, and
guarantees that attempting to access the wrong things doesn't work.
The majority of tests are stochastic, and so remain upstream, but
a few deterministic tests arrive in the subtree as doc tests.
This enables programmers to use a safe alternative to the current
`extern "platform-intrinsics"` API for writing portable SIMD code.
This is `#![feature(portable_simd)]` as tracked in #86656
Document `unreachable!` custom panic message
The `unreachable!` docs previously did not mention that there was a second form, `unreachable!("message")` that could be used to specify a custom panic message,
The docs now mention this feature in the same wording as currently used for `unimplemented!`:
https://doc.rust-lang.org/core/macro.unimplemented.html#panics
For small types with padding, the current implementation is UB because it does integer operations on uninit values. But LLVM has gotten smarter since I wrote the previous implementation in 2017, so remove all the manual magic and just write it in such a way that LLVM will vectorize. This code is much simpler (albeit nuanced) and has very little `unsafe`, and is actually faster to boot!
The `unreachable!` docs previously did not mention that there was a second
form, `unreachable!("message")` that could be used to specify a custom panic
message,
The docs now mention this in the same style as currently used for `unimplemented!`:
https://doc.rust-lang.org/core/macro.unimplemented.html#panics
This commit goes through and updates various `#[cfg]` as appropriate to
get the wasm64-unknown-unknown target behaving similarly to the
wasm32-unknown-unknown target. Most of this is just updating various
conditions for `target_arch = "wasm32"` to also account for `target_arch
= "wasm64"` where appropriate. This commit also lists `wasm64` as an
allow-listed architecture to not have the `restricted_std` feature
enabled, enabling experimentation with `-Z build-std` externally.
The main goal of this commit is to enable playing around with
`wasm64-unknown-unknown` externally via `-Z build-std` in a way that's
similar to the `wasm32-unknown-unknown` target. These targets are
effectively the same and only differ in their pointer size, but wasm64
is much newer and has much less ecosystem/library support so it'll still
take time to get wasm64 fully-fledged.
Because after PR 86041, the optimizer no longer load-merges at the LLVM IR level, which might be part of the perf loss. (I'll run perf and see if this makes a difference.)
Also I added a codegen test so this hopefully won't regress in future -- it passes on stable and with my change here, but not on the 2021-11-09 nightly.
This commit re-enables the debug checks for valid usages of the two
functions `copy()` and `copy_nonoverlapping()`. Those checks were com-
mented out in #79684 in order to make the functions const. All that's
been left was a FIXME, that could not be resolved until there is was way
to only do the checks at runtime.
Since #89247 there is such a way: `const_eval_select()`. This commit
uses that new intrinsic in order to either do nothing (at compile time)
or to do the old checks (at runtime).
The change itself is rather small: in order to make the checks usable
with `const_eval_select`, they are moved into a local function (one for
`copy` and one for `copy_nonoverlapping` to keep symmetry).
The change does not break referential transparency, as there is nothing
you can do at compile time, which you cannot do on runtime without get-
ting undefined behavior. The CTFE-engine won't allow missuses. The other
way round is also fine.
Add features gates for experimental asm features
This PR splits off parts of `asm!` into separate features because they are not ready for stabilization.
Specifically this adds:
- `asm_const` for `const` operands.
- `asm_sym` for `sym` operands.
- `asm_experimental_arch` for architectures other than x86, x86_64, arm, aarch64 and riscv.
r? `@nagisa`
This stabilizes dereferencing immutable raw pointers in const contexts.
It does not stabilize `*mut T` dereferencing. This is placed behind the
`const_raw_mut_ptr_deref` feature gate.
Add #[must_use] to remaining core functions
I've run out of compelling reasons to group functions together across crates so I'm just going to go module-by-module. This is everything remaining from the `core` crate.
Ignored by clippy for reasons unknown:
```rust
core::alloc::Layout unsafe fn for_value_raw<T: ?Sized>(t: *const T) -> Self;
core::any const fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str;
```
Ignored by clippy because of `mut`:
```rust
str fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str);
```
<del>
Ignored by clippy presumably because a caller might want `f` called for side effects. That seems like a bad usage of `map` to me.
