match lowering: handle or-patterns one layer at a time
`create_or_subcandidates` and `merge_trivial_subcandidates` both call themselves recursively to handle nested or-patterns, which is hard to follow. In this PR I avoid the need for that; we now process a single "layer" of or-patterns at a time.
By calling back into `match_candidates`, we only need to expand one layer at a time. Conversely, since we always try to simplify a layer that we just expanded (thanks to https://github.com/rust-lang/rust/pull/123067), we only have to merge one layer at a time.
r? `@matthewjasper`
The original proposal allows reference patterns
with "compatible" mutability, however it's not clear
what that means so for now we require an exact match.
I don't know the type system code well, so if something
seems to not make sense it's probably because I made a
mistake
compiler: fix few unused_peekable and needless_pass_by_ref_mut clippy lints
This fixes few instances of `unused_peekable` and `needless_pass_by_ref_mut`. While i expected to fix more warnings, `needless_pass_by_ref_mut` produced too much for one PR, so i stopped here.
Better reviewed commit by commit, as fixes splitted by chunks.
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_mir_transform\src\coroutine.rs:1229:11
|
1229 | body: &mut Body<'tcx>,
| ^^^^^^^^^^^^^^^ help: consider changing to: `&Body<'tcx>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_mir_transform\src\nrvo.rs:123:11
|
123 | body: &mut mir::Body<'_>,
| ^^^^^^^^^^^^^^^^^^ help: consider changing to: `&mir::Body<'_>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_mir_transform\src\nrvo.rs:87:34
|
87 | fn local_eligible_for_nrvo(body: &mut mir::Body<'_>) -> Option<Local> {
| ^^^^^^^^^^^^^^^^^^ help: consider changing to: `&mir::Body<'_>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
By calling back into `match_candidates`, we only need to expand one
layer at a time. Conversely, since we always try to simplify a layer
that we just expanded, we only have to merge one layer at a time.
match lowering: build the `Place` instead of keeping a `PlaceBuilder` around
Outside of `MatchPair::new` we don't construct new places, so we don't need to keep a `PlaceBuilder` around.
A bit annoyingly we have to store an `Option<Place>` even though it's never `None` after simplification, but the alternative would be to re-entangle `MatchPair` construction and simplification and I'd rather not do that.
Replace `mir_built` query with a hook and use mir_const everywhere instead
A small perf improvement due to less dep graph handling.
Mostly just a cleanup to get rid of one of our many mir queries
The payload of coverage statements was historically a structure with several
fields, so it was boxed to avoid bloating `StatementKind`.
Now that the payload is a single relatively-small enum, we can replace
`Box<Coverage>` with just `CoverageKind`.
This patch also adds a size assertion for `StatementKind`, to avoid
accidentally bloating it in the future.
Experimental feature postfix match
This has a basic experimental implementation for the RFC postfix match (rust-lang/rfcs#3295, #121618). [Liaison is](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Postfix.20Match.20Liaison/near/423301844) ```@scottmcm``` with the lang team's [experimental feature gate process](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md).
This feature has had an RFC for a while, and there has been discussion on it for a while. It would probably be valuable to see it out in the field rather than continue discussing it. This feature also allows to see how popular postfix expressions like this are for the postfix macros RFC, as those will take more time to implement.
It is entirely implemented in the parser, so it should be relatively easy to remove if needed.
This PR is split in to 5 commits to ease review.
1. The implementation of the feature & gating.
2. Add a MatchKind field, fix uses, fix pretty.
3. Basic rustfmt impl, as rustfmt crashes upon seeing this syntax without a fix.
4. Add new MatchSource to HIR for Clippy & other HIR consumers
deref patterns: bare-bones feature gate and typechecking
I am restarting the deref patterns experimentation. This introduces a feature gate under the lang-team [experimental feature](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md) process, with [````@cramertj```` as lang-team liaison](https://github.com/rust-lang/lang-team/issues/88) (it's been a while though, you still ok with this ````@cramertj?).```` Tracking issue: https://github.com/rust-lang/rust/issues/87121.
This is the barest-bones implementation I could think of:
- explicit syntax, reusing `box <pat>` because that saves me a ton of work;
- use `Deref` as a marker trait (instead of a yet-to-design `DerefPure`);
- no support for mutable patterns with `DerefMut` for now;
- MIR lowering will come in the next PR. It's the trickiest part.
My goal is to let us figure out the MIR lowering part, which might take some work. And hopefully get something working for std types soon.
This is in large part salvaged from ````@fee1-dead's```` https://github.com/rust-lang/rust/pull/119467.
r? ````@compiler-errors````
recursively evaluate the constants in everything that is 'mentioned'
This is another attempt at fixing https://github.com/rust-lang/rust/issues/107503. The previous attempt at https://github.com/rust-lang/rust/pull/112879 seems stuck in figuring out where the [perf regression](https://perf.rust-lang.org/compare.html?start=c55d1ee8d4e3162187214692229a63c2cc5e0f31&end=ec8de1ebe0d698b109beeaaac83e60f4ef8bb7d1&stat=instructions:u) comes from. In https://github.com/rust-lang/rust/pull/122258 I learned some things, which informed the approach this PR is taking.
Quoting from the new collector docs, which explain the high-level idea:
```rust
//! One important role of collection is to evaluate all constants that are used by all the items
//! which are being collected. Codegen can then rely on only encountering constants that evaluate
//! successfully, and if a constant fails to evaluate, the collector has much better context to be
//! able to show where this constant comes up.
//!
//! However, the exact set of "used" items (collected as described above), and therefore the exact
//! set of used constants, can depend on optimizations. Optimizing away dead code may optimize away
//! a function call that uses a failing constant, so an unoptimized build may fail where an
//! optimized build succeeds. This is undesirable.
//!
//! To fix this, the collector has the concept of "mentioned" items. Some time during the MIR
//! pipeline, before any optimization-level-dependent optimizations, we compute a list of all items
//! that syntactically appear in the code. These are considered "mentioned", and even if they are in
//! dead code and get optimized away (which makes them no longer "used"), they are still
//! "mentioned". For every used item, the collector ensures that all mentioned items, recursively,
//! do not use a failing constant. This is reflected via the [`CollectionMode`], which determines
//! whether we are visiting a used item or merely a mentioned item.
