Auto merge of #118842 - Nadrieril:librarify-further, r=compiler-errors

Make exhaustiveness usable outside of rustc

With this PR, `rustc_pattern_analysis` compiles on stable (with the `stable` feature)! `rust-analyzer` will be able to use it to provide match-related diagnostics and refactors.

Two questions:
- Should I name the feature `nightly` instead of `rustc` for consistency with other crates? `rustc` makes more sense imo.
- `typed-arena` is an optional dependency but tidy made me add it to the allow-list anyway. Can I avoid that somehow?

r? `@compiler-errors`
This commit is contained in:
bors 2023-12-19 17:15:04 +00:00
commit 3a539c0889
14 changed files with 721 additions and 474 deletions

View File

@ -4354,6 +4354,7 @@ dependencies = [
"rustc_target",
"smallvec",
"tracing",
"typed-arena",
]
[[package]]
@ -5689,6 +5690,12 @@ dependencies = [
"rustc-hash",
]
[[package]]
name = "typed-arena"
version = "2.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6af6ae20167a9ece4bcb41af5b80f8a1f1df981f6391189ce00fd257af04126a"
[[package]]
name = "typenum"
version = "1.16.0"

View File

@ -9,6 +9,7 @@ use std::slice;
use arrayvec::ArrayVec;
use smallvec::{smallvec, SmallVec};
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable, Encodable};
use crate::{Idx, IndexVec};
@ -111,7 +112,8 @@ macro_rules! bit_relations_inherent_impls {
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
///
#[derive(Eq, PartialEq, Hash, Decodable, Encodable)]
#[cfg_attr(feature = "nightly", derive(Decodable, Encodable))]
#[derive(Eq, PartialEq, Hash)]
pub struct BitSet<T> {
domain_size: usize,
words: SmallVec<[Word; 2]>,
@ -491,10 +493,21 @@ impl<T: Idx> ChunkedBitSet<T> {
match *chunk {
Zeros(chunk_domain_size) => {
if chunk_domain_size > 1 {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
let mut words = unsafe { words.assume_init() };
#[cfg(feature = "nightly")]
let mut words = {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
unsafe { words.assume_init() }
};
#[cfg(not(feature = "nightly"))]
let mut words = {
let words = mem::MaybeUninit::<[Word; CHUNK_WORDS]>::zeroed();
// SAFETY: `words` can safely be all zeroes.
let words = unsafe { words.assume_init() };
// Unfortunate possibly-large copy
Rc::new(words)
};
let words_ref = Rc::get_mut(&mut words).unwrap();
let (word_index, mask) = chunk_word_index_and_mask(elem);
@ -545,10 +558,21 @@ impl<T: Idx> ChunkedBitSet<T> {
Zeros(_) => false,
Ones(chunk_domain_size) => {
if chunk_domain_size > 1 {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
let mut words = unsafe { words.assume_init() };
#[cfg(feature = "nightly")]
let mut words = {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
unsafe { words.assume_init() }
};
#[cfg(not(feature = "nightly"))]
let mut words = {
let words = mem::MaybeUninit::<[Word; CHUNK_WORDS]>::zeroed();
// SAFETY: `words` can safely be all zeroes.
let words = unsafe { words.assume_init() };
// Unfortunate possibly-large copy
Rc::new(words)
};
let words_ref = Rc::get_mut(&mut words).unwrap();
// Set only the bits in use.
@ -1564,7 +1588,8 @@ impl<T: Idx> From<BitSet<T>> for GrowableBitSet<T> {
///
/// All operations that involve a row and/or column index will panic if the
/// index exceeds the relevant bound.
#[derive(Clone, Eq, PartialEq, Hash, Decodable, Encodable)]
#[cfg_attr(feature = "nightly", derive(Decodable, Encodable))]
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct BitMatrix<R: Idx, C: Idx> {
num_rows: usize,
num_columns: usize,
@ -1993,7 +2018,8 @@ impl std::fmt::Debug for FiniteBitSet<u32> {
/// A fixed-sized bitset type represented by an integer type. Indices outwith than the range
/// representable by `T` are considered set.
#[derive(Copy, Clone, Eq, PartialEq, Decodable, Encodable)]
#[cfg_attr(feature = "nightly", derive(Decodable, Encodable))]
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T);
impl<T: FiniteBitSetTy> FiniteBitSet<T> {

View File

@ -14,7 +14,6 @@
)]
#![cfg_attr(feature = "nightly", allow(internal_features))]
#[cfg(feature = "nightly")]
pub mod bit_set;
#[cfg(feature = "nightly")]
pub mod interval;

View File

@ -6,7 +6,7 @@ use rustc_errors::{
};
use rustc_macros::{Diagnostic, LintDiagnostic, Subdiagnostic};
use rustc_middle::ty::{self, Ty};
use rustc_pattern_analysis::{cx::MatchCheckCtxt, errors::Uncovered};
use rustc_pattern_analysis::{errors::Uncovered, rustc::RustcMatchCheckCtxt};
use rustc_span::symbol::Symbol;
use rustc_span::Span;
@ -454,7 +454,7 @@ pub enum UnusedUnsafeEnclosing {
}
pub(crate) struct NonExhaustivePatternsTypeNotEmpty<'p, 'tcx, 'm> {
pub cx: &'m MatchCheckCtxt<'p, 'tcx>,
pub cx: &'m RustcMatchCheckCtxt<'p, 'tcx>,
pub expr_span: Span,
pub span: Span,
pub ty: Ty<'tcx>,

View File

@ -1,13 +1,13 @@
use rustc_pattern_analysis::constructor::Constructor;
use rustc_pattern_analysis::cx::MatchCheckCtxt;
use rustc_pattern_analysis::errors::Uncovered;
use rustc_pattern_analysis::pat::{DeconstructedPat, WitnessPat};
use rustc_pattern_analysis::usefulness::{Usefulness, UsefulnessReport};
use rustc_pattern_analysis::rustc::{
Constructor, DeconstructedPat, RustcMatchCheckCtxt as MatchCheckCtxt, Usefulness,
UsefulnessReport, WitnessPat,
};
use rustc_pattern_analysis::{analyze_match, MatchArm};
use crate::errors::*;
use rustc_arena::TypedArena;
use rustc_arena::{DroplessArena, TypedArena};
use rustc_ast::Mutability;
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::stack::ensure_sufficient_stack;
@ -31,6 +31,7 @@ pub(crate) fn check_match(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), Err
let (thir, expr) = tcx.thir_body(def_id)?;
let thir = thir.borrow();
let pattern_arena = TypedArena::default();
let dropless_arena = DroplessArena::default();
let mut visitor = MatchVisitor {
tcx,
thir: &*thir,
@ -38,6 +39,7 @@ pub(crate) fn check_match(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), Err
lint_level: tcx.local_def_id_to_hir_id(def_id),
let_source: LetSource::None,
pattern_arena: &pattern_arena,
dropless_arena: &dropless_arena,
error: Ok(()),
};
visitor.visit_expr(&thir[expr]);
@ -82,6 +84,7 @@ struct MatchVisitor<'thir, 'p, 'tcx> {
lint_level: HirId,
let_source: LetSource,
pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
dropless_arena: &'p DroplessArena,
/// Tracks if we encountered an error while checking this body. That the first function to
/// report it stores it here. Some functions return `Result` to allow callers to short-circuit
/// on error, but callers don't need to store it here again.
@ -382,6 +385,7 @@ impl<'thir, 'p, 'tcx> MatchVisitor<'thir, 'p, 'tcx> {
param_env: self.param_env,
module: self.tcx.parent_module(self.lint_level).to_def_id(),
pattern_arena: self.pattern_arena,
dropless_arena: self.dropless_arena,
match_lint_level: self.lint_level,
whole_match_span,
scrut_span,
@ -425,7 +429,8 @@ impl<'thir, 'p, 'tcx> MatchVisitor<'thir, 'p, 'tcx> {
let arm = &self.thir.arms[arm];
let got_error = self.with_lint_level(arm.lint_level, |this| {
let Ok(pat) = this.lower_pattern(&cx, &arm.pattern) else { return true };
let arm = MatchArm { pat, hir_id: this.lint_level, has_guard: arm.guard.is_some() };
let arm =
MatchArm { pat, arm_data: this.lint_level, has_guard: arm.guard.is_some() };
tarms.push(arm);
false
});
@ -548,7 +553,7 @@ impl<'thir, 'p, 'tcx> MatchVisitor<'thir, 'p, 'tcx> {
) -> Result<(MatchCheckCtxt<'p, 'tcx>, UsefulnessReport<'p, 'tcx>), ErrorGuaranteed> {
let cx = self.new_cx(refutability, None, scrut, pat.span);
let pat = self.lower_pattern(&cx, pat)?;
let arms = [MatchArm { pat, hir_id: self.lint_level, has_guard: false }];
let arms = [MatchArm { pat, arm_data: self.lint_level, has_guard: false }];
let report = analyze_match(&cx, &arms, pat.ty());
Ok((cx, report))
}
@ -847,34 +852,34 @@ fn report_arm_reachability<'p, 'tcx>(
);
};
use Usefulness::*;
let mut catchall = None;
for (arm, is_useful) in report.arm_usefulness.iter() {
match is_useful {
Redundant => report_unreachable_pattern(arm.pat.span(), arm.hir_id, catchall),
Useful(redundant_spans) if redundant_spans.is_empty() => {}
Usefulness::Redundant => {
report_unreachable_pattern(*arm.pat.data(), arm.arm_data, catchall)
}
Usefulness::Useful(redundant_subpats) if redundant_subpats.is_empty() => {}
// The arm is reachable, but contains redundant subpatterns (from or-patterns).
Useful(redundant_spans) => {
let mut redundant_spans = redundant_spans.clone();
Usefulness::Useful(redundant_subpats) => {
let mut redundant_subpats = redundant_subpats.clone();
// Emit lints in the order in which they occur in the file.
redundant_spans.sort_unstable();
for span in redundant_spans {
report_unreachable_pattern(span, arm.hir_id, None);
redundant_subpats.sort_unstable_by_key(|pat| pat.data());
for pat in redundant_subpats {
report_unreachable_pattern(*pat.data(), arm.arm_data, None);
}
}
}
if !arm.has_guard && catchall.is_none() && pat_is_catchall(arm.pat) {
catchall = Some(arm.pat.span());
catchall = Some(*arm.pat.data());
}
}
}
/// Checks for common cases of "catchall" patterns that may not be intended as such.
fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool {
use Constructor::*;
match pat.ctor() {
Wildcard => true,
Single => pat.iter_fields().all(|pat| pat_is_catchall(pat)),
Constructor::Wildcard => true,
Constructor::Struct | Constructor::Ref => pat.iter_fields().all(|pat| pat_is_catchall(pat)),
_ => false,
}
}
@ -885,7 +890,7 @@ fn report_non_exhaustive_match<'p, 'tcx>(
thir: &Thir<'tcx>,
scrut_ty: Ty<'tcx>,
sp: Span,
witnesses: Vec<WitnessPat<'tcx>>,
witnesses: Vec<WitnessPat<'p, 'tcx>>,
arms: &[ArmId],
expr_span: Span,
) -> ErrorGuaranteed {
@ -1082,10 +1087,10 @@ fn report_non_exhaustive_match<'p, 'tcx>(
fn joined_uncovered_patterns<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
witnesses: &[WitnessPat<'tcx>],
witnesses: &[WitnessPat<'p, 'tcx>],
) -> String {
const LIMIT: usize = 3;
let pat_to_str = |pat: &WitnessPat<'tcx>| cx.hoist_witness_pat(pat).to_string();
let pat_to_str = |pat: &WitnessPat<'p, 'tcx>| cx.hoist_witness_pat(pat).to_string();
match witnesses {
[] => bug!(),
[witness] => format!("`{}`", cx.hoist_witness_pat(witness)),
@ -1103,7 +1108,7 @@ fn joined_uncovered_patterns<'p, 'tcx>(
fn collect_non_exhaustive_tys<'tcx>(
cx: &MatchCheckCtxt<'_, 'tcx>,
pat: &WitnessPat<'tcx>,
pat: &WitnessPat<'_, 'tcx>,
non_exhaustive_tys: &mut FxIndexSet<Ty<'tcx>>,
) {
if matches!(pat.ctor(), Constructor::NonExhaustive) {
@ -1122,7 +1127,7 @@ fn collect_non_exhaustive_tys<'tcx>(
fn report_adt_defined_here<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
witnesses: &[WitnessPat<'tcx>],
witnesses: &[WitnessPat<'_, 'tcx>],
point_at_non_local_ty: bool,
) -> Option<AdtDefinedHere<'tcx>> {
let ty = ty.peel_refs();
@ -1144,15 +1149,14 @@ fn report_adt_defined_here<'tcx>(
Some(AdtDefinedHere { adt_def_span, ty, variants })
}
fn maybe_point_at_variant<'a, 'tcx: 'a>(
fn maybe_point_at_variant<'a, 'p: 'a, 'tcx: 'p>(
tcx: TyCtxt<'tcx>,
def: AdtDef<'tcx>,
patterns: impl Iterator<Item = &'a WitnessPat<'tcx>>,
patterns: impl Iterator<Item = &'a WitnessPat<'p, 'tcx>>,
) -> Vec<Span> {
use Constructor::*;
let mut covered = vec![];
for pattern in patterns {
if let Variant(variant_index) = pattern.ctor() {
if let Constructor::Variant(variant_index) = pattern.ctor() {
if let ty::Adt(this_def, _) = pattern.ty().kind()
&& this_def.did() != def.did()
{