```rust
core::cell::Ref<'b, T> fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, T>;
core::cell::Ref<'b, T> fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>);
```
</del>
Parent issue: #89692
r? ```@joshtriplett```
Add #[must_use] to mem/ptr functions
There's a lot of low-level / unsafe stuff here. Are there legit use cases for ignoring any of these return values?
* No regressions in `./x.py test --stage 1 library/std src/tools/clippy`.
* One regression in `./x.py test --stage 1 src/test/ui`. Fixed.
* I am unable to run `./x.py doc` on my machine so I'll need to wait for the CI to verify doctests pass. I eyeballed all the adjacent tests and they all look okay.
Parent issue: #89692
r? ```@joshtriplett```
Add #[must_use] to expensive computations
The unifying theme for this commit is weak, admittedly. I put together a list of "expensive" functions when I originally proposed this whole effort, but nobody's cared about that criterion. Still, it's a decent way to bite off a not-too-big chunk of work.
Given the grab bag nature of this commit, the messages I used vary quite a bit. I'm open to wording changes.
For some reason clippy flagged four `BTreeSet` methods but didn't say boo about equivalent ones on `HashSet`. I stared at them for a while but I can't figure out the difference so I added the `HashSet` ones in.
```rust
// Flagged by clippy.
alloc::collections::btree_set::BTreeSet<T> fn difference<'a>(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T>;
alloc::collections::btree_set::BTreeSet<T> fn symmetric_difference<'a>(&'a self, other: &'a BTreeSet<T>) -> SymmetricDifference<'a, T>
alloc::collections::btree_set::BTreeSet<T> fn intersection<'a>(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T>;
alloc::collections::btree_set::BTreeSet<T> fn union<'a>(&'a self, other: &'a BTreeSet<T>) -> Union<'a, T>;
// Ignored by clippy, but not by me.
std::collections::HashSet<T, S> fn difference<'a>(&'a self, other: &'a HashSet<T, S>) -> Difference<'a, T, S>;
std::collections::HashSet<T, S> fn symmetric_difference<'a>(&'a self, other: &'a HashSet<T, S>) -> SymmetricDifference<'a, T, S>
std::collections::HashSet<T, S> fn intersection<'a>(&'a self, other: &'a HashSet<T, S>) -> Intersection<'a, T, S>;
std::collections::HashSet<T, S> fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>;
```
Parent issue: #89692
r? ```@joshtriplett```
track_caller for slice length assertions
`clone_from_slice` was missing `#[track_caller]`, and its assert did not report a useful location.
These are small generic methods, so hopefully track_caller gets inlined into nothingness, but it may be worth running a benchmark on this.
Make `core::slice::from_raw_parts[_mut]` const
Responses to #90012 seem to allow ``@rust-lang/wg-const-eval`` to decide on use of `const_eval_select`, so we can make `core::slice::from_raw_parts[_mut]` const :)
---
This PR marks the following APIs as const:
```rust
// core::slice
pub const unsafe fn from_raw_parts<'a, T>(data: *const T, len: usize) -> &'a [T];
pub const unsafe fn from_raw_parts_mut<'a, T>(data: *mut T, len: usize) -> &'a mut [T];
```
---
Resolves#90011
r? ``@oli-obk``
Make most std::ops traits const on numeric types
This PR makes existing implementations of `std::ops` traits (`Add`, `Sub`, etc) [`impl const`](https://github.com/rust-lang/rust/issues/67792) where possible.
This affects:
- All numeric primitives (`u*`, `i*`, `f*`)
- `NonZero*`
- `Wrapping`
This is under the `rustc_const_unstable` feature `const_ops`.
I will write tests once I know what can and can't be kept for the final version of this PR.
Since this is my first PR to rustc (and hopefully one of many), please give me feedback on how to better handle the PR process wherever possible. Thanks
[Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Const.20std.3A.3Aops.20traits.20PR)
Replace some operators in libcore with their short-circuiting equivalents
In libcore there are a few occurrences of bitwise operators used in boolean expressions instead of their short-circuiting equivalents. This makes it harder to perform some kinds of source code analysis over libcore, for example [MC/DC] code coverage (a requirement in safety-critical environments).