//!
//! The collector and "mentioned items" gathering (which lives in `rustc_mir_transform::mentioned_items`)
//! need to stay in sync in the following sense:
//!
//! - For every item that the collector gather that could eventually lead to build failure (most
//! likely due to containing a constant that fails to evaluate), a corresponding mentioned item
//! must be added. This should use the exact same strategy as the ecollector to make sure they are
//! in sync. However, while the collector works on monomorphized types, mentioned items are
//! collected on generic MIR -- so any time the collector checks for a particular type (such as
//! `ty::FnDef`), we have to just onconditionally add this as a mentioned item.
//! - In `visit_mentioned_item`, we then do with that mentioned item exactly what the collector
//! would have done during regular MIR visiting. Basically you can think of the collector having
//! two stages, a pre-monomorphization stage and a post-monomorphization stage (usually quite
//! literally separated by a call to `self.monomorphize`); the pre-monomorphizationn stage is
//! duplicated in mentioned items gathering and the post-monomorphization stage is duplicated in
//! `visit_mentioned_item`.
//! - Finally, as a performance optimization, the collector should fill `used_mentioned_item` during
//! its MIR traversal with exactly what mentioned item gathering would have added in the same
//! situation. This detects mentioned items that have *not* been optimized away and hence don't
//! need a dedicated traversal.
enum CollectionMode {
/// Collect items that are used, i.e., actually needed for codegen.
///
/// Which items are used can depend on optimization levels, as MIR optimizations can remove
/// uses.
UsedItems,
/// Collect items that are mentioned. The goal of this mode is that it is independent of
/// optimizations: the set of "mentioned" items is computed before optimizations are run.
///
/// The exact contents of this set are *not* a stable guarantee. (For instance, it is currently
/// computed after drop-elaboration. If we ever do some optimizations even in debug builds, we
/// might decide to run them before computing mentioned items.) The key property of this set is
/// that it is optimization-independent.
MentionedItems,
}
```
And the `mentioned_items` MIR body field docs:
```rust
/// Further items that were mentioned in this function and hence *may* become monomorphized,
/// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
/// collector recursively traverses all "mentioned" items and evaluates all their
/// `required_consts`.
///
/// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
/// All that's relevant is that this set is optimization-level-independent, and that it includes
/// everything that the collector would consider "used". (For example, we currently compute this
/// set after drop elaboration, so some drop calls that can never be reached are not considered
/// "mentioned".) See the documentation of `CollectionMode` in
/// `compiler/rustc_monomorphize/src/collector.rs` for more context.
pub mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>,
```
Fixes#107503
various clippy fixes
We need to keep the order of the given clippy lint rules before passing them.
Since clap doesn't offer any useful interface for this purpose out of the box,
we have to handle it manually.
Additionally, this PR makes `-D` rules work as expected. Previously, lint rules were limited to `-W`. By enabling `-D`, clippy began to complain numerous lines in the tree, all of which have been resolved in this PR as well.
Fixes#121481
cc `@matthiaskrgr`
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
never patterns: suggest `!` patterns on non-exhaustive matches
When a match is non-exhaustive we now suggest never patterns whenever it makes sense.
r? ``@compiler-errors``
`f16` and `f128` step 3: compiler support & feature gate
Continuation of https://github.com/rust-lang/rust/pull/121841, another portion of https://github.com/rust-lang/rust/pull/114607
This PR exposes the new types to the world and adds a feature gate. Marking this as a draft because I need some feedback on where I did the feature gate check. It also does not yet catch type via suffixed literals (so the feature gate test will fail, probably some others too because I haven't belssed).
If there is a better place to check all types after resolution, I can do that. If not, I figure maybe I can add a second gate location in AST when it checks numeric suffixes.
Unfortunately I still don't think there is much testing to be done for correctness (codegen tests or parsed value checks) until we have basic library support. I think that will be the next step.
Tracking issue: https://github.com/rust-lang/rust/issues/116909
r? `@compiler-errors`
cc `@Nilstrieb`
`@rustbot` label +F-f16_and_f128
Detect calls to .clone() on T: !Clone types on borrowck errors
When encountering a lifetime error on a type that *holds* a type that doesn't implement `Clone`, explore the item's body for potential calls to `.clone()` that are only cloning the reference `&T` instead of `T` because `T: !Clone`. If we find this, suggest `T: Clone`.
```
error[E0502]: cannot borrow `*list` as mutable because it is also borrowed as immutable
--> $DIR/clone-on-ref.rs:7:5
|
LL | for v in list.iter() {
| ---- immutable borrow occurs here
LL | cloned_items.push(v.clone())
| ------- this call doesn't do anything, the result is still `&T` because `T` doesn't implement `Clone`
LL | }
LL | list.push(T::default());
| ^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
LL |
LL | drop(cloned_items);
| ------------ immutable borrow later used here
|
help: consider further restricting this bound
|
LL | fn foo<T: Default + Clone>(list: &mut Vec<T>) {
| +++++++
```
```
error[E0505]: cannot move out of `x` because it is borrowed
--> $DIR/clone-on-ref.rs:23:10
|
LL | fn qux(x: A) {
| - binding `x` declared here
LL | let a = &x;
| -- borrow of `x` occurs here
LL | let b = a.clone();
| ------- this call doesn't do anything, the result is still `&A` because `A` doesn't implement `Clone`
LL | drop(x);
| ^ move out of `x` occurs here
LL |
LL | println!("{b:?}");
| ----- borrow later used here
|
help: consider annotating `A` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | struct A;
|
```
Fix#48677.
coverage: Initial support for branch coverage instrumentation
(This is a review-ready version of the changes that were drafted in #118305.)
This PR adds support for branch coverage instrumentation, gated behind the unstable flag value `-Zcoverage-options=branch`. (Coverage instrumentation must also be enabled with `-Cinstrument-coverage`.)
During THIR-to-MIR lowering (MIR building), if branch coverage is enabled, we collect additional information about branch conditions and their corresponding then/else blocks. We inject special marker statements into those blocks, so that the `InstrumentCoverage` MIR pass can reliably identify them even after the initially-built MIR has been simplified and renumbered.