View File

@ -6,17 +6,40 @@ edition = "2021"
[dependencies]
# tidy-alphabetical-start
rustc_apfloat = "0.2.0"
rustc_arena = { path = "../rustc_arena" }
rustc_data_structures = { path = "../rustc_data_structures" }
rustc_errors = { path = "../rustc_errors" }
rustc_fluent_macro = { path = "../rustc_fluent_macro" }
rustc_hir = { path = "../rustc_hir" }
rustc_index = { path = "../rustc_index" }
rustc_macros = { path = "../rustc_macros" }
rustc_middle = { path = "../rustc_middle" }
rustc_session = { path = "../rustc_session" }
rustc_span = { path = "../rustc_span" }
rustc_target = { path = "../rustc_target" }
smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
rustc_arena = { path = "../rustc_arena", optional = true }
rustc_data_structures = { path = "../rustc_data_structures", optional = true }
rustc_errors = { path = "../rustc_errors", optional = true }
rustc_fluent_macro = { path = "../rustc_fluent_macro", optional = true }
rustc_hir = { path = "../rustc_hir", optional = true }
rustc_index = { path = "../rustc_index", default-features = false }
rustc_macros = { path = "../rustc_macros", optional = true }
rustc_middle = { path = "../rustc_middle", optional = true }
rustc_session = { path = "../rustc_session", optional = true }
rustc_span = { path = "../rustc_span", optional = true }
rustc_target = { path = "../rustc_target", optional = true }
smallvec = { version = "1.8.1", features = ["union"] }
tracing = "0.1"
typed-arena = { version = "2.0.2", optional = true }
# tidy-alphabetical-end
[features]
default = ["rustc"]
# It's not possible to only enable the `typed_arena` dependency when the `rustc` feature is off, so
# we use another feature instead. The crate won't compile if one of these isn't enabled.
rustc = [
"dep:rustc_arena",
"dep:rustc_data_structures",
"dep:rustc_errors",
"dep:rustc_fluent_macro",
"dep:rustc_hir",
"dep:rustc_macros",
"dep:rustc_middle",
"dep:rustc_session",
"dep:rustc_span",
"dep:rustc_target",
"smallvec/may_dangle",
"rustc_index/nightly",
]
stable = [
"dep:typed-arena",
]