This PR aims to remove as many bitwise operators in boolean expressions from libcore as possible, without any performance regression and without other changes. This means not all bitwise operators are removed, only the ones that don't have any difference with their short-circuiting counterparts. This already simplifies achieving MC/DC coverage, and the other functions can be changed in future PRs.
The PR is best reviewed commit-by-commit, and each commit has the resulting assembly in the message.
## Checked integer methods
These methods recently switched to bitwise operators in PRs https://github.com/rust-lang/rust/pull/89459 and https://github.com/rust-lang/rust/pull/89351. I confirmed bitwise operators are needed in most of the functions, except these two:
* `{integer}::checked_div` ([Godbolt link (nightly)](https://rust.godbolt.org/z/17efh5jPc))
* `{integer}::checked_rem` ([Godbolt link (nightly)](https://rust.godbolt.org/z/85qGWc94K))
`@tspiteri` already mentioned this was the case in https://github.com/rust-lang/rust/pull/89459#issuecomment-932728384, but opted to also switch those two to bitwise operators for consistency. As that makes MC/DC analysis harder this PR proposes switching those two back to short-circuiting operators.
## `{unsigned_ints}::carrying_add`
[Godbolt link (1.56.0)](https://rust.godbolt.org/z/vG9vx8x48)
In this instance replacing the `|` with `||` produces the exact same assembly when optimizations are enabled, so switching to the short-circuiting operator shouldn't have any impact.
## `{unsigned_ints}::borrowing_sub`
[Godbolt link (1.56.0)](https://rust.godbolt.org/z/asEfKaGE4)
In this instance replacing the `|` with `||` produces the exact same assembly when optimizations are enabled, so switching to the short-circuiting operator shouldn't have any impact.
## String UTF-8 validation
[Godbolt link (1.56.0)](https://rust.godbolt.org/z/a4rEbTvvx)
In this instance replacing the `|` with `||` produces practically the same assembly, with the two operands for the "or" swapped:
```asm
; Old
mov rax, qword ptr [rdi + rdx + 8]
or rax, qword ptr [rdi + rdx]
test rax, r9
je .LBB0_7
; New
mov rax, qword ptr [rdi + rdx]
or rax, qword ptr [rdi + rdx + 8]
test rax, r8
je .LBB0_7
```
[MC/DC]: https://en.wikipedia.org/wiki/Modified_condition/decision_coverage
Remove extra lines in examples for `Duration::try_from_secs_*`
None of the other examples have extra lines below the `#![feature(...)]` statements, so I thought it appropriate that these examples shouldn't either.
Clean up special function const checks
Mark them as const and `#[rustc_do_not_const_check]` instead of hard-coding them in const-eval checks.
r? `@oli-obk`
`@rustbot` label A-const-eval T-compiler
Using short-circuit operators makes it easier to perform some kinds of
source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86 assembly is the same
between the old and new versions:
```
xor eax, eax
test esi, esi
je .LBB0_1
cmp edi, -2147483648
jne .LBB0_4
cmp esi, -1
jne .LBB0_4
ret
.LBB0_1:
ret
.LBB0_4:
mov eax, edi
cdq
idiv esi
mov eax, 1
ret
```
Using short-circuit operators makes it easier to perform some kinds of
source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86 assembly is the same
between the old and new versions:
```
xor eax, eax
test esi, esi
je .LBB0_1
cmp edi, -2147483648
jne .LBB0_4
cmp esi, -1
jne .LBB0_4
ret
.LBB0_1:
ret
.LBB0_4:
mov eax, edi
cdq
idiv esi
mov edx, eax
mov eax, 1
ret
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is
equivalent between the old and new versions.
Old assembly of that condition:
```
mov rax, qword ptr [rdi + rdx + 8]
or rax, qword ptr [rdi + rdx]
test rax, r9
je .LBB0_7
```
New assembly of that condition:
```
mov rax, qword ptr [rdi + rdx]
or rax, qword ptr [rdi + rdx + 8]
test rax, r8
je .LBB0_7
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is the same
between the old and new versions:
```
mov eax, edi
add dl, -1
sbb eax, esi
setb dl
ret
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is the same
between the old and new versions:
```
mov eax, edi
add dl, -1
adc eax, esi
setb dl
ret
```