The rest of the changes are mostly just plumbing needed to gather up the information that was collected during MIR building, and include it in the coverage metadata that we embed in the final binary.
Note that `llvm-cov show` doesn't print branch coverage information in its source views by default; that needs to be explicitly enabled with `--show-branches=count` or similar.
---
The current implementation doesn't have any support for instrumenting `if let` or let-chains. I think it's still useful without that, and adding it would be non-trivial, so I'm happy to leave that for future work.
match lowering: don't collect test alternatives ahead of time
I'm very happy with this one. Before this, when sorting candidates into the possible test branches, we manually computed `usize` indices to determine in which branch each candidate goes. To make this work we had a first pass that collected the possible alternatives we'd have to deal with, and a second pass that actually sorts the candidates.
In this PR, I replace `usize` indices with a dedicated enum. This makes `sort_candidates` easier to follow, and we don't need the first pass anymore.
r? ``@matthewjasper``
pattern analysis: Store field indices in `DeconstructedPat` to avoid virtual wildcards
For a pattern like `Struct { field3: true, .. }`, in pattern analysis we represent it as `Struct { field1: _, field2: _, field3: true, field4: _ }`. This PR makes it so we store `Struct { field3: true, .. }` instead. This means we never have to create fake `_` patterns during lowering.
r? ``@compiler-errors``
Clarity improvements to `DropTree`
These changes are based on some points of confusion I had when initially trying to understand this code.
The only “functional” change is an additional assertion in `<ExitScopes as DropTreeBuilder>::link_entry_point`, checking that the dummy terminator is `TerminatorKind::UnwindResume` as expected.
match lowering: define a convenient struct
Small refactor PR: `bindings` and `ascriptions` always come together so I made a struct for them. I'll have one or two fields to add to it in a later PR as well.
Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``
This method would previously take a target scope, and then verify that it
was equal to the scope on top of the if-then scope stack.
In practice, this means that callers have to go out of their way to pass around
redundant scope information that's already on the if-then stack.
So it's easier to just retrieve the correct scope directly from the if-then
stack, and simplify the other code that was passing it around.
This allows us to use real field names instead of tuple element numbers.
Renaming `previous_drops` to `existing_drops_map` clarifies that "previous" was
unrelated to drop order.
This makes it easier to see that the call to `in_scope` returns both the then
block and the else block. The rather confusing `unpack!` step is confined to
its own separate line.
(This patch reindents several lines, so using "ignore whitespace" is
recommended in order to focus on the actual changes.)
Extract an arguments struct for `Builder::then_else_break`
Most of this method's arguments are usually or always forwarded as-is to recursive invocations.
Wrapping them in a dedicated struct allows us to document each struct field, and lets us use struct-update syntax to indicate which arguments are being modified when making a recursive call.
---
While trying to understand the lowering of `if` expressions, I found it difficult to keep track of the half-dozen arguments passed through to every call to `then_else_break`. I tried switching over to an arguments struct, and I found that it really helps to make sense of what each argument does, and how each call is modifying the arguments.
I have some further ideas for how to streamline these recursive calls, but I've kept those out of this PR so that it's a pure refactoring with no behavioural changes.
Most of this method's arguments are usually or always forwarded as-is to
recursive invocations.
Wrapping them in a dedicated struct allows us to document each struct field,
and lets us use struct-update syntax to indicate which arguments are being
modified when making a recursive call.
Add new `pattern_complexity` attribute to add possibility to limit and check recursion in pattern matching
Needed for https://github.com/rust-lang/rust-analyzer/issues/9528.
This PR adds a new attribute only available when running rust testsuite called `pattern_complexity` which allows to set the maximum recursion for the pattern matching. It is quite useful to ensure the complexity doesn't grow, like in `tests/ui/pattern/usefulness/issue-118437-exponential-time-on-diagonal-match.rs`.
r? `@Nadrieril`
Rollup of 5 pull requests
Successful merges:
- #120761 (Add initial support for DataFlowSanitizer)
- #121622 (Preserve same vtable pointer when cloning raw waker, to fix Waker::will_wake)
- #121716 (match lowering: Lower bindings in a predictable order)
- #121731 (Now that inlining, mir validation and const eval all use reveal-all, we won't be constraining hidden types here anymore)
- #121841 (`f16` and `f128` step 2: intrinsics)
r? `@ghost`
`@rustbot` modify labels: rollup
match lowering: Lower bindings in a predictable order
After the recent refactorings, we can now lower bindings in a truly predictable order. The order in https://github.com/rust-lang/rust/pull/120214 was an improvement but not very clear. With this PR, we lower bindings from left to right, with the special case that `x @ pat` is traversed as `pat @ x` (i.e. `x` is lowered after any bindings in `pat`).
This description only applies in the absence of or-patterns. Or-patterns make everything complicated, because the binding place depends on the subpattern. Until I have a better idea I leave them to be handled in whatever weird order arises from today's code.
r? `@matthewjasper`
Before, the SwitchInt cases were computed in two passes: if the first
pass accepted e.g. 0..=5 and then 1, the second pass would not accept
0..=5 anymore because 1 would be listed in the SwitchInt options.
Now there's a single pass, so if we sort 0..=5 we must take care to not
sort a subsequent 1.
The ordinary lowering of `thir::ExprKind::Let` is unreachable
After desugaring, `let` expressions should only appear inside `if` expressions or `match` guards, possibly nested within a let-chain. In both cases they are specifically handled by the lowerings of those expressions, so this case is currently unreachable.
---
Context: https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/Lowering.20of.20.60thir.3A.3AExprKind.3A.3ALet.60.20is.20unreachable
My conclusions are partly based on the observation that stubbing out this match arm doesn't cause any test failures. So either this really is unreachable, or it can be reached in some obscure circumstances that our test suite doesn't cover.
If we end up needing this code (or something like it) for an implementation of https://github.com/rust-lang/rfcs/pull/3573, it should be easy enough to pull it back out of version control history.
I looked into having the `if`/`match` lowerings call back into `expr_into_dest`, but from what I can tell that won't work well, because there are extra scoping considerations that require some awareness of the enclosing if/match.
r? ```@Nadrieril```
After desugaring, `let` expressions should only appear inside `if` expressions
or `match` guards, possibly nested within a let-chain. In both cases they are
specifically handled by the lowerings of those expressions, so this case is
currently unreachable.
match lowering: pre-simplify or-patterns too
This is the final part of my work to simplify match pairs early: now we do it for or-patterns too. This makes it possible to collect fake borrows separately from the main match lowering algorithm. That'll enable more simplifications of or-pattern handling.
Note: I was tempted to have `Candidate` contain a `FlatPat`, but there are so many places that use `candidate.match_pairs` etc directly that I chose not to.
r? `@matthewjasper`
match lowering: Separate the `bool` case from other integers in `TestKind`
`TestKind::SwitchInt` had a special case for `bool` essentially everywhere it's used, so I made `TestKind::If` to handle the bool case on its own.
r? `@matthewjasper`
match lowering: Remove hacky branch in sort_candidate
Reusing `self.test()` there wasn't actually pulling a lot of weight. In particular the `TestKind::Len` cases were all already correctly handled.
r? `@matthewjasper`
Make the success arms of `if lhs || rhs` meet up in a separate block
Extracted from #118305, where this is necessary to avoid introducing a bug when injecting marker statements into the then/else arms.
---
In the previous code (#111752), the success block of `lhs` would jump directly to the success block of `rhs`. However, `rhs_success_block` could already contain statements that are specific to the RHS, and the direct goto causes them to be executed in the LHS success path as well.
This patch therefore creates a fresh block that the LHS and RHS success blocks can both jump to.
---
I think the reason we currently get away with this is that `rhs_success_block` usually doesn't contain anything other than StorageDead statements for locals used by the RHS, and those statements don't seem to cause problems in the LHS success path (which never makes those locals live).
But if we start adding meaningful statements for branch coverage (or MC/DC coverage), it's important to keep the LHS and RHS blocks separate.
Add stubs in IR and ABI for `f16` and `f128`
This is the very first step toward the changes in https://github.com/rust-lang/rust/pull/114607 and the [`f16` and `f128` RFC](https://rust-lang.github.io/rfcs/3453-f16-and-f128.html). It adds the types to `rustc_type_ir::FloatTy` and `rustc_abi::Primitive`, and just propagates those out as `unimplemented!` stubs where necessary.
These types do not parse yet so there is no feature gate, and it should be okay to use `unimplemented!`.
The next steps will probably be AST support with parsing and the feature gate.
r? `@compiler-errors`
cc `@Nilstrieb` suggested breaking the PR up in https://github.com/rust-lang/rust/pull/120645#issuecomment-1925900572
Skip unnecessary comparison with half-open range patterns
This is the last remaining detail in the implementation of half-open range patterns. Until now, a half-open range pattern like `10..` was converted to `10..T::MAX` before lowering to MIR, which generated an extra pointless comparison. With this PR we don't generate it.
In the previous code, the success block of `lhs` would jump directly to the
success block of `rhs`. However, `rhs_success_block` could already contain
statements that are specific to the RHS, and the direct goto causes them to be
executed in the LHS success path as well.
This patch therefore creates a fresh block that the LHS and RHS success blocks
can both jump to.
match lowering: Split off `test_candidates` into several functions and improve comments
The logic of `test_candidates` has three steps: pick a test, sort the candidates, and generate code for everything. So I split it off into three methods.
I also ended up reworking the comments that explain the algorithm. In particular I added detailed examples. I removed the digression about https://github.com/rust-lang/rust/issues/29740 because it's no longer relevant to how the code is structured today.
r? ``@matthewjasper``
PR #119097 made the decision to make all `IntoDiagnostic` impls generic,
because this allowed a bunch of nice cleanups. But four hand-written
impls were unintentionally overlooked. This commit makes them generic.
match lowering: test one or pattern at a time
This is a bit more opinionated than the previous PRs. On the face of it this is less efficient and more complex than before, but I personally found the loop that digs into `leaf_candidates` on each iteration very confusing. Instead this does "generate code for this or-pattern" then "generate further code for each branch if needed" in two steps.
Incidentally this way we don't _require_ or patterns to be sorted at the end. It's still an important optimization but I find it clearer to not rely on it for correctness.
r? `@matthewjasper`
Convert `delayed_bug`s to `bug`s.
I have a suspicion that quite a few delayed bug paths are impossible to reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite, then converted back every `bug` that was hit. A surprising number were never hit.
This is too dangerous to merge. Increased coverage (fuzzing or a crater run) would likely hit more cases. But it might be useful for people to look at and think about which paths are genuinely unreachable.
r? `@ghost`
match lowering: simplify empty candidate selection
In match lowering, `match_simplified_candidates` is tasked with removing candidates that are fully matched and linking them up properly. The code that does that was needlessly complicated; this PR simplifies it.
The overall change isn't big but I split it up into tiny commits to convince myself that I was correctly preserving behavior. The test changes are all due to the first commit. Let me know if you'd prefer me to split up the PR to make reviewing easier.
r? `@matthewjasper`
match lowering: eagerly simplify match pairs
This removes one important complication from match lowering. Before this, match pair simplification (which includes collecting bindings and type ascriptions) was intertwined with the whole match lowering algorithm.
I'm avoiding this by storing in each `MatchPair` the sub-`MatchPair`s that correspond to its subfields. This makes it possible to simplify everything (except or-patterns) in `Candidate::new()`.
This should open up further simplifications. It will also give us proper control over the order of bindings.
r? `@matthewjasper`
I have a suspicion that quite a few delayed bug paths are impossible to
reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite,
then converted back every `bug` that was hit. A surprising number were
never hit.
The next commit will convert some more back, based on human judgment.
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
The moment we get a candidate without guard, the return block becomes a
fresh block linked to nothing. So we can keep assigning a fresh block
every iteration to reuse the `next_prebinding` logic.
errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
This mostly works well, and eliminates a couple of delayed bugs.
One annoying thing is that we should really also add an
`ErrorGuaranteed` to `proc_macro::bridge::LitKind::Err`. But that's
difficult because `proc_macro` doesn't have access to `ErrorGuaranteed`,
so we have to fake it.
Continue compilation after check_mod_type_wf errors
The ICEs fixed here were probably reachable through const eval gymnastics before, but now they are easily reachable without that, too.
The new errors are often bugfixes, where useful errors were missing, because they were reported after the early abort. In other cases sometimes they are just duplication of already emitted errors, which won't be user-visible due to deduplication.
fixes https://github.com/rust-lang/rust/issues/120860
For some cases where it's clear that an error has already occurred,
e.g.:
- there's a comment stating exactly that, or
- things like HIR lowering, where we are lowering an error kind
The commit also tweaks some comments around delayed bug sites.
match lowering: simplify block creation
Match lowering was doing complicated things with block creation. As far as I can tell it was trying to avoid creating unneeded blocks, but of the three places that start out with `otherwise = &mut None`, two of them called `otherwise.unwrap_or_else(|| self.cfg.start_new_block())` anyway. As far as I can tell the only place where this PR makes a difference is in `lower_match_tree`, which did indeed sometimes avoid creating the unreachable final block + FakeRead. Unless this is important I propose we do the naive thing instead.
I have not checked all the graph isomorphisms by hand, but at a glance the test diff looks sensible.
r? `@matthewjasper`
Dejargonize `subst`
In favor of #110793, replace almost every occurence of `subst` and `substitution` from rustc codes, but they still remains in subtrees under `src/tools/` like clippy and test codes (I'd like to replace them after this)
These crates all needed specialization for `newtype_index!`, which will no
longer be necessary when the current nightly eventually becomes the next
bootstrap compiler.
Fix more `ty::Error` ICEs in MIR passes
Fixes#120791 - Add a check for `ty::Error` in the `ByMove` coroutine pass
Fixes#120816 - Add a check for `ty::Error` in the MIR validator
Also a drive-by fix for a FIXME I had asked oli to add
r? oli-obk
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
Make `min_exhaustive_patterns` match `exhaustive_patterns` better
Split off from https://github.com/rust-lang/rust/pull/120742.
There remained two edge cases where `min_exhaustive_patterns` wasn't behaving like `exhaustive_patterns`. This fixes them, and tests the feature in a bunch more cases. I essentially went through all uses of `exhaustive_patterns` to see which ones would be interesting to compare between the two features.
r? `@compiler-errors`
Rollup of 9 pull requests
Successful merges:
- #119592 (resolve: Unload speculatively resolved crates before freezing cstore)
- #120103 (Make it so that async-fn-in-trait is compatible with a concrete future in implementation)
- #120206 (hir: Make sure all `HirId`s have corresponding HIR `Node`s)
- #120214 (match lowering: consistently lower bindings deepest-first)
- #120688 (GVN: also turn moves into copies with projections)
- #120702 (docs: also check the inline stmt during redundant link check)
- #120727 (exhaustiveness: Prefer "`0..MAX` not covered" to "`_` not covered")
- #120734 (Add `SubdiagnosticMessageOp` as a trait alias.)
- #120739 (improve pretty printing for associated items in trait objects)
r? `@ghost`
`@rustbot` modify labels: rollup
match lowering: consistently lower bindings deepest-first
Currently when lowering match expressions to MIR, we do a funny little dance with the order of bindings. I attempt to explain it in the third commit: we handle refutable (i.e. needing a test) patterns differently than irrefutable ones. This leads to inconsistencies, as reported in https://github.com/rust-lang/rust/issues/120210. The reason we need a dance at all is for situations like:
```rust
fn foo1(x: NonCopyStruct) {
let y @ NonCopyStruct { copy_field: z } = x;
// the above should turn into
let z = x.copy_field;
let y = x;
}
```
Here the `y ```````@```````` binding will move out of `x`, so we need to copy the field first.
I believe that the inconsistency came about when we fixed https://github.com/rust-lang/rust/issues/69971, and didn't notice that the fix didn't extend to refutable patterns. My guess then is that ordering bindings by "deepest-first, otherwise source order" is a sound choice. This PR implements that (at least I hope, match lowering is hard to follow 🥲).
Fixes https://github.com/rust-lang/rust/issues/120210
r? ```````@oli-obk``````` since you merged the original fix to https://github.com/rust-lang/rust/issues/69971
cc ```````@matthewjasper```````
update indirect structural match lints to match RFC and to show up for dependencies
This is a large step towards implementing https://github.com/rust-lang/rfcs/pull/3535.
We currently have five lints related to "the structural match situation":
- nontrivial_structural_match
- indirect_structural_match
- pointer_structural_match
- const_patterns_without_partial_eq
- illegal_floating_point_literal_pattern
This PR concerns the first 3 of them. (The 4th already is set up to show for dependencies, and the 5th is removed by https://github.com/rust-lang/rust/pull/116284.) nontrivial_structural_match is being removed as per the RFC; the other two are enabled to show up in dependencies.
Fixes https://github.com/rust-lang/rust/issues/73448 by removing the affected analysis.
pattern_analysis: use a plain `Vec` in `DeconstructedPat`
The use of an arena-allocated slice in `DeconstructedPat` dates to when we needed the arena anyway for lifetime reasons. Now that we don't, I'm thinking that if `thir::Pat` can use plain old `Vec`s, maybe so can I.
r? ```@ghost```
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
make matching on NaN a hard error, and remove the rest of illegal_floating_point_literal_pattern
These arms would never be hit anyway, so the pattern makes little sense. We have had a future-compat lint against float matches in general for a *long* time, so I hope we can get away with immediately making this a hard error.
This is part of implementing https://github.com/rust-lang/rfcs/pull/3535.
Closes https://github.com/rust-lang/rust/issues/41620 by removing the lint.
https://github.com/rust-lang/reference/pull/1456 updates the reference to match.
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Borrow check inline const patterns
Add type annotations to MIR so that borrowck can pass constraints from inline constants in patterns to the containing function.
Also enables some inline constant pattern tests that were fixed by the THIR unsafeck stabilization.
cc #76001
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Remove unused/unnecessary features
~~The bulk of the actual code changes here is replacing try blocks with equivalent closures. I'm not entirely sure that's a good idea since it may have perf impact, happy to revert if that's the case/the change is unwanted.~~
I also removed a lot of `recursion_limit = "256"` since everything seems to build fine without that and most don't have any comment justifying it.
remove StructuralEq trait
The documentation given for the trait is outdated: *all* function pointers implement `PartialEq` and `Eq` these days. So the `StructuralEq` trait doesn't really seem to have any reason to exist any more.
One side-effect of this PR is that we allow matching on some consts that do not implement `Eq`. However, we already allowed matching on floats and consts containing floats, so this is not new, it is just allowed in more cases now. IMO it makes no sense at all to allow float matching but also sometimes require an `Eq` instance. If we want to require `Eq` we should adjust https://github.com/rust-lang/rust/pull/115893 to check for `Eq`, and rule out float matching for good.
Fixes https://github.com/rust-lang/rust/issues/115881
Rollup of 10 pull requests
Successful merges:
- #117910 (Refactor uses of `objc_msgSend` to no longer have clashing definitions)
- #118639 (Undeprecate lint `unstable_features` and make use of it in the compiler)
- #119801 (Fix deallocation with wrong allocator in (A)Rc::from_box_in)
- #120058 (bootstrap: improvements for compiler builds)
- #120059 (Make generic const type mismatches not hide trait impls from the trait solver)
- #120097 (Report unreachable subpatterns consistently)
- #120137 (Validate AggregateKind types in MIR)
- #120164 (`maybe_lint_impl_trait`: separate `is_downgradable` from `is_object_safe`)
- #120181 (Allow any `const` expression blocks in `thread_local!`)
- #120218 (rustfmt: Check that a token can begin a nonterminal kind before parsing it as a macro arg)
r? `@ghost`
`@rustbot` modify labels: rollup
Report unreachable subpatterns consistently
We weren't reporting unreachable subpatterns in function arguments and `let` expressions. This wasn't very important, but never patterns make it more relevant: a user might write `let (Ok(x) | Err(!)) = ...` in a case where `let Ok(x) = ...` is accepted, so we should report the `Err(!)` as redundant.
r? ```@compiler-errors```
Pack u128 in the compiler to mitigate new alignment
This is based on #116672, adding a new `#[repr(packed(8))]` wrapper on `u128` to avoid changing any of the compiler's size assertions. This is needed in two places:
* `SwitchTargets`, otherwise its `SmallVec<[u128; 1]>` gets padded up to 32 bytes.
* `LitKind::Int`, so that entire `enum` can stay 24 bytes.
* This change definitely has far-reaching effects though, since it's public.
never_patterns: typecheck never patterns
This checks that a `!` pattern is only used on an uninhabited type (modulo match ergonomics, i.e. `!` is allowed on `&Void`).
r? `@compiler-errors`
Exhaustiveness: simplify empty pattern logic
The logic that handles empty patterns had gotten quite convoluted. This PR simplifies it a lot. I tried to make the logic as easy as possible to follow; this only does logically equivalent changes.
The first commit is a drive-by comment clarification that was requested after another PR a while back.
r? `@compiler-errors`
Simplify `closure_env_ty` and `closure_env_param`
Random cleanup that I found when working on async closures. This makes it easier to separate the latter into a new tykind.
Use `zip_eq` to enforce that things being zipped have equal sizes
Some `zip`s are best enforced to be equal, since size mismatches suggest deeper bugs in the compiler.
We have `span_delayed_bug` and often pass it a `DUMMY_SP`. This commit
adds `delayed_bug`, which matches pairs like `err`/`span_err` and
`warn`/`span_warn`.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
Exhaustiveness: Statically enforce revealing of opaques
In https://github.com/rust-lang/rust/pull/116821 it was decided that exhaustiveness should operate on the hidden type of an opaque type when relevant. This PR makes sure we consistently reveal opaques within exhaustiveness. This makes it possible to remove `reveal_opaque_ty` from the `TypeCx` trait which was an unfortunate implementation detail.
r? `@compiler-errors`
Check yield terminator's resume type in borrowck
In borrowck, we didn't check that the lifetimes of the `TerminatorKind::Yield`'s `resume_place` were actually compatible with the coroutine's signature. That means that the lifetimes were totally going unchecked. Whoops!
This PR implements this checking.
Fixes#119564
r? types
Fix scoping for let chains in match guards
If let guards were previously represented as a different type of guard in HIR and THIR. This meant that let chains in match guards were not handled correctly because they were treated exactly like normal guards.
- Remove `hir::Guard` and `thir::Guard`.
- Make the scoping different between normal guards and if let guards also check for let chains.
closes#118593
Match guards with an if let guard or an if let chain guard should have a
temporary scope of the whole arm. This is to allow ref bindings to
temporaries to borrow check.
custom mir: make it clear what the return block is
Custom MIR recently got support for specifying the "unwind action", so now there's two things coming after the actual call part of `Call` terminators. That's not very self-explaining so I propose we change the syntax to imitate keyword arguments:
```
Call(popped = Vec::pop(v), ReturnTo(drop), UnwindContinue())
```
Also fix some outdated docs and add some docs to `Call` and `Drop`.
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
Clean up some lifetimes in `rustc_pattern_analysis`
This PR removes some redundant lifetimes. I figured out that we were shortening the lifetime of an arena-allocated `&'p DeconstructedPat<'p>` to `'a DeconstructedPat<'p>`, which forced us to carry both lifetimes when we could otherwise carry just one.
This PR also removes and elides some unnecessary lifetimes.
I also cherry-picked 0292eb9bb9b897f5c0926c6a8530877f67e7cc9b, and then simplified more lifetimes in `MatchVisitor`, which should make #119233 a very simple PR!
r? Nadrieril
Remove `DiagCtxt` API duplication
`DiagCtxt` defines the internal API for creating and emitting diagnostics: methods like `struct_err`, `struct_span_warn`, `note`, `create_fatal`, `emit_bug`. There are over 50 methods.
Some of these methods are then duplicated across several other types: `Session`, `ParseSess`, `Parser`, `ExtCtxt`, and `MirBorrowckCtxt`. `Session` duplicates the most, though half the ones it does are unused. Each duplicated method just calls forward to the corresponding method in `DiagCtxt`. So this duplication exists to (in the best case) shorten chains like `ecx.tcx.sess.parse_sess.dcx.emit_err()` to `ecx.emit_err()`.
This API duplication is ugly and has been bugging me for a while. And it's inconsistent: there's no real logic about which methods are duplicated, and the use of `#[rustc_lint_diagnostic]` and `#[track_caller]` attributes vary across the duplicates.
This PR removes the duplicated API methods and makes all diagnostic creation and emission go through `DiagCtxt`. It also adds `dcx` getter methods to several types to shorten chains. This approach scales *much* better than API duplication; indeed, the PR adds `dcx()` to numerous types that didn't have API duplication: `TyCtxt`, `LoweringCtxt`, `ConstCx`, `FnCtxt`, `TypeErrCtxt`, `InferCtxt`, `CrateLoader`, `CheckAttrVisitor`, and `Resolver`. These result in a lot of changes from `foo.tcx.sess.emit_err()` to `foo.dcx().emit_err()`. (You could do this with more types, but it gets into diminishing returns territory for types that don't emit many diagnostics.)
After all these changes, some call sites are more verbose, some are less verbose, and many are the same. The total number of lines is reduced, mostly because of the removed API duplication. And consistency is increased, because calls to `emit_err` and friends are always preceded with `.dcx()` or `.dcx`.
r? `@compiler-errors`
Give temporaries in if let guards correct scopes
Temporaries in if-let guards have scopes that escape the match arm, this causes problems because the drops might be for temporaries that are not storage live. This PR changes the scope of temporaries in if-let guards to be limited to the arm:
```rust
_ if let Some(s) = std::convert::identity(&Some(String::new())) => {}
// Temporary for Some(String::new()) is dropped here ^
```
We also now deduplicate temporaries between copies of the guard created for or-patterns:
```rust
// Only create a single Some(String::new()) temporary variable
_ | _ if let Some(s) = std::convert::identity(&Some(String::new())) => {}
```
This changes MIR building to pass around `ExprId`s rather than `Expr`s so that we have a way to index different expressions.
cc #51114Closes#116079
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Exhaustiveness: reveal opaque types properly
Previously, exhaustiveness had no clear policy around opaque types. In this PR I propose the following policy: within the body of an item that defines the hidden type of some opaque type, exhaustiveness checking on a value of that opaque type is performed using the concrete hidden type inferred in this body.
I'm not sure how consistent this is with other operations allowed on opaque types; I believe this will require FCP.
From what I can tell, this doesn't change anything for non-empty types.
The observable changes are:
- when the real type is uninhabited, matches within the defining scopes can now rely on that for exhaustiveness, e.g.:
```rust
#[derive(Copy, Clone)]
enum Void {}
fn return_never_rpit(x: Void) -> impl Copy {
if false {
match return_never_rpit(x) {}
}
x
}
```
- this properly fixes ICEs like https://github.com/rust-lang/rust/issues/117100 that occurred because a same match could have some patterns where the type is revealed and some where it is not.
Bonus subtle point: if `x` is opaque, a match like `match x { ("", "") => {} ... }` will constrain its type ([playground](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=901d715330eac40339b4016ac566d6c3)). This is not the case for `match x {}`: this will not constain the type, and will only compile if something else constrains the type to be empty.
Fixes https://github.com/rust-lang/rust/issues/117100
r? `@oli-obk`
Edited for precision of the wording
[Included](https://github.com/rust-lang/rust/pull/116821#issuecomment-1813171764) in the FCP on this PR is this rule:
> Within the body of an item that defines the hidden type of some opaque type, exhaustiveness checking on a value of that opaque type is performed using the concrete hidden type inferred in this body.
- Make temporaries in if-let guards be the same variable in MIR when
the guard is duplicated due to or-patterns.
- Change the "destruction scope" for match arms to be the arm scope rather
than the arm body scope.
- Add tests.
match lowering: Remove the `make_target_blocks` hack
This hack was introduced 4 years ago in [`a1d0266` (#60730)](a1d0266878) to improve LLVM optimization time, specifically noticed in the `encoding` benchmark. Measurements today indicate it is no longer needed.
r? `@matthewjasper`
Make exhaustiveness usable outside of rustc
With this PR, `rustc_pattern_analysis` compiles on stable (with the `stable` feature)! `rust-analyzer` will be able to use it to provide match-related diagnostics and refactors.
Two questions:
- Should I name the feature `nightly` instead of `rustc` for consistency with other crates? `rustc` makes more sense imo.
- `typed-arena` is an optional dependency but tidy made me add it to the allow-list anyway. Can I avoid that somehow?
r? `@compiler-errors`
And make all hand-written `IntoDiagnostic` impls generic, by using
`DiagnosticBuilder::new(dcx, level, ...)` instead of e.g.
`dcx.struct_err(...)`.
This means the `create_*` functions are the source of the error level.
This change will let us remove `struct_diagnostic`.
Note: `#[rustc_lint_diagnostics]` is added to `DiagnosticBuilder::new`,
it's necessary to pass diagnostics tests now that it's used in
`into_diagnostic` functions.
Annotate some bugs
Gives a semi-helpful message to some `bug!()`/`unreachable!()`/`panic!()`. This also works around some other bugs/panics/etc that weren't needed, and also makes some of them into `span_bug!`s so they also have a useful span.
Note to reviewer: best to disable whitespace when comparing for some cases where indentation changed.
cc #118955
rustc_mir_build: Enforce `rustc::potential_query_instability` lint
Stop allowing `rustc::potential_query_instability` on all of `rustc_mir_build` and instead allow it on a case-by-case basis if it is safe to do so. In this crate there was only one instance of the lint, and it was safe to allow.
Part of https://github.com/rust-lang/rust/issues/84447 which is E-help-wanted.
Stop allowing `rustc::potential_query_instability` on all of
`rustc_mir_build` and instead allow it on a case-by-case basis if it is
safe to do so. In this crate there was no instance of the lint
remaining.
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
Extract exhaustiveness into its own crate
It now makes sense to extract exhaustiveness into its own crate! This was much-requested by rust-analyzer (they currently maintain by hand a copy of the algorithm), and I hope this can serve other projects e.g. clippy.
This is the churny PR: it exclusively moves code around. It's not yet useable outside of rustc but I wanted the churny parts to be out of the way.
r? `@compiler-errors`
remove redundant imports
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and removing redundant imports code into two PR.
r? `@petrochenkov`
Don't print host effect param in pretty `path_generic_args`
Make `own_args_no_defaults` pass back the `GenericParamDef`, so that we can pass both the args *and* param definitions into `path_generic_args`. That allows us to use the `GenericParamDef` to filter out effect params.
This allows us to filter out the host param regardless of whether it's `sym::host` or `true`/`false`.
This also renames a couple of `const_effect_param` -> `host_effect_param`, and restores `~const` pretty printing to `TraitPredPrintModifiersAndPath`.
cc #118785
r? `@fee1-dead` cc `@oli-obk`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Don't warn an empty pattern unreachable if we're not sure the data is valid
Exhaustiveness checking used to be naive about the possibility of a place containing invalid data. This could cause it to emit an "unreachable pattern" lint on an arm that was in fact reachable, as in https://github.com/rust-lang/rust/issues/117119.
This PR fixes that. We now track whether a place that is matched on may hold invalid data. This also forced me to be extra precise about how exhaustiveness manages empty types.
Note that this now errs in the opposite direction: the following arm is truly unreachable (because the binding causes a read of the value) but not linted as such. I'd rather not recommend writing a `match ... {}` that has the implicit side-effect of loading the value. [Never patterns](https://github.com/rust-lang/rust/issues/118155) will solve this cleanly.
```rust
match union.value {
_x => unreachable!(),
}
```
I recommend reviewing commit by commit. I went all-in on the test suite because this went through a lot of iterations and I kept everything. The bit I'm least confident in is `is_known_valid_scrutinee` in `check_match.rs`.
Fixes https://github.com/rust-lang/rust/issues/117119.
- `ConstructorSet` knows about both empty and nonempty constructors;
- If an empty constructor is present in the column, we output it in
`split().present`.
When MIR is built for an if-not expression, the `!` part of the condition
doesn't correspond to any MIR statement, so coverage instrumentation normally
can't see it.
We can fix that by deliberately injecting a dummy statement whose sole purpose
is to associate that span with its enclosing block.
There are cases where coverage instrumentation wants to show a span for some
syntax element, but there is no MIR node that naturally carries that span, so
the instrumentor can't see it.
MIR building can now use this new kind of coverage statement to deliberately
include those spans in MIR, attached to a dummy statement that has no other
effect.
Remove the `precise_pointer_size_matching` feature gate
`usize` and `isize` are special for pattern matching because their range might depend on the platform. To make code portable across platforms, the following is never considered exhaustive:
```rust
let x: usize = ...;
match x {
0..=18446744073709551615 => {}
}
```
Because of how rust handles constants, this also unfortunately counts `0..=usize::MAX` as non-exhaustive. The [`precise_pointer_size_matching`](https://github.com/rust-lang/rust/issues/56354) feature gate was introduced both for this convenience and for the possibility that the lang team could decide to allow the above.
Since then, [half-open range patterns](https://github.com/rust-lang/rust/issues/67264) have been implemented, and since #116692 they correctly support `usize`/`isize`:
```rust
match 0usize { // exhaustive!
0..5 => {}
5.. => {}
}
```
I believe this subsumes all the use cases of the feature gate. Moreover no attempt has been made to stabilize it in the 5 years of its existence. I therefore propose we retire this feature gate.
Closes https://github.com/rust-lang/rust/issues/56354
Exhaustiveness: allocate memory better
Exhaustiveness is a recursive algorithm that allocates a bunch of slices at every step. Let's see if I can improve performance by improving allocations.
Already just using `Vec::with_capacity` is showing impressive improvements on my local measurements.
r? `@ghost`
Fix `PartialEq` args when `#[const_trait]` is enabled
This is based off of your PR that enforces effects on all methods, so just see the last commits.
r? fee1-dead
Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
effects: Run `enforce_context_effects` for all method calls
So that we also perform checks when overloaded `PartialEq`s are called.
r? `@compiler-errors`
Rewrite exhaustiveness in one pass
This is at least my 4th attempt at this in as many years x) Previous attempts were all too complicated or too slow. But we're finally here!
The previous version of the exhaustiveness algorithm computed reachability for each arm then exhaustiveness of the whole match. Since each of these steps does roughly the same things, this rewrites the algorithm to do them all in one go. I also think this makes things much simpler.
I also rewrote the documentation of the algorithm in depth. Hopefully it's up-to-date and easier to follow now. Plz comment if anything's unclear.
r? `@oli-obk` I think you're one of the rare other people to understand the exhaustiveness algorithm?
cc `@varkor` I know you're not active anymore, but if you feel like having a look you might enjoy this :D
Fixes https://github.com/rust-lang/rust/issues/79307
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
This disentangles the row-specific tracking of `parent_row` etc from the
logical operation of specialization. This means `wildcard_row` doesn't
need to provide dummy values for `parent_row` etc anymore.
interpret: simplify handling of shifts by no longer trying to handle signed and unsigned shift amounts in the same branch
While we're at it, also update comments in codegen and MIR building related to shifts, and fix the overflow error printed by Miri on negative shift amounts.
Build pre-coroutine-transform coroutine body on error
I was accidentally building the post-transform coroutine body, rather than the pre-transform coroutine body. There's no pinning expected here yet, and the return type isn't yet transformed into `CoroutineState`.
Fixes#117670
Custom MIR: Support cleanup blocks
Cleanup blocks are declared with `bb (cleanup) = { ... }`.
`Call` and `Drop` terminators take an additional argument describing the unwind action, which is one of the following:
* `UnwindContinue()`
* `UnwindUnreachable()`
* `UnwindTerminate(reason)`, where reason is `ReasonAbi` or `ReasonInCleanup`
* `UnwindCleanup(block)`
Also support unwind resume and unwind terminate terminators:
* `UnwindResume()`
* `UnwindTerminate(reason)`
Cleanup blocks are declared with `bb (cleanup) = { ... }`.
`Call` and `Drop` terminators take an additional argument describing the
unwind action, which is one of the following:
* `UnwindContinue()`
* `UnwindUnreachable()`
* `UnwindTerminate(reason)`, where reason is `ReasonAbi` or `ReasonInCleanup`
* `UnwindCleanup(block)`
Also support unwind resume and unwind terminate terminators:
* `UnwindResume()`
* `UnwindTerminate(reason)`