View File

@ -40,7 +40,7 @@
//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
//! each either disjoint with or covered by any given column constructor).
//!
//! We compute this in two steps: first [`crate::cx::MatchCheckCtxt::ctors_for_ty`] determines the
//! We compute this in two steps: first [`TypeCx::ctors_for_ty`] determines the
//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
//! column of constructors and splits the set into groups accordingly. The precise invariants of
//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
@ -136,7 +136,7 @@
//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
//!
//! This is all handled by [`crate::cx::MatchCheckCtxt::ctors_for_ty`] and
//! This is all handled by [`TypeCx::ctors_for_ty`] and
//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
//!
//!
@ -155,17 +155,15 @@ use std::iter::once;
use smallvec::SmallVec;
use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::RangeEnd;
use rustc_index::bit_set::{BitSet, GrowableBitSet};
use rustc_index::IndexVec;
use rustc_middle::mir::Const;
use rustc_target::abi::VariantIdx;
use self::Constructor::*;
use self::MaybeInfiniteInt::*;
use self::SliceKind::*;
use crate::usefulness::PatCtxt;
use crate::usefulness::PlaceCtxt;
use crate::TypeCx;
/// Whether we have seen a constructor in the column or not.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
@ -174,6 +172,21 @@ enum Presence {
Seen,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum RangeEnd {
Included,
Excluded,
}
impl fmt::Display for RangeEnd {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
RangeEnd::Included => "..=",
RangeEnd::Excluded => "..",
})
}
}
/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
/// `255`. See `signed_bias` for details.
@ -221,7 +234,7 @@ impl MaybeInfiniteInt {
match self {
Finite(n) => match n.checked_sub(1) {
Some(m) => Finite(m),
None => bug!(),
None => panic!("Called `MaybeInfiniteInt::minus_one` on 0"),
},
JustAfterMax => Finite(u128::MAX),
x => x,
@ -234,7 +247,7 @@ impl MaybeInfiniteInt {
Some(m) => Finite(m),
None => JustAfterMax,
},
JustAfterMax => bug!(),
JustAfterMax => panic!("Called `MaybeInfiniteInt::plus_one` on u128::MAX+1"),
x => x,
}
}
@ -253,7 +266,7 @@ pub struct IntRange {
impl IntRange {
/// Best effort; will not know that e.g. `255u8..` is a singleton.
pub(crate) fn is_singleton(&self) -> bool {
pub fn is_singleton(&self) -> bool {
// Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
// to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
self.lo.plus_one() == self.hi
@ -271,7 +284,7 @@ impl IntRange {
}
if lo >= hi {
// This should have been caught earlier by E0030.
bug!("malformed range pattern: {lo:?}..{hi:?}");
panic!("malformed range pattern: {lo:?}..{hi:?}");
}
IntRange { lo, hi }
}
@ -432,7 +445,7 @@ impl Slice {
let kind = match (array_len, kind) {
// If the middle `..` has length 0, we effectively have a fixed-length pattern.
(Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
(Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => bug!(
(Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => panic!(
"Slice pattern of length {} longer than its array length {len}",
prefix + suffix
),
@ -532,7 +545,7 @@ impl Slice {
// therefore `Presence::Seen` in the column.
let mut min_var_len = usize::MAX;
// Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
let mut seen_fixed_lens = FxHashSet::default();
let mut seen_fixed_lens = GrowableBitSet::new_empty();
match &mut max_slice {
VarLen(max_prefix_len, max_suffix_len) => {
// A length larger than any fixed-length slice encountered.
@ -600,7 +613,7 @@ impl Slice {
smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
let arity = kind.arity();
let seen = if min_var_len <= arity || seen_fixed_lens.contains(&arity) {
let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
Presence::Seen
} else {
Presence::Unseen
@ -630,12 +643,17 @@ impl OpaqueId {
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub enum Constructor<'tcx> {
/// The constructor for patterns that have a single constructor, like tuples, struct patterns,
/// and references. Fixed-length arrays are treated separately with `Slice`.
Single,
pub enum Constructor<Cx: TypeCx> {
/// Tuples and structs.
Struct,
/// Enum variants.
Variant(VariantIdx),
Variant(Cx::VariantIdx),
/// References
Ref,
/// Array and slice patterns.
Slice(Slice),
/// Union field accesses.
UnionField,
/// Booleans
Bool(bool),
/// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
@ -644,9 +662,7 @@ pub enum Constructor<'tcx> {
F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
/// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
Str(Const<'tcx>),
/// Array and slice patterns.
Slice(Slice),
Str(Cx::StrLit),
/// Constants that must not be matched structurally. They are treated as black boxes for the
/// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
/// match exhaustive.
@ -669,12 +685,12 @@ pub enum Constructor<'tcx> {
Missing,
}
impl<'tcx> Constructor<'tcx> {
impl<Cx: TypeCx> Constructor<Cx> {
pub(crate) fn is_non_exhaustive(&self) -> bool {
matches!(self, NonExhaustive)
}
pub(crate) fn as_variant(&self) -> Option<VariantIdx> {
pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
match self {
Variant(i) => Some(*i),
_ => None,
@ -701,8 +717,8 @@ impl<'tcx> Constructor<'tcx> {
/// The number of fields for this constructor. This must be kept in sync with
/// `Fields::wildcards`.
pub(crate) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
pcx.cx.ctor_arity(self, pcx.ty)
pub(crate) fn arity(&self, pcx: &PlaceCtxt<'_, '_, Cx>) -> usize {
pcx.ctor_arity(self)
}
/// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
@ -710,20 +726,20 @@ impl<'tcx> Constructor<'tcx> {
/// this checks for inclusion.
// We inline because this has a single call site in `Matrix::specialize_constructor`.
#[inline]
pub(crate) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
pub(crate) fn is_covered_by<'p>(&self, pcx: &PlaceCtxt<'_, 'p, Cx>, other: &Self) -> bool {
match (self, other) {
(Wildcard, _) => {
span_bug!(
pcx.cx.scrut_span,
"Constructor splitting should not have returned `Wildcard`"
)
}
(Wildcard, _) => pcx
.mcx
.tycx
.bug(format_args!("Constructor splitting should not have returned `Wildcard`")),
// Wildcards cover anything
(_, Wildcard) => true,
// Only a wildcard pattern can match these special constructors.
(Missing { .. } | NonExhaustive | Hidden, _) => false,
(Single, Single) => true,
(Struct, Struct) => true,
(Ref, Ref) => true,
(UnionField, UnionField) => true,
(Variant(self_id), Variant(other_id)) => self_id == other_id,
(Bool(self_b), Bool(other_b)) => self_b == other_b,
@ -756,12 +772,9 @@ impl<'tcx> Constructor<'tcx> {
(Opaque(self_id), Opaque(other_id)) => self_id == other_id,
(Opaque(..), _) | (_, Opaque(..)) => false,
_ => span_bug!(
pcx.cx.scrut_span,
"trying to compare incompatible constructors {:?} and {:?}",
self,
other
),
_ => pcx.mcx.tycx.bug(format_args!(
"trying to compare incompatible constructors {self:?} and {other:?}"
)),
}
}
}
@ -785,13 +798,16 @@ pub enum VariantVisibility {
/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
/// `exhaustive_patterns` feature.
#[derive(Debug)]
pub enum ConstructorSet {
/// The type has a single constructor, e.g. `&T` or a struct. `empty` tracks whether the
/// constructor is empty.
Single { empty: bool },
pub enum ConstructorSet<Cx: TypeCx> {
/// The type is a tuple or struct. `empty` tracks whether the type is empty.
Struct { empty: bool },
/// This type has the following list of constructors. If `variants` is empty and
/// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
Variants { variants: IndexVec<VariantIdx, VariantVisibility>, non_exhaustive: bool },
Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
/// The type is `&T`.
Ref,
/// The type is a union.
Union,
/// Booleans.
Bool,
/// The type is spanned by integer values. The range or ranges give the set of allowed values.
@ -830,25 +846,25 @@ pub enum ConstructorSet {
/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
#[derive(Debug)]
pub(crate) struct SplitConstructorSet<'tcx> {
pub(crate) present: SmallVec<[Constructor<'tcx>; 1]>,
pub(crate) missing: Vec<Constructor<'tcx>>,
pub(crate) missing_empty: Vec<Constructor<'tcx>>,
pub(crate) struct SplitConstructorSet<Cx: TypeCx> {
pub(crate) present: SmallVec<[Constructor<Cx>; 1]>,
pub(crate) missing: Vec<Constructor<Cx>>,
pub(crate) missing_empty: Vec<Constructor<Cx>>,
}
impl ConstructorSet {
impl<Cx: TypeCx> ConstructorSet<Cx> {
/// This analyzes a column of constructors to 1/ determine which constructors of the type (if
/// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
/// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
/// and its invariants.
#[instrument(level = "debug", skip(self, pcx, ctors), ret)]
pub(crate) fn split<'a, 'tcx>(
pub(crate) fn split<'a>(
&self,
pcx: &PatCtxt<'_, '_, 'tcx>,
ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
) -> SplitConstructorSet<'tcx>
pcx: &PlaceCtxt<'_, '_, Cx>,
ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
) -> SplitConstructorSet<Cx>
where
'tcx: 'a,
Cx: 'a,
{
let mut present: SmallVec<[_; 1]> = SmallVec::new();
// Empty constructors found missing.
@ -866,22 +882,39 @@ impl ConstructorSet {
}
match self {
ConstructorSet::Single { empty } => {
ConstructorSet::Struct { empty } => {
if !seen.is_empty() {
present.push(Single);
present.push(Struct);
} else if *empty {
missing_empty.push(Single);
missing_empty.push(Struct);
} else {
missing.push(Single);
missing.push(Struct);
}
}
ConstructorSet::Ref => {
if !seen.is_empty() {
present.push(Ref);
} else {
missing.push(Ref);
}
}
ConstructorSet::Union => {
if !seen.is_empty() {
present.push(UnionField);
} else {
missing.push(UnionField);
}
}
ConstructorSet::Variants { variants, non_exhaustive } => {
let seen_set: FxHashSet<_> = seen.iter().map(|c| c.as_variant().unwrap()).collect();
let mut seen_set: BitSet<_> = BitSet::new_empty(variants.len());
for idx in seen.iter().map(|c| c.as_variant().unwrap()) {
seen_set.insert(idx);
}
let mut skipped_a_hidden_variant = false;
for (idx, visibility) in variants.iter_enumerated() {
let ctor = Variant(idx);
if seen_set.contains(&idx) {
if seen_set.contains(idx) {
present.push(ctor);
} else {
// We only put visible variants directly into `missing`.
@ -975,8 +1008,8 @@ impl ConstructorSet {
// We have now grouped all the constructors into 3 buckets: present, missing, missing_empty.
// In the absence of the `exhaustive_patterns` feature however, we don't count nested empty
// types as empty. Only non-nested `!` or `enum Foo {}` are considered empty.
if !pcx.cx.tcx.features().exhaustive_patterns
&& !(pcx.is_top_level && matches!(self, Self::NoConstructors))
if !pcx.mcx.tycx.is_exhaustive_patterns_feature_on()
&& !(pcx.is_scrutinee && matches!(self, Self::NoConstructors))
{
// Treat all missing constructors as nonempty.
// This clears `missing_empty`.

View File

@ -1,11 +1,11 @@
use crate::{cx::MatchCheckCtxt, pat::WitnessPat};
use rustc_errors::{AddToDiagnostic, Diagnostic, SubdiagnosticMessage};
use rustc_macros::{LintDiagnostic, Subdiagnostic};
use rustc_middle::thir::Pat;
use rustc_middle::ty::Ty;
use rustc_span::Span;
use crate::rustc::{RustcMatchCheckCtxt, WitnessPat};
#[derive(Subdiagnostic)]
#[label(pattern_analysis_uncovered)]
pub struct Uncovered<'tcx> {
@ -21,8 +21,8 @@ pub struct Uncovered<'tcx> {
impl<'tcx> Uncovered<'tcx> {
pub fn new<'p>(
span: Span,
cx: &MatchCheckCtxt<'p, 'tcx>,
witnesses: Vec<WitnessPat<'tcx>>,
cx: &RustcMatchCheckCtxt<'p, 'tcx>,
witnesses: Vec<WitnessPat<'p, 'tcx>>,
) -> Self {
let witness_1 = cx.hoist_witness_pat(witnesses.get(0).unwrap());
Self {

View File

@ -1,54 +1,133 @@
//! Analysis of patterns, notably match exhaustiveness checking.
pub mod constructor;
pub mod cx;
#[cfg(feature = "rustc")]
pub mod errors;
#[cfg(feature = "rustc")]
pub(crate) mod lints;
pub mod pat;
#[cfg(feature = "rustc")]
pub mod rustc;
pub mod usefulness;
#[macro_use]
extern crate tracing;
#[cfg(feature = "rustc")]
#[macro_use]
extern crate rustc_middle;
#[cfg(feature = "rustc")]
rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
use lints::PatternColumn;
use rustc_hir::HirId;
use rustc_middle::ty::Ty;
use usefulness::{compute_match_usefulness, UsefulnessReport};
use std::fmt;
use crate::cx::MatchCheckCtxt;
use crate::lints::{lint_nonexhaustive_missing_variants, lint_overlapping_range_endpoints};
use rustc_index::Idx;
#[cfg(feature = "rustc")]
use rustc_middle::ty::Ty;
use crate::constructor::{Constructor, ConstructorSet};
#[cfg(feature = "rustc")]
use crate::lints::{
lint_nonexhaustive_missing_variants, lint_overlapping_range_endpoints, PatternColumn,
};
use crate::pat::DeconstructedPat;
#[cfg(feature = "rustc")]
use crate::rustc::RustcMatchCheckCtxt;
#[cfg(feature = "rustc")]
use crate::usefulness::{compute_match_usefulness, ValidityConstraint};
// It's not possible to only enable the `typed_arena` dependency when the `rustc` feature is off, so
// we use another feature instead. The crate won't compile if one of these isn't enabled.
#[cfg(feature = "rustc")]
pub(crate) use rustc_arena::TypedArena;
#[cfg(feature = "stable")]
pub(crate) use typed_arena::Arena as TypedArena;
pub trait Captures<'a> {}
impl<'a, T: ?Sized> Captures<'a> for T {}
/// Context that provides type information about constructors.
///
/// Most of the crate is parameterized on a type that implements this trait.
pub trait TypeCx: Sized + Clone + fmt::Debug {
/// The type of a pattern.
type Ty: Copy + Clone + fmt::Debug; // FIXME: remove Copy
/// The index of an enum variant.
type VariantIdx: Clone + Idx;
/// A string literal
type StrLit: Clone + PartialEq + fmt::Debug;
/// Extra data to store in a match arm.
type ArmData: Copy + Clone + fmt::Debug;
/// Extra data to store in a pattern. `Default` needed when we create fictitious wildcard
/// patterns during analysis.
type PatData: Clone + Default;
fn is_opaque_ty(ty: Self::Ty) -> bool;
fn is_exhaustive_patterns_feature_on(&self) -> bool;
/// The number of fields for this constructor.
fn ctor_arity(&self, ctor: &Constructor<Self>, ty: Self::Ty) -> usize;
/// The types of the fields for this constructor. The result must have a length of
/// `ctor_arity()`.
fn ctor_sub_tys(&self, ctor: &Constructor<Self>, ty: Self::Ty) -> &[Self::Ty];
/// The set of all the constructors for `ty`.
///
/// This must follow the invariants of `ConstructorSet`
fn ctors_for_ty(&self, ty: Self::Ty) -> ConstructorSet<Self>;
/// Best-effort `Debug` implementation.
fn debug_pat(f: &mut fmt::Formatter<'_>, pat: &DeconstructedPat<'_, Self>) -> fmt::Result;
/// Raise a bug.
fn bug(&self, fmt: fmt::Arguments<'_>) -> !;
}
/// Context that provides information global to a match.
#[derive(Clone)]
pub struct MatchCtxt<'a, 'p, Cx: TypeCx> {
/// The context for type information.
pub tycx: &'a Cx,
/// An arena to store the wildcards we produce during analysis.
pub wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
}
impl<'a, 'p, Cx: TypeCx> Copy for MatchCtxt<'a, 'p, Cx> {}
/// The arm of a match expression.
#[derive(Clone, Copy, Debug)]
pub struct MatchArm<'p, 'tcx> {
/// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
pub pat: &'p DeconstructedPat<'p, 'tcx>,
pub hir_id: HirId,
#[derive(Clone, Debug)]
pub struct MatchArm<'p, Cx: TypeCx> {
pub pat: &'p DeconstructedPat<'p, Cx>,
pub has_guard: bool,
pub arm_data: Cx::ArmData,
}
impl<'p, Cx: TypeCx> Copy for MatchArm<'p, Cx> {}
/// The entrypoint for this crate. Computes whether a match is exhaustive and which of its arms are
/// useful, and runs some lints.
#[cfg(feature = "rustc")]
pub fn analyze_match<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
tycx: &RustcMatchCheckCtxt<'p, 'tcx>,
arms: &[rustc::MatchArm<'p, 'tcx>],
scrut_ty: Ty<'tcx>,
) -> UsefulnessReport<'p, 'tcx> {
let pat_column = PatternColumn::new(arms);
) -> rustc::UsefulnessReport<'p, 'tcx> {
// Arena to store the extra wildcards we construct during analysis.
let wildcard_arena = tycx.pattern_arena;
let scrut_validity = ValidityConstraint::from_bool(tycx.known_valid_scrutinee);
let cx = MatchCtxt { tycx, wildcard_arena };
let report = compute_match_usefulness(cx, arms, scrut_ty);
let report = compute_match_usefulness(cx, arms, scrut_ty, scrut_validity);
let pat_column = PatternColumn::new(arms);
// Lint on ranges that overlap on their endpoints, which is likely a mistake.
lint_overlapping_range_endpoints(cx, &pat_column);
// Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
// `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
if cx.refutable && report.non_exhaustiveness_witnesses.is_empty() {
if tycx.refutable && report.non_exhaustiveness_witnesses.is_empty() {
lint_nonexhaustive_missing_variants(cx, arms, &pat_column, scrut_ty)
}

View File

@ -6,15 +6,16 @@ use rustc_session::lint;
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::Span;
use crate::constructor::{Constructor, IntRange, MaybeInfiniteInt, SplitConstructorSet};
use crate::cx::MatchCheckCtxt;
use crate::constructor::{IntRange, MaybeInfiniteInt};
use crate::errors::{
NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
OverlappingRangeEndpoints, Uncovered,
};
use crate::pat::{DeconstructedPat, WitnessPat};
use crate::usefulness::PatCtxt;
use crate::MatchArm;
use crate::rustc::{
Constructor, DeconstructedPat, MatchArm, MatchCtxt, PlaceCtxt, RustcMatchCheckCtxt,
SplitConstructorSet, WitnessPat,
};
use crate::TypeCx;
/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
@ -27,11 +28,11 @@ use crate::MatchArm;
///
/// This is not used in the main algorithm; only in lints.
#[derive(Debug)]
pub(crate) struct PatternColumn<'p, 'tcx> {
patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>,
pub(crate) struct PatternColumn<'a, 'p, 'tcx> {
patterns: Vec<&'a DeconstructedPat<'p, 'tcx>>,
}
impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
impl<'a, 'p, 'tcx> PatternColumn<'a, 'p, 'tcx> {
pub(crate) fn new(arms: &[MatchArm<'p, 'tcx>]) -> Self {
let mut patterns = Vec::with_capacity(arms.len());
for arm in arms {
@ -53,12 +54,11 @@ impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
}
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..));
let first_ty = self.patterns[0].ty();
if is_opaque(first_ty) {
if RustcMatchCheckCtxt::is_opaque_ty(first_ty) {
for pat in &self.patterns {
let ty = pat.ty();
if !is_opaque(ty) {
if !RustcMatchCheckCtxt::is_opaque_ty(ty) {
return Some(ty);
}
}
@ -67,12 +67,12 @@ impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
}
/// Do constructor splitting on the constructors of the column.
fn analyze_ctors(&self, pcx: &PatCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'tcx> {
fn analyze_ctors(&self, pcx: &PlaceCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'p, 'tcx> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
pcx.cx.ctors_for_ty(pcx.ty).split(pcx, column_ctors)
pcx.ctors_for_ty().split(pcx, column_ctors)
}
fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>> + Captures<'b> {
self.patterns.iter().copied()
}
@ -81,7 +81,11 @@ impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
/// This returns one column per field of the constructor. They usually all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
fn specialize(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Vec<Self> {
fn specialize(
&self,
pcx: &PlaceCtxt<'a, 'p, 'tcx>,
ctor: &Constructor<'p, 'tcx>,
) -> Vec<PatternColumn<'a, 'p, 'tcx>> {
let arity = ctor.arity(pcx);
if arity == 0 {
return Vec::new();
@ -117,14 +121,14 @@ impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
/// in a given column.
#[instrument(level = "debug", skip(cx), ret)]
fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
column: &PatternColumn<'p, 'tcx>,
) -> Vec<WitnessPat<'tcx>> {
fn collect_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
cx: MatchCtxt<'a, 'p, 'tcx>,
column: &PatternColumn<'a, 'p, 'tcx>,
) -> Vec<WitnessPat<'p, 'tcx>> {
let Some(ty) = column.head_ty() else {
return Vec::new();
};
let pcx = &PatCtxt::new_dummy(cx, ty);
let pcx = &PlaceCtxt::new_dummy(cx, ty);
let set = column.analyze_ctors(pcx);
if set.present.is_empty() {
@ -135,7 +139,7 @@ fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
}
let mut witnesses = Vec::new();
if cx.is_foreign_non_exhaustive_enum(ty) {
if cx.tycx.is_foreign_non_exhaustive_enum(ty) {
witnesses.extend(
set.missing
.into_iter()
@ -164,14 +168,15 @@ fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
witnesses
}
pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
pub(crate) fn lint_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
cx: MatchCtxt<'a, 'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
pat_column: &PatternColumn<'p, 'tcx>,
pat_column: &PatternColumn<'a, 'p, 'tcx>,
scrut_ty: Ty<'tcx>,
) {
let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
if !matches!(
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, cx.match_lint_level).0,
rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, rcx.match_lint_level).0,
rustc_session::lint::Level::Allow
) {
let witnesses = collect_nonexhaustive_missing_variants(cx, pat_column);
@ -180,13 +185,13 @@ pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
// is not exhaustive enough.
//
// NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
cx.tcx.emit_spanned_lint(
rcx.tcx.emit_spanned_lint(
NON_EXHAUSTIVE_OMITTED_PATTERNS,
cx.match_lint_level,
cx.scrut_span,
rcx.match_lint_level,
rcx.scrut_span,
NonExhaustiveOmittedPattern {
scrut_ty,
uncovered: Uncovered::new(cx.scrut_span, cx, witnesses),
uncovered: Uncovered::new(rcx.scrut_span, rcx, witnesses),
},
);
}
@ -196,17 +201,17 @@ pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
// usage of the lint.
for arm in arms {
let (lint_level, lint_level_source) =
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.hir_id);
rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.arm_data);
if !matches!(lint_level, rustc_session::lint::Level::Allow) {
let decorator = NonExhaustiveOmittedPatternLintOnArm {
lint_span: lint_level_source.span(),
suggest_lint_on_match: cx.whole_match_span.map(|span| span.shrink_to_lo()),
suggest_lint_on_match: rcx.whole_match_span.map(|span| span.shrink_to_lo()),
lint_level: lint_level.as_str(),
lint_name: "non_exhaustive_omitted_patterns",
};
use rustc_errors::DecorateLint;
let mut err = cx.tcx.sess.struct_span_warn(arm.pat.span(), "");
let mut err = rcx.tcx.sess.struct_span_warn(*arm.pat.data(), "");
err.set_primary_message(decorator.msg());
decorator.decorate_lint(&mut err);
err.emit();
@ -217,28 +222,29 @@ pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
#[instrument(level = "debug", skip(cx))]
pub(crate) fn lint_overlapping_range_endpoints<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
column: &PatternColumn<'p, 'tcx>,
pub(crate) fn lint_overlapping_range_endpoints<'a, 'p, 'tcx>(
cx: MatchCtxt<'a, 'p, 'tcx>,
column: &PatternColumn<'a, 'p, 'tcx>,
) {
let Some(ty) = column.head_ty() else {
return;
};
let pcx = &PatCtxt::new_dummy(cx, ty);
let pcx = &PlaceCtxt::new_dummy(cx, ty);
let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
let set = column.analyze_ctors(pcx);
if matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) {
let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
let overlap_as_pat = cx.hoist_pat_range(overlap, ty);
let overlap_as_pat = rcx.hoist_pat_range(overlap, ty);
let overlaps: Vec<_> = overlapped_spans
.iter()
.copied()
.map(|span| Overlap { range: overlap_as_pat.clone(), span })
.collect();
cx.tcx.emit_spanned_lint(
rcx.tcx.emit_spanned_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
cx.match_lint_level,
rcx.match_lint_level,
this_span,
OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
);
@ -255,7 +261,7 @@ pub(crate) fn lint_overlapping_range_endpoints<'p, 'tcx>(
let mut suffixes: SmallVec<[_; 1]> = Default::default();
// Iterate on patterns that contained `overlap`.
for pat in column.iter() {
let this_span = pat.span();
let this_span = *pat.data();
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
if this_range.is_singleton() {
// Don't lint when one of the ranges is a singleton.

View File

@ -5,16 +5,11 @@ use std::fmt;
use smallvec::{smallvec, SmallVec};
use rustc_data_structures::captures::Captures;
use rustc_middle::ty::{self, Ty};
use rustc_span::{Span, DUMMY_SP};
use crate::constructor::{Constructor, Slice, SliceKind};
use crate::usefulness::PlaceCtxt;
use crate::{Captures, TypeCx};
use self::Constructor::*;
use self::SliceKind::*;
use crate::constructor::{Constructor, SliceKind};
use crate::cx::MatchCheckCtxt;
use crate::usefulness::PatCtxt;
/// Values and patterns can be represented as a constructor applied to some fields. This represents
/// a pattern in this form.
@ -27,34 +22,34 @@ use crate::usefulness::PatCtxt;
/// This happens if a private or `non_exhaustive` field is uninhabited, because the code mustn't
/// observe that it is uninhabited. In that case that field is not included in `fields`. Care must
/// be taken when converting to/from `thir::Pat`.
pub struct DeconstructedPat<'p, 'tcx> {
ctor: Constructor<'tcx>,
fields: &'p [DeconstructedPat<'p, 'tcx>],
ty: Ty<'tcx>,
span: Span,
pub struct DeconstructedPat<'p, Cx: TypeCx> {
ctor: Constructor<Cx>,
fields: &'p [DeconstructedPat<'p, Cx>],
ty: Cx::Ty,
data: Cx::PatData,
/// Whether removing this arm would change the behavior of the match expression.
useful: Cell<bool>,
}
impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
pub fn wildcard(ty: Ty<'tcx>, span: Span) -> Self {
Self::new(Wildcard, &[], ty, span)
impl<'p, Cx: TypeCx> DeconstructedPat<'p, Cx> {
pub fn wildcard(ty: Cx::Ty, data: Cx::PatData) -> Self {
Self::new(Wildcard, &[], ty, data)
}
pub fn new(
ctor: Constructor<'tcx>,
fields: &'p [DeconstructedPat<'p, 'tcx>],
ty: Ty<'tcx>,
span: Span,
ctor: Constructor<Cx>,
fields: &'p [DeconstructedPat<'p, Cx>],
ty: Cx::Ty,
data: Cx::PatData,
) -> Self {
DeconstructedPat { ctor, fields, ty, span, useful: Cell::new(false) }
DeconstructedPat { ctor, fields, ty, data, useful: Cell::new(false) }
}
pub(crate) fn is_or_pat(&self) -> bool {
matches!(self.ctor, Or)
}
/// Expand this (possibly-nested) or-pattern into its alternatives.
pub(crate) fn flatten_or_pat(&'p self) -> SmallVec<[&'p Self; 1]> {
pub(crate) fn flatten_or_pat(&self) -> SmallVec<[&Self; 1]> {
if self.is_or_pat() {
self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect()
} else {
@ -62,66 +57,64 @@ impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
}
}
pub fn ctor(&self) -> &Constructor<'tcx> {
pub fn ctor(&self) -> &Constructor<Cx> {
&self.ctor
}
pub fn ty(&self) -> Ty<'tcx> {
pub fn ty(&self) -> Cx::Ty {
self.ty
}
pub fn span(&self) -> Span {
self.span
pub fn data(&self) -> &Cx::PatData {
&self.data
}
pub fn iter_fields<'a>(
&'a self,
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
) -> impl Iterator<Item = &'p DeconstructedPat<'p, Cx>> + Captures<'a> {
self.fields.iter()
}
/// Specialize this pattern with a constructor.
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
pub(crate) fn specialize<'a>(
&'a self,
pcx: &PatCtxt<'_, 'p, 'tcx>,
other_ctor: &Constructor<'tcx>,
) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
&self,
pcx: &PlaceCtxt<'a, 'p, Cx>,
other_ctor: &Constructor<Cx>,
) -> SmallVec<[&'a DeconstructedPat<'p, Cx>; 2]> {
let wildcard_sub_tys = || {
let tys = pcx.ctor_sub_tys(other_ctor);
tys.iter()
.map(|ty| DeconstructedPat::wildcard(*ty, Cx::PatData::default()))
.map(|pat| pcx.mcx.wildcard_arena.alloc(pat) as &_)
.collect()
};
match (&self.ctor, other_ctor) {
(Wildcard, _) => {
// We return a wildcard for each field of `other_ctor`.
pcx.cx.ctor_wildcard_fields(other_ctor, pcx.ty).iter().collect()
}
(Slice(self_slice), Slice(other_slice))
if self_slice.arity() != other_slice.arity() =>
{
// The only tricky case: two slices of different arity. Since `self_slice` covers
// `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
// `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
// arity. So we fill the middle part with enough wildcards to reach the length of
// the new, larger slice.
match self_slice.kind {
FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
VarLen(prefix, suffix) => {
let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
};
let prefix = &self.fields[..prefix];
let suffix = &self.fields[self_slice.arity() - suffix..];
let wildcard: &_ = pcx
.cx
.pattern_arena
.alloc(DeconstructedPat::wildcard(inner_ty, DUMMY_SP));
let extra_wildcards = other_slice.arity() - self_slice.arity();
let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
prefix.iter().chain(extra_wildcards).chain(suffix).collect()
}
// Return a wildcard for each field of `other_ctor`.
(Wildcard, _) => wildcard_sub_tys(),
// The only non-trivial case: two slices of different arity. `other_slice` is
// guaranteed to have a larger arity, so we fill the middle part with enough
// wildcards to reach the length of the new, larger slice.
(
&Slice(self_slice @ Slice { kind: SliceKind::VarLen(prefix, suffix), .. }),
&Slice(other_slice),
) if self_slice.arity() != other_slice.arity() => {
// Start with a slice of wildcards of the appropriate length.
let mut fields: SmallVec<[_; 2]> = wildcard_sub_tys();
// Fill in the fields from both ends.
let new_arity = fields.len();
for i in 0..prefix {
fields[i] = &self.fields[i];
}
for i in 0..suffix {
fields[new_arity - 1 - i] = &self.fields[self.fields.len() - 1 - i];
}
fields
}
_ => self.fields.iter().collect(),
}
}
/// We keep track for each pattern if it was ever useful during the analysis. This is used
/// with `redundant_spans` to report redundant subpatterns arising from or patterns.
/// We keep track for each pattern if it was ever useful during the analysis. This is used with
/// `redundant_subpatterns` to report redundant subpatterns arising from or patterns.
pub(crate) fn set_useful(&self) {
self.useful.set(true)
}
@ -139,19 +132,19 @@ impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
}
}
/// Report the spans of subpatterns that were not useful, if any.
pub(crate) fn redundant_spans(&self) -> Vec<Span> {
let mut spans = Vec::new();
self.collect_redundant_spans(&mut spans);
spans
/// Report the subpatterns that were not useful, if any.
pub(crate) fn redundant_subpatterns(&self) -> Vec<&Self> {
let mut subpats = Vec::new();
self.collect_redundant_subpatterns(&mut subpats);
subpats
}
fn collect_redundant_spans(&self, spans: &mut Vec<Span>) {
fn collect_redundant_subpatterns<'a>(&'a self, subpats: &mut Vec<&'a Self>) {
// We don't look at subpatterns if we already reported the whole pattern as redundant.
if !self.is_useful() {
spans.push(self.span);
subpats.push(self);
} else {
for p in self.iter_fields() {
p.collect_redundant_spans(spans);
p.collect_redundant_subpatterns(subpats);
}
}
}
@ -159,47 +152,46 @@ impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
/// `Display` impl.
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
impl<'p, Cx: TypeCx> fmt::Debug for DeconstructedPat<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
MatchCheckCtxt::debug_pat(f, self)
Cx::debug_pat(f, self)
}
}
/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
/// purposes. As such they don't use interning and can be cloned.
#[derive(Debug, Clone)]
pub struct WitnessPat<'tcx> {
ctor: Constructor<'tcx>,
pub(crate) fields: Vec<WitnessPat<'tcx>>,
ty: Ty<'tcx>,
pub struct WitnessPat<Cx: TypeCx> {
ctor: Constructor<Cx>,
pub(crate) fields: Vec<WitnessPat<Cx>>,
ty: Cx::Ty,
}
impl<'tcx> WitnessPat<'tcx> {
pub(crate) fn new(ctor: Constructor<'tcx>, fields: Vec<Self>, ty: Ty<'tcx>) -> Self {
impl<Cx: TypeCx> WitnessPat<Cx> {
pub(crate) fn new(ctor: Constructor<Cx>, fields: Vec<Self>, ty: Cx::Ty) -> Self {
Self { ctor, fields, ty }
}
pub(crate) fn wildcard(ty: Ty<'tcx>) -> Self {
pub(crate) fn wildcard(ty: Cx::Ty) -> Self {
Self::new(Wildcard, Vec::new(), ty)
}
/// Construct a pattern that matches everything that starts with this constructor.
/// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
/// `Some(_)`.
pub(crate) fn wild_from_ctor(pcx: &PatCtxt<'_, '_, 'tcx>, ctor: Constructor<'tcx>) -> Self {
let field_tys =
pcx.cx.ctor_wildcard_fields(&ctor, pcx.ty).iter().map(|deco_pat| deco_pat.ty());
let fields = field_tys.map(|ty| Self::wildcard(ty)).collect();
pub(crate) fn wild_from_ctor(pcx: &PlaceCtxt<'_, '_, Cx>, ctor: Constructor<Cx>) -> Self {
let field_tys = pcx.ctor_sub_tys(&ctor);
let fields = field_tys.iter().map(|ty| Self::wildcard(*ty)).collect();
Self::new(ctor, fields, pcx.ty)
}
pub fn ctor(&self) -> &Constructor<'tcx> {
pub fn ctor(&self) -> &Constructor<Cx> {
&self.ctor
}
pub fn ty(&self) -> Ty<'tcx> {
pub fn ty(&self) -> Cx::Ty {
self.ty
}
pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<'tcx>> {
pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<Cx>> {
self.fields.iter()
}
}

View File

@ -1,15 +1,15 @@
use std::fmt;
use std::iter::once;
use rustc_arena::TypedArena;
use rustc_arena::{DroplessArena, TypedArena};
use rustc_data_structures::captures::Captures;
use rustc_hir::def_id::DefId;
use rustc_hir::{HirId, RangeEnd};
use rustc_hir::HirId;
use rustc_index::Idx;
use rustc_index::IndexVec;
use rustc_middle::middle::stability::EvalResult;
use rustc_middle::mir;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::{self, Const};
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
@ -18,14 +18,31 @@ use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
use smallvec::SmallVec;
use crate::constructor::{
Constructor, ConstructorSet, IntRange, MaybeInfiniteInt, OpaqueId, Slice, SliceKind,
VariantVisibility,
IntRange, MaybeInfiniteInt, OpaqueId, RangeEnd, Slice, SliceKind, VariantVisibility,
};
use crate::pat::{DeconstructedPat, WitnessPat};
use crate::TypeCx;
use Constructor::*;
use crate::constructor::Constructor::*;
pub struct MatchCheckCtxt<'p, 'tcx> {
// Re-export rustc-specific versions of all these types.
pub type Constructor<'p, 'tcx> = crate::constructor::Constructor<RustcMatchCheckCtxt<'p, 'tcx>>;
pub type ConstructorSet<'p, 'tcx> =
crate::constructor::ConstructorSet<RustcMatchCheckCtxt<'p, 'tcx>>;
pub type DeconstructedPat<'p, 'tcx> =
crate::pat::DeconstructedPat<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
pub type MatchArm<'p, 'tcx> = crate::MatchArm<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
pub type MatchCtxt<'a, 'p, 'tcx> = crate::MatchCtxt<'a, 'p, RustcMatchCheckCtxt<'p, 'tcx>>;
pub(crate) type PlaceCtxt<'a, 'p, 'tcx> =
crate::usefulness::PlaceCtxt<'a, 'p, RustcMatchCheckCtxt<'p, 'tcx>>;
pub(crate) type SplitConstructorSet<'p, 'tcx> =
crate::constructor::SplitConstructorSet<RustcMatchCheckCtxt<'p, 'tcx>>;
pub type Usefulness<'p, 'tcx> = crate::usefulness::Usefulness<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
pub type UsefulnessReport<'p, 'tcx> =
crate::usefulness::UsefulnessReport<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
pub type WitnessPat<'p, 'tcx> = crate::pat::WitnessPat<RustcMatchCheckCtxt<'p, 'tcx>>;
#[derive(Clone)]
pub struct RustcMatchCheckCtxt<'p, 'tcx> {
pub tcx: TyCtxt<'tcx>,
/// The module in which the match occurs. This is necessary for
/// checking inhabited-ness of types because whether a type is (visibly)
@ -35,6 +52,7 @@ pub struct MatchCheckCtxt<'p, 'tcx> {
pub module: DefId,
pub param_env: ty::ParamEnv<'tcx>,
pub pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
pub dropless_arena: &'p DroplessArena,
/// Lint level at the match.
pub match_lint_level: HirId,
/// The span of the whole match, if applicable.
@ -48,8 +66,14 @@ pub struct MatchCheckCtxt<'p, 'tcx> {
pub known_valid_scrutinee: bool,
}
impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
impl<'p, 'tcx> fmt::Debug for RustcMatchCheckCtxt<'p, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RustcMatchCheckCtxt").finish()
}
}
impl<'p, 'tcx> RustcMatchCheckCtxt<'p, 'tcx> {
pub(crate) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
!ty.is_inhabited_from(self.tcx, self.module, self.param_env)
}
@ -63,12 +87,18 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
}
pub(crate) fn alloc_wildcard_slice(
&self,
tys: impl IntoIterator<Item = Ty<'tcx>>,
) -> &'p [DeconstructedPat<'p, 'tcx>] {
self.pattern_arena
.alloc_from_iter(tys.into_iter().map(|ty| DeconstructedPat::wildcard(ty, DUMMY_SP)))
/// Whether the range denotes the fictitious values before `isize::MIN` or after
/// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
pub fn is_range_beyond_boundaries(&self, range: &IntRange, ty: Ty<'tcx>) -> bool {
ty.is_ptr_sized_integral() && {
// The two invalid ranges are `NegInfinity..isize::MIN` (represented as
// `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `hoist_pat_range_bdy`
// converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `range.lo`
// otherwise.
let lo = self.hoist_pat_range_bdy(range.lo, ty);
matches!(lo, PatRangeBoundary::PosInfinity)
|| matches!(range.hi, MaybeInfiniteInt::Finite(0))
}
}
// In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
@ -100,12 +130,12 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
pub(crate) fn variant_index_for_adt(
ctor: &Constructor<'tcx>,
ctor: &Constructor<'p, 'tcx>,
adt: ty::AdtDef<'tcx>,
) -> VariantIdx {
match *ctor {
Variant(idx) => idx,
Single => {
Struct | UnionField => {
assert!(!adt.is_enum());
FIRST_VARIANT
}
@ -113,37 +143,36 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
}
/// Creates a new list of wildcard fields for a given constructor. The result must have a length
/// of `ctor.arity()`.
/// Returns the types of the fields for a given constructor. The result must have a length of
/// `ctor.arity()`.
#[instrument(level = "trace", skip(self))]
pub(crate) fn ctor_wildcard_fields(
&self,
ctor: &Constructor<'tcx>,
ty: Ty<'tcx>,
) -> &'p [DeconstructedPat<'p, 'tcx>] {
pub(crate) fn ctor_sub_tys(&self, ctor: &Constructor<'p, 'tcx>, ty: Ty<'tcx>) -> &[Ty<'tcx>] {
let cx = self;
match ctor {
Single | Variant(_) => match ty.kind() {
ty::Tuple(fs) => cx.alloc_wildcard_slice(fs.iter()),
ty::Ref(_, rty, _) => cx.alloc_wildcard_slice(once(*rty)),
Struct | Variant(_) | UnionField => match ty.kind() {
ty::Tuple(fs) => cx.dropless_arena.alloc_from_iter(fs.iter()),
ty::Adt(adt, args) => {
if adt.is_box() {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
// patterns. If we're here we can assume this is a box pattern.
cx.alloc_wildcard_slice(once(args.type_at(0)))
cx.dropless_arena.alloc_from_iter(once(args.type_at(0)))
} else {
let variant =
&adt.variant(MatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
&adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
let tys = cx.list_variant_nonhidden_fields(ty, variant).map(|(_, ty)| ty);
cx.alloc_wildcard_slice(tys)
cx.dropless_arena.alloc_from_iter(tys)
}
}
_ => bug!("Unexpected type for `Single` constructor: {:?}", ty),
_ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
},
Ref => match ty.kind() {
ty::Ref(_, rty, _) => cx.dropless_arena.alloc_from_iter(once(*rty)),
_ => bug!("Unexpected type for `Ref` constructor: {ty:?}"),
},
Slice(slice) => match *ty.kind() {
ty::Slice(ty) | ty::Array(ty, _) => {
let arity = slice.arity();
cx.alloc_wildcard_slice((0..arity).map(|_| ty))
cx.dropless_arena.alloc_from_iter((0..arity).map(|_| ty))
}
_ => bug!("bad slice pattern {:?} {:?}", ctor, ty),
},
@ -163,13 +192,11 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
}
/// The number of fields for this constructor. This must be kept in sync with
/// `Fields::wildcards`.
pub(crate) fn ctor_arity(&self, ctor: &Constructor<'tcx>, ty: Ty<'tcx>) -> usize {
/// The number of fields for this constructor.
pub(crate) fn ctor_arity(&self, ctor: &Constructor<'p, 'tcx>, ty: Ty<'tcx>) -> usize {
match ctor {
Single | Variant(_) => match ty.kind() {
Struct | Variant(_) | UnionField => match ty.kind() {
ty::Tuple(fs) => fs.len(),
ty::Ref(..) => 1,
ty::Adt(adt, ..) => {
if adt.is_box() {
// The only legal patterns of type `Box` (outside `std`) are `_` and box
@ -177,12 +204,13 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
1
} else {
let variant =
&adt.variant(MatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
&adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
self.list_variant_nonhidden_fields(ty, variant).count()
}
}
_ => bug!("Unexpected type for `Single` constructor: {:?}", ty),
_ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
},
Ref => 1,
Slice(slice) => slice.arity(),
Bool(..)
| IntRange(..)
@ -202,7 +230,7 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
///
/// See [`crate::constructor`] for considerations of emptiness.
#[instrument(level = "debug", skip(self), ret)]
pub fn ctors_for_ty(&self, ty: Ty<'tcx>) -> ConstructorSet {
pub fn ctors_for_ty(&self, ty: Ty<'tcx>) -> ConstructorSet<'p, 'tcx> {
let cx = self;
let make_uint_range = |start, end| {
IntRange::from_range(
@ -298,9 +326,9 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
ConstructorSet::Variants { variants, non_exhaustive: is_declared_nonexhaustive }
}
}
ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => {
ConstructorSet::Single { empty: cx.is_uninhabited(ty) }
}
ty::Adt(def, _) if def.is_union() => ConstructorSet::Union,
ty::Adt(..) | ty::Tuple(..) => ConstructorSet::Struct { empty: cx.is_uninhabited(ty) },
ty::Ref(..) => ConstructorSet::Ref,
ty::Never => ConstructorSet::NoConstructors,
// This type is one for which we cannot list constructors, like `str` or `f64`.
// FIXME(Nadrieril): which of these are actually allowed?
@ -359,13 +387,18 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
fields = &[];
}
PatKind::Deref { subpattern } => {
ctor = Single;
fields = singleton(self.lower_pat(subpattern));
ctor = match pat.ty.kind() {
// This is a box pattern.
ty::Adt(adt, ..) if adt.is_box() => Struct,
ty::Ref(..) => Ref,
_ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
};
}
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
match pat.ty.kind() {
ty::Tuple(fs) => {
ctor = Single;
ctor = Struct;
let mut wilds: SmallVec<[_; 2]> =
fs.iter().map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
for pat in subpatterns {
@ -380,7 +413,7 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
// ignore other fields than the first one. This will trigger an error later
// anyway.
// See https://github.com/rust-lang/rust/issues/82772 ,
// See https://github.com/rust-lang/rust/issues/82772,
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
// The problem is that we can't know from the type whether we'll match
// normally or through box-patterns. We'll have to figure out a proper
@ -392,17 +425,18 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
} else {
DeconstructedPat::wildcard(args.type_at(0), pat.span)
};
ctor = Single;
ctor = Struct;
fields = singleton(pat);
}
ty::Adt(adt, _) => {
ctor = match pat.kind {
PatKind::Leaf { .. } => Single,
PatKind::Leaf { .. } if adt.is_union() => UnionField,
PatKind::Leaf { .. } => Struct,
PatKind::Variant { variant_index, .. } => Variant(variant_index),
_ => bug!(),
};
let variant =
&adt.variant(MatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
&adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
// For each field in the variant, we store the relevant index into `self.fields` if any.
let mut field_id_to_id: Vec<Option<usize>> =
(0..variant.fields.len()).map(|_| None).collect();
@ -477,11 +511,11 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
// with other `Deref` patterns. This could have been done in `const_to_pat`,
// but that causes issues with the rest of the matching code.
// So here, the constructor for a `"foo"` pattern is `&` (represented by
// `Single`), and has one field. That field has constructor `Str(value)` and no
// fields.
// `Ref`), and has one field. That field has constructor `Str(value)` and no
// subfields.
// Note: `t` is `str`, not `&str`.
let subpattern = DeconstructedPat::new(Str(*value), &[], *t, pat.span);
ctor = Single;
ctor = Ref;
fields = singleton(subpattern)
}
// All constants that can be structurally matched have already been expanded
@ -495,12 +529,16 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
PatKind::Range(patrange) => {
let PatRange { lo, hi, end, .. } = patrange.as_ref();
let end = match end {
rustc_hir::RangeEnd::Included => RangeEnd::Included,
rustc_hir::RangeEnd::Excluded => RangeEnd::Excluded,
};
let ty = pat.ty;
ctor = match ty.kind() {
ty::Char | ty::Int(_) | ty::Uint(_) => {
let lo = cx.lower_pat_range_bdy(*lo, ty);
let hi = cx.lower_pat_range_bdy(*hi, ty);
IntRange(IntRange::from_range(lo, hi, *end))
IntRange(IntRange::from_range(lo, hi, end))
}
ty::Float(fty) => {
use rustc_apfloat::Float;
@ -511,13 +549,13 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
use rustc_apfloat::ieee::Single;
let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
F32Range(lo, hi, *end)
F32Range(lo, hi, end)
}
ty::FloatTy::F64 => {
use rustc_apfloat::ieee::Double;
let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
F64Range(lo, hi, *end)
F64Range(lo, hi, end)
}
}
}
@ -597,20 +635,6 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
}
/// Whether the range denotes the fictitious values before `isize::MIN` or after
/// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
pub fn is_range_beyond_boundaries(&self, range: &IntRange, ty: Ty<'tcx>) -> bool {
ty.is_ptr_sized_integral() && {
// The two invalid ranges are `NegInfinity..isize::MIN` (represented as
// `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `hoist_pat_range_bdy`
// converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `range.lo`
// otherwise.
let lo = self.hoist_pat_range_bdy(range.lo, ty);
matches!(lo, PatRangeBoundary::PosInfinity)
|| matches!(range.hi, MaybeInfiniteInt::Finite(0))
}
}
/// Convert back to a `thir::Pat` for diagnostic purposes.
pub(crate) fn hoist_pat_range(&self, range: &IntRange, ty: Ty<'tcx>) -> Pat<'tcx> {
use MaybeInfiniteInt::*;
@ -623,7 +647,7 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
PatKind::Constant { value }
} else {
// We convert to an inclusive range for diagnostics.
let mut end = RangeEnd::Included;
let mut end = rustc_hir::RangeEnd::Included;
let mut lo = cx.hoist_pat_range_bdy(range.lo, ty);
if matches!(lo, PatRangeBoundary::PosInfinity) {
// The only reason to get `PosInfinity` here is the special case where
@ -637,7 +661,7 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
let hi = if matches!(range.hi, Finite(0)) {
// The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
end = RangeEnd::Excluded;
end = rustc_hir::RangeEnd::Excluded;
range.hi
} else {
range.hi.minus_one()
@ -650,14 +674,14 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
/// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
/// appear in diagnostics, like float ranges.
pub fn hoist_witness_pat(&self, pat: &WitnessPat<'tcx>) -> Pat<'tcx> {
pub fn hoist_witness_pat(&self, pat: &WitnessPat<'p, 'tcx>) -> Pat<'tcx> {
let cx = self;
let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
let mut subpatterns = pat.iter_fields().map(|p| Box::new(cx.hoist_witness_pat(p)));
let kind = match pat.ctor() {
Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
IntRange(range) => return self.hoist_pat_range(range, pat.ty()),
Single | Variant(_) => match pat.ty().kind() {
Struct | Variant(_) | UnionField => match pat.ty().kind() {
ty::Tuple(..) => PatKind::Leaf {
subpatterns: subpatterns
.enumerate()
@ -672,7 +696,7 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
ty::Adt(adt_def, args) => {
let variant_index =
MatchCheckCtxt::variant_index_for_adt(&pat.ctor(), *adt_def);
RustcMatchCheckCtxt::variant_index_for_adt(&pat.ctor(), *adt_def);
let variant = &adt_def.variant(variant_index);
let subpatterns = cx
.list_variant_nonhidden_fields(pat.ty(), variant)
@ -686,13 +710,13 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
PatKind::Leaf { subpatterns }
}
}
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
// be careful to reconstruct the correct constant pattern here. However a string
// literal pattern will never be reported as a non-exhaustiveness witness, so we
// ignore this issue.
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
_ => bug!("unexpected ctor for type {:?} {:?}", pat.ctor(), pat.ty()),
},
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
// be careful to reconstruct the correct constant pattern here. However a string
// literal pattern will never be reported as a non-exhaustiveness witness, so we
// ignore this issue.
Ref => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
Slice(slice) => {
match slice.kind {
SliceKind::FixedLen(_) => PatKind::Slice {
@ -744,7 +768,7 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
/// Best-effort `Debug` implementation.
pub(crate) fn debug_pat(
f: &mut fmt::Formatter<'_>,
pat: &DeconstructedPat<'p, 'tcx>,
pat: &crate::pat::DeconstructedPat<'_, Self>,
) -> fmt::Result {
let mut first = true;
let mut start_or_continue = |s| {
@ -758,7 +782,7 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
let mut start_or_comma = || start_or_continue(", ");
match pat.ctor() {
Single | Variant(_) => match pat.ty().kind() {
Struct | Variant(_) | UnionField => match pat.ty().kind() {
ty::Adt(def, _) if def.is_box() => {
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
// of `std`). So this branch is only reachable when the feature is enabled and
@ -767,13 +791,14 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
write!(f, "box {subpattern:?}")
}
ty::Adt(..) | ty::Tuple(..) => {
let variant = match pat.ty().kind() {
ty::Adt(adt, _) => Some(
adt.variant(MatchCheckCtxt::variant_index_for_adt(pat.ctor(), *adt)),
),
ty::Tuple(_) => None,
_ => unreachable!(),
};
let variant =
match pat.ty().kind() {
ty::Adt(adt, _) => Some(adt.variant(
RustcMatchCheckCtxt::variant_index_for_adt(pat.ctor(), *adt),
)),
ty::Tuple(_) => None,
_ => unreachable!(),
};
if let Some(variant) = variant {
write!(f, "{}", variant.name)?;
@ -789,15 +814,15 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
write!(f, ")")
}
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
// be careful to detect strings here. However a string literal pattern will never
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
ty::Ref(_, _, mutbl) => {
let subpattern = pat.iter_fields().next().unwrap();
write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
}
_ => write!(f, "_"),
},
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
// be careful to detect strings here. However a string literal pattern will never
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
Ref => {
let subpattern = pat.iter_fields().next().unwrap();
write!(f, "&{:?}", subpattern)
}
Slice(slice) => {
let mut subpatterns = pat.iter_fields();
write!(f, "[")?;
@ -838,6 +863,45 @@ impl<'p, 'tcx> MatchCheckCtxt<'p, 'tcx> {
}
}
impl<'p, 'tcx> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
type Ty = Ty<'tcx>;
type VariantIdx = VariantIdx;
type StrLit = Const<'tcx>;
type ArmData = HirId;
type PatData = Span;
fn is_exhaustive_patterns_feature_on(&self) -> bool {
self.tcx.features().exhaustive_patterns
}
fn is_opaque_ty(ty: Self::Ty) -> bool {
matches!(ty.kind(), ty::Alias(ty::Opaque, ..))
}
fn ctor_arity(&self, ctor: &crate::constructor::Constructor<Self>, ty: Self::Ty) -> usize {
self.ctor_arity(ctor, ty)
}
fn ctor_sub_tys(
&self,
ctor: &crate::constructor::Constructor<Self>,
ty: Self::Ty,
) -> &[Self::Ty] {
self.ctor_sub_tys(ctor, ty)
}
fn ctors_for_ty(&self, ty: Self::Ty) -> crate::constructor::ConstructorSet<Self> {
self.ctors_for_ty(ty)
}
fn debug_pat(
f: &mut fmt::Formatter<'_>,
pat: &crate::pat::DeconstructedPat<'_, Self>,
) -> fmt::Result {
Self::debug_pat(f, pat)
}
fn bug(&self, fmt: fmt::Arguments<'_>) -> ! {
span_bug!(self.scrut_span, "{}", fmt)
}
}
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {

View File

@ -242,7 +242,7 @@
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
//!
//! Computing the set of constructors for a type is done in [`MatchCheckCtxt::ctors_for_ty`]. See
//! Computing the set of constructors for a type is done in [`TypeCx::ctors_for_ty`]. See
//! the following sections for more accurate versions of the algorithm and corresponding links.
//!
//!
@ -555,37 +555,52 @@
use smallvec::{smallvec, SmallVec};
use std::fmt;
use rustc_data_structures::{captures::Captures, stack::ensure_sufficient_stack};
use rustc_middle::ty::{self, Ty};
use rustc_span::{Span, DUMMY_SP};
use crate::constructor::{Constructor, ConstructorSet};
use crate::cx::MatchCheckCtxt;
use crate::pat::{DeconstructedPat, WitnessPat};
use crate::MatchArm;
use crate::{Captures, MatchArm, MatchCtxt, TypeCx, TypedArena};
use self::ValidityConstraint::*;
#[derive(Copy, Clone)]
pub(crate) struct PatCtxt<'a, 'p, 'tcx> {
pub(crate) cx: &'a MatchCheckCtxt<'p, 'tcx>,
/// Type of the current column under investigation.
pub(crate) ty: Ty<'tcx>,
/// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
/// subpattern.
pub(crate) is_top_level: bool,
#[cfg(feature = "rustc")]
use rustc_data_structures::stack::ensure_sufficient_stack;
#[cfg(not(feature = "rustc"))]
pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
f()
}
impl<'a, 'p, 'tcx> PatCtxt<'a, 'p, 'tcx> {
/// A `PatCtxt` when code other than `is_useful` needs one.
pub(crate) fn new_dummy(cx: &'a MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
PatCtxt { cx, ty, is_top_level: false }
/// Context that provides information local to a place under investigation.
#[derive(Clone)]
pub(crate) struct PlaceCtxt<'a, 'p, Cx: TypeCx> {
pub(crate) mcx: MatchCtxt<'a, 'p, Cx>,
/// Type of the place under investigation.
pub(crate) ty: Cx::Ty,
/// Whether the place is the original scrutinee place, as opposed to a subplace of it.
pub(crate) is_scrutinee: bool,
}
impl<'a, 'p, Cx: TypeCx> PlaceCtxt<'a, 'p, Cx> {
/// A `PlaceCtxt` when code other than `is_useful` needs one.
#[cfg_attr(not(feature = "rustc"), allow(dead_code))]
pub(crate) fn new_dummy(mcx: MatchCtxt<'a, 'p, Cx>, ty: Cx::Ty) -> Self {
PlaceCtxt { mcx, ty, is_scrutinee: false }
}
pub(crate) fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
self.mcx.tycx.ctor_arity(ctor, self.ty)
}
pub(crate) fn ctor_sub_tys(&self, ctor: &Constructor<Cx>) -> &[Cx::Ty] {
self.mcx.tycx.ctor_sub_tys(ctor, self.ty)
}
pub(crate) fn ctors_for_ty(&self) -> ConstructorSet<Cx> {
self.mcx.tycx.ctors_for_ty(self.ty)
}
}
impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
impl<'a, 'p, Cx: TypeCx> Copy for PlaceCtxt<'a, 'p, Cx> {}
impl<'a, 'p, Cx: TypeCx> fmt::Debug for PlaceCtxt<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
f.debug_struct("PlaceCtxt").field("ty", &self.ty).finish()
}
}
@ -595,7 +610,7 @@ impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
/// - in the matrix, track whether a given place (aka column) is known to contain a valid value or
/// not.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ValidityConstraint {
pub enum ValidityConstraint {
ValidOnly,
MaybeInvalid,
/// Option for backwards compatibility: the place is not known to be valid but we allow omitting
@ -604,7 +619,7 @@ enum ValidityConstraint {
}
impl ValidityConstraint {
fn from_bool(is_valid_only: bool) -> Self {
pub fn from_bool(is_valid_only: bool) -> Self {
if is_valid_only { ValidOnly } else { MaybeInvalid }
}
@ -629,12 +644,9 @@ impl ValidityConstraint {
///
/// Pending further opsem decisions, the current behavior is: validity is preserved, except
/// inside `&` and union fields where validity is reset to `MaybeInvalid`.
fn specialize<'tcx>(self, pcx: &PatCtxt<'_, '_, 'tcx>, ctor: &Constructor<'tcx>) -> Self {
fn specialize<Cx: TypeCx>(self, ctor: &Constructor<Cx>) -> Self {
// We preserve validity except when we go inside a reference or a union field.
if matches!(ctor, Constructor::Single)
&& (matches!(pcx.ty.kind(), ty::Ref(..))
|| matches!(pcx.ty.kind(), ty::Adt(def, ..) if def.is_union()))
{
if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
// Validity of `x: &T` does not imply validity of `*x: T`.
MaybeInvalid
} else {
@ -654,14 +666,18 @@ impl fmt::Display for ValidityConstraint {
}
/// Represents a pattern-tuple under investigation.
// The three lifetimes are:
// - 'a allocated by us
// - 'p coming from the input
// - Cx global compilation context
#[derive(Clone)]
struct PatStack<'p, 'tcx> {
struct PatStack<'a, 'p, Cx: TypeCx> {
// Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
pats: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
pats: SmallVec<[&'a DeconstructedPat<'p, Cx>; 2]>,
}
impl<'p, 'tcx> PatStack<'p, 'tcx> {
fn from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self {
impl<'a, 'p, Cx: TypeCx> PatStack<'a, 'p, Cx> {
fn from_pattern(pat: &'a DeconstructedPat<'p, Cx>) -> Self {
PatStack { pats: smallvec![pat] }
}
@ -673,17 +689,17 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> {
self.pats.len()
}
fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
self.pats[0]
}
fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
self.pats.iter().copied()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a> {
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = PatStack<'a, 'p, Cx>> + Captures<'b> {
self.head().flatten_or_pat().into_iter().map(move |pat| {
let mut new = self.clone();
new.pats[0] = pat;
@ -695,9 +711,9 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> {
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
pcx: &PatCtxt<'_, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
) -> PatStack<'p, 'tcx> {
pcx: &PlaceCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
) -> PatStack<'a, 'p, Cx> {
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_pats = self.head().specialize(pcx, ctor);
@ -706,7 +722,7 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> {
}
}
impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
impl<'a, 'p, Cx: TypeCx> fmt::Debug for PatStack<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// We pretty-print similarly to the `Debug` impl of `Matrix`.
write!(f, "+")?;
@ -719,9 +735,9 @@ impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
/// A row of the matrix.
#[derive(Clone)]
struct MatrixRow<'p, 'tcx> {
struct MatrixRow<'a, 'p, Cx: TypeCx> {
// The patterns in the row.
pats: PatStack<'p, 'tcx>,
pats: PatStack<'a, 'p, Cx>,
/// Whether the original arm had a guard. This is inherited when specializing.
is_under_guard: bool,
/// When we specialize, we remember which row of the original matrix produced a given row of the
@ -734,7 +750,7 @@ struct MatrixRow<'p, 'tcx> {
useful: bool,
}
impl<'p, 'tcx> MatrixRow<'p, 'tcx> {
impl<'a, 'p, Cx: TypeCx> MatrixRow<'a, 'p, Cx> {
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
@ -743,17 +759,17 @@ impl<'p, 'tcx> MatrixRow<'p, 'tcx> {
self.pats.len()
}
fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
fn head(&self) -> &'a DeconstructedPat<'p, Cx> {
self.pats.head()
}
fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, Cx>> + Captures<'b> {
self.pats.iter()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = MatrixRow<'p, 'tcx>> + Captures<'a> {
fn expand_or_pat<'b>(&'b self) -> impl Iterator<Item = MatrixRow<'a, 'p, Cx>> + Captures<'b> {
self.pats.expand_or_pat().map(|patstack| MatrixRow {
pats: patstack,
parent_row: self.parent_row,
@ -766,10 +782,10 @@ impl<'p, 'tcx> MatrixRow<'p, 'tcx> {
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
pcx: &PatCtxt<'_, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
pcx: &PlaceCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
parent_row: usize,
) -> MatrixRow<'p, 'tcx> {
) -> MatrixRow<'a, 'p, Cx> {
MatrixRow {
pats: self.pats.pop_head_constructor(pcx, ctor),
parent_row,
@ -779,7 +795,7 @@ impl<'p, 'tcx> MatrixRow<'p, 'tcx> {
}
}
impl<'p, 'tcx> fmt::Debug for MatrixRow<'p, 'tcx> {
impl<'a, 'p, Cx: TypeCx> fmt::Debug for MatrixRow<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pats.fmt(f)
}
@ -796,22 +812,22 @@ impl<'p, 'tcx> fmt::Debug for MatrixRow<'p, 'tcx> {
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
struct Matrix<'p, 'tcx> {
struct Matrix<'a, 'p, Cx: TypeCx> {
/// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
/// each column must have the same type. Each column corresponds to a place within the
/// scrutinee.
rows: Vec<MatrixRow<'p, 'tcx>>,
rows: Vec<MatrixRow<'a, 'p, Cx>>,
/// Stores an extra fictitious row full of wildcards. Mostly used to keep track of the type of
/// each column. This must obey the same invariants as the real rows.
wildcard_row: PatStack<'p, 'tcx>,
wildcard_row: PatStack<'a, 'p, Cx>,
/// Track for each column/place whether it contains a known valid value.
place_validity: SmallVec<[ValidityConstraint; