Rollup merge of #121820 - Nadrieril:idxpat2, r=compiler-errors

pattern analysis: Store field indices in `DeconstructedPat` to avoid virtual wildcards

For a pattern like `Struct { field3: true, .. }`, in pattern analysis we represent it as `Struct { field1: _, field2: _, field3: true, field4: _ }`. This PR makes it so we store `Struct { field3: true, .. }` instead. This means we never have to create fake `_` patterns during lowering.

r? ``@compiler-errors``
This commit is contained in:
Matthias Krüger 2024-03-13 06:41:20 +01:00 committed by GitHub
commit 1b198ba9fe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 143 additions and 98 deletions

View File

@ -420,9 +420,9 @@ impl<'p, 'tcx> MatchVisitor<'p, 'tcx> {
{
let mut redundant_subpats = redundant_subpats.clone();
// Emit lints in the order in which they occur in the file.
redundant_subpats.sort_unstable_by_key(|pat| pat.data().unwrap().span);
redundant_subpats.sort_unstable_by_key(|pat| pat.data().span);
for pat in redundant_subpats {
report_unreachable_pattern(cx, arm.arm_data, pat.data().unwrap().span, None)
report_unreachable_pattern(cx, arm.arm_data, pat.data().span, None)
}
}
}
@ -905,10 +905,10 @@ fn report_arm_reachability<'p, 'tcx>(
let mut catchall = None;
for (arm, is_useful) in report.arm_usefulness.iter() {
if matches!(is_useful, Usefulness::Redundant) {
report_unreachable_pattern(cx, arm.arm_data, arm.pat.data().unwrap().span, catchall)
report_unreachable_pattern(cx, arm.arm_data, arm.pat.data().span, catchall)
}
if !arm.has_guard && catchall.is_none() && pat_is_catchall(arm.pat) {
catchall = Some(arm.pat.data().unwrap().span);
catchall = Some(arm.pat.data().span);
}
}
}
@ -917,7 +917,9 @@ fn report_arm_reachability<'p, 'tcx>(
fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool {
match pat.ctor() {
Constructor::Wildcard => true,
Constructor::Struct | Constructor::Ref => pat.iter_fields().all(|pat| pat_is_catchall(pat)),
Constructor::Struct | Constructor::Ref => {
pat.iter_fields().all(|ipat| pat_is_catchall(&ipat.pat))
}
_ => false,
}
}

View File

@ -423,7 +423,7 @@ pub enum SliceKind {
}
impl SliceKind {
fn arity(self) -> usize {
pub fn arity(self) -> usize {
match self {
FixedLen(length) => length,
VarLen(prefix, suffix) => prefix + suffix,
@ -462,7 +462,7 @@ impl Slice {
Slice { array_len, kind }
}
pub(crate) fn arity(self) -> usize {
pub fn arity(self) -> usize {
self.kind.arity()
}

View File

@ -98,7 +98,7 @@ pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
};
use rustc_errors::LintDiagnostic;
let mut err = rcx.tcx.dcx().struct_span_warn(arm.pat.data().unwrap().span, "");
let mut err = rcx.tcx.dcx().struct_span_warn(arm.pat.data().span, "");
err.primary_message(decorator.msg());
decorator.decorate_lint(&mut err);
err.emit();

View File

@ -20,32 +20,42 @@ impl PatId {
}
}
/// A pattern with an index denoting which field it corresponds to.
pub struct IndexedPat<Cx: TypeCx> {
pub idx: usize,
pub pat: DeconstructedPat<Cx>,
}
/// Values and patterns can be represented as a constructor applied to some fields. This represents
/// a pattern in this form. A `DeconstructedPat` will almost always come from user input; the only
/// exception are some `Wildcard`s introduced during pattern lowering.
pub struct DeconstructedPat<Cx: TypeCx> {
ctor: Constructor<Cx>,
fields: Vec<DeconstructedPat<Cx>>,
fields: Vec<IndexedPat<Cx>>,
/// The number of fields in this pattern. E.g. if the pattern is `SomeStruct { field12: true, ..
/// }` this would be the total number of fields of the struct.
/// This is also the same as `self.ctor.arity(self.ty)`.
arity: usize,
ty: Cx::Ty,
/// Extra data to store in a pattern. `None` if the pattern is a wildcard that does not
/// correspond to a user-supplied pattern.
data: Option<Cx::PatData>,
/// Extra data to store in a pattern.
data: Cx::PatData,
/// Globally-unique id used to track usefulness at the level of subpatterns.
pub(crate) uid: PatId,
}
impl<Cx: TypeCx> DeconstructedPat<Cx> {
pub fn wildcard(ty: Cx::Ty) -> Self {
DeconstructedPat { ctor: Wildcard, fields: Vec::new(), ty, data: None, uid: PatId::new() }
}
pub fn new(
ctor: Constructor<Cx>,
fields: Vec<DeconstructedPat<Cx>>,
fields: Vec<IndexedPat<Cx>>,
arity: usize,
ty: Cx::Ty,
data: Cx::PatData,
) -> Self {
DeconstructedPat { ctor, fields, ty, data: Some(data), uid: PatId::new() }
DeconstructedPat { ctor, fields, arity, ty, data, uid: PatId::new() }
}
pub fn at_index(self, idx: usize) -> IndexedPat<Cx> {
IndexedPat { idx, pat: self }
}
pub(crate) fn is_or_pat(&self) -> bool {
@ -58,13 +68,15 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> {
pub fn ty(&self) -> &Cx::Ty {
&self.ty
}
/// Returns the extra data stored in a pattern. Returns `None` if the pattern is a wildcard that
/// does not correspond to a user-supplied pattern.
pub fn data(&self) -> Option<&Cx::PatData> {
self.data.as_ref()
/// Returns the extra data stored in a pattern.
pub fn data(&self) -> &Cx::PatData {
&self.data
}
pub fn arity(&self) -> usize {
self.arity
}
pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a DeconstructedPat<Cx>> {
pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a IndexedPat<Cx>> {
self.fields.iter()
}
@ -73,36 +85,40 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> {
pub(crate) fn specialize<'a>(
&'a self,
other_ctor: &Constructor<Cx>,
ctor_arity: usize,
other_ctor_arity: usize,
) -> SmallVec<[PatOrWild<'a, Cx>; 2]> {
let wildcard_sub_tys = || (0..ctor_arity).map(|_| PatOrWild::Wild).collect();
match (&self.ctor, other_ctor) {
// Return a wildcard for each field of `other_ctor`.
(Wildcard, _) => wildcard_sub_tys(),
if matches!(other_ctor, PrivateUninhabited) {
// Skip this column.
(_, PrivateUninhabited) => smallvec![],
// The only non-trivial case: two slices of different arity. `other_slice` is
// guaranteed to have a larger arity, so we fill the middle part with enough
// wildcards to reach the length of the new, larger slice.
(
&Slice(self_slice @ Slice { kind: SliceKind::VarLen(prefix, suffix), .. }),
&Slice(other_slice),
) if self_slice.arity() != other_slice.arity() => {
// Start with a slice of wildcards of the appropriate length.
let mut fields: SmallVec<[_; 2]> = wildcard_sub_tys();
// Fill in the fields from both ends.
let new_arity = fields.len();
for i in 0..prefix {
fields[i] = PatOrWild::Pat(&self.fields[i]);
}
for i in 0..suffix {
fields[new_arity - 1 - i] =
PatOrWild::Pat(&self.fields[self.fields.len() - 1 - i]);
}
fields
}
_ => self.fields.iter().map(PatOrWild::Pat).collect(),
return smallvec![];
}
// Start with a slice of wildcards of the appropriate length.
let mut fields: SmallVec<[_; 2]> = (0..other_ctor_arity).map(|_| PatOrWild::Wild).collect();
// Fill `fields` with our fields. The arities are known to be compatible.
match self.ctor {
// The only non-trivial case: two slices of different arity. `other_ctor` is guaranteed
// to have a larger arity, so we adjust the indices of the patterns in the suffix so
// that they are correctly positioned in the larger slice.
Slice(Slice { kind: SliceKind::VarLen(prefix, _), .. })
if self.arity != other_ctor_arity =>
{
for ipat in &self.fields {
let new_idx = if ipat.idx < prefix {
ipat.idx
} else {
// Adjust the indices in the suffix.
ipat.idx + other_ctor_arity - self.arity
};
fields[new_idx] = PatOrWild::Pat(&ipat.pat);
}
}
_ => {
for ipat in &self.fields {
fields[ipat.idx] = PatOrWild::Pat(&ipat.pat);
}
}
}
fields
}
/// Walk top-down and call `it` in each place where a pattern occurs
@ -114,7 +130,7 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> {
}
for p in self.iter_fields() {
p.walk(it)
p.pat.walk(it)
}
}
}
@ -134,6 +150,11 @@ impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
};
let mut start_or_comma = || start_or_continue(", ");
let mut fields: Vec<_> = (0..self.arity).map(|_| PatOrWild::Wild).collect();
for ipat in self.iter_fields() {
fields[ipat.idx] = PatOrWild::Pat(&ipat.pat);
}
match pat.ctor() {
Struct | Variant(_) | UnionField => {
Cx::write_variant_name(f, pat)?;
@ -141,7 +162,7 @@ impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
// get the names of the fields. Instead we just display everything as a tuple
// struct, which should be good enough.
write!(f, "(")?;
for p in pat.iter_fields() {
for p in fields {
write!(f, "{}", start_or_comma())?;
write!(f, "{p:?}")?;
}
@ -151,25 +172,23 @@ impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
// be careful to detect strings here. However a string literal pattern will never
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
Ref => {
let subpattern = pat.iter_fields().next().unwrap();
write!(f, "&{:?}", subpattern)
write!(f, "&{:?}", &fields[0])
}
Slice(slice) => {
let mut subpatterns = pat.iter_fields();
write!(f, "[")?;
match slice.kind {
SliceKind::FixedLen(_) => {
for p in subpatterns {
for p in fields {
write!(f, "{}{:?}", start_or_comma(), p)?;
}
}
SliceKind::VarLen(prefix_len, _) => {
for p in subpatterns.by_ref().take(prefix_len) {
for p in &fields[..prefix_len] {
write!(f, "{}{:?}", start_or_comma(), p)?;
}
write!(f, "{}", start_or_comma())?;
write!(f, "..")?;
for p in subpatterns {
for p in &fields[prefix_len..] {
write!(f, "{}{:?}", start_or_comma(), p)?;
}
}
@ -184,7 +203,7 @@ impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
Str(value) => write!(f, "{value:?}"),
Opaque(..) => write!(f, "<constant pattern>"),
Or => {
for pat in pat.iter_fields() {
for pat in fields {
write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
}
Ok(())
@ -242,9 +261,10 @@ impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> {
/// Expand this (possibly-nested) or-pattern into its alternatives.
pub(crate) fn flatten_or_pat(self) -> SmallVec<[Self; 1]> {
match self {
PatOrWild::Pat(pat) if pat.is_or_pat() => {
pat.iter_fields().flat_map(|p| PatOrWild::Pat(p).flatten_or_pat()).collect()
}
PatOrWild::Pat(pat) if pat.is_or_pat() => pat
.iter_fields()
.flat_map(|ipat| PatOrWild::Pat(&ipat.pat).flatten_or_pat())
.collect(),
_ => smallvec![self],
}
}

View File

@ -445,7 +445,8 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
let cx = self;
let ty = cx.reveal_opaque_ty(pat.ty);
let ctor;
let mut fields: Vec<_>;
let arity;
let fields: Vec<_>;
match &pat.kind {
PatKind::AscribeUserType { subpattern, .. }
| PatKind::InlineConstant { subpattern, .. } => return self.lower_pat(subpattern),
@ -453,9 +454,11 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
ctor = Wildcard;
fields = vec![];
arity = 0;
}
PatKind::Deref { subpattern } => {
fields = vec![self.lower_pat(subpattern)];
fields = vec![self.lower_pat(subpattern).at_index(0)];
arity = 1;
ctor = match ty.kind() {
// This is a box pattern.
ty::Adt(adt, ..) if adt.is_box() => Struct,
@ -467,16 +470,13 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
match ty.kind() {
ty::Tuple(fs) => {
ctor = Struct;
fields = fs
arity = fs.len();
fields = subpatterns
.iter()
.map(|ty| cx.reveal_opaque_ty(ty))
.map(|ty| DeconstructedPat::wildcard(ty))
.map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
.collect();
for pat in subpatterns {
fields[pat.field.index()] = self.lower_pat(&pat.pattern);
}
}
ty::Adt(adt, args) if adt.is_box() => {
ty::Adt(adt, _) if adt.is_box() => {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
@ -490,13 +490,13 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
// solution when we introduce generalized deref patterns. Also need to
// prevent mixing of those two options.
let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
let pat = if let Some(pat) = pattern {
self.lower_pat(&pat.pattern)
if let Some(pat) = pattern {
fields = vec![self.lower_pat(&pat.pattern).at_index(0)];
} else {
DeconstructedPat::wildcard(self.reveal_opaque_ty(args.type_at(0)))
};
fields = vec![];
}
ctor = Struct;
fields = vec![pat];
arity = 1;
}
ty::Adt(adt, _) => {
ctor = match pat.kind {
@ -507,13 +507,11 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
};
let variant =
&adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
fields = cx
.variant_sub_tys(ty, variant)
.map(|(_, ty)| DeconstructedPat::wildcard(ty))
arity = variant.fields.len();
fields = subpatterns
.iter()
.map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
.collect();
for pat in subpatterns {
fields[pat.field.index()] = self.lower_pat(&pat.pattern);
}
}
_ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, ty),
}
@ -526,6 +524,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Char | ty::Int(_) | ty::Uint(_) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
@ -542,6 +541,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Float(ty::FloatTy::F32) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
@ -553,6 +553,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Float(ty::FloatTy::F64) => {
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
@ -564,6 +565,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
None => Opaque(OpaqueId::new()),
};
fields = vec![];
arity = 0;
}
ty::Ref(_, t, _) if t.is_str() => {
// We want a `&str` constant to behave like a `Deref` pattern, to be compatible
@ -574,9 +576,10 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
// subfields.
// Note: `t` is `str`, not `&str`.
let ty = self.reveal_opaque_ty(*t);
let subpattern = DeconstructedPat::new(Str(*value), Vec::new(), ty, pat);
let subpattern = DeconstructedPat::new(Str(*value), Vec::new(), 0, ty, pat);
ctor = Ref;
fields = vec![subpattern]
fields = vec![subpattern.at_index(0)];
arity = 1;
}
// All constants that can be structurally matched have already been expanded
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
@ -584,6 +587,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
_ => {
ctor = Opaque(OpaqueId::new());
fields = vec![];
arity = 0;
}
}
}
@ -623,6 +627,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
_ => bug!("invalid type for range pattern: {}", ty.inner()),
};
fields = vec![];
arity = 0;
}
PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
let array_len = match ty.kind() {
@ -638,12 +643,25 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
SliceKind::FixedLen(prefix.len() + suffix.len())
};
ctor = Slice(Slice::new(array_len, kind));
fields = prefix.iter().chain(suffix.iter()).map(|p| self.lower_pat(&*p)).collect();
fields = prefix
.iter()
.chain(suffix.iter())
.map(|p| self.lower_pat(&*p))
.enumerate()
.map(|(i, p)| p.at_index(i))
.collect();
arity = kind.arity();
}
PatKind::Or { .. } => {
ctor = Or;
let pats = expand_or_pat(pat);
fields = pats.into_iter().map(|p| self.lower_pat(p)).collect();
fields = pats
.into_iter()
.map(|p| self.lower_pat(p))
.enumerate()
.map(|(i, p)| p.at_index(i))
.collect();
arity = fields.len();
}
PatKind::Never => {
// A never pattern matches all the values of its type (namely none). Moreover it
@ -651,13 +669,15 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
// `Result<!, !>` which has other constructors. Hence we lower it as a wildcard.
ctor = Wildcard;
fields = vec![];
arity = 0;
}
PatKind::Error(_) => {
ctor = Opaque(OpaqueId::new());
fields = vec![];
arity = 0;
}
}
DeconstructedPat::new(ctor, fields, ty, pat)
DeconstructedPat::new(ctor, fields, arity, ty, pat)
}
/// Convert back to a `thir::PatRangeBoundary` for diagnostic purposes.
@ -884,10 +904,10 @@ impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
let overlap_as_pat = self.hoist_pat_range(&overlaps_on, *pat.ty());
let overlaps: Vec<_> = overlaps_with
.iter()
.map(|pat| pat.data().unwrap().span)
.map(|pat| pat.data().span)
.map(|span| errors::Overlap { range: overlap_as_pat.clone(), span })
.collect();
let pat_span = pat.data().unwrap().span;
let pat_span = pat.data().span;
self.tcx.emit_node_span_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
self.match_lint_level,
@ -907,7 +927,7 @@ impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
gap: IntRange,
gapped_with: &[&crate::pat::DeconstructedPat<Self>],
) {
let Some(&thir_pat) = pat.data() else { return };
let &thir_pat = pat.data();
let thir::PatKind::Range(range) = &thir_pat.kind else { return };
// Only lint when the left range is an exclusive range.
if range.end != rustc_hir::RangeEnd::Excluded {
@ -955,7 +975,7 @@ impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
gap_with: gapped_with
.iter()
.map(|pat| errors::GappedRange {
span: pat.data().unwrap().span,
span: pat.data().span,
gap: gap_as_pat.clone(),
first_range: thir_pat.clone(),
})

View File

@ -1006,15 +1006,17 @@ impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
ctor_arity: usize,
ctor_is_relevant: bool,
) -> Result<PatStack<'p, Cx>, Cx::Error> {
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_pats = self.head().specialize(ctor, ctor_arity);
if new_pats.len() != ctor_arity {
let head_pat = self.head();
if head_pat.as_pat().is_some_and(|pat| pat.arity() > ctor_arity) {
// Arity can be smaller in case of variable-length slices, but mustn't be larger.
return Err(cx.bug(format_args!(
"uncaught type error: pattern {:?} has inconsistent arity (expected arity {ctor_arity})",
self.head().as_pat().unwrap()
"uncaught type error: pattern {:?} has inconsistent arity (expected arity <= {ctor_arity})",
head_pat.as_pat().unwrap()
)));
}
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_pats = head_pat.specialize(ctor, ctor_arity);
new_pats.extend_from_slice(&self.pats[1..]);
// `ctor` is relevant for this row if it is the actual constructor of this row, or if the
// row has a wildcard and `ctor` is relevant for wildcards.
@ -1706,7 +1708,8 @@ fn collect_pattern_usefulness<'p, Cx: TypeCx>(
) -> bool {
if useful_subpatterns.contains(&pat.uid) {
true
} else if pat.is_or_pat() && pat.iter_fields().any(|f| pat_is_useful(useful_subpatterns, f))
} else if pat.is_or_pat()
&& pat.iter_fields().any(|f| pat_is_useful(useful_subpatterns, &f.pat))
{
// We always expand or patterns in the matrix, so we will never see the actual
// or-pattern (the one with constructor `Or`) in the column. As such, it will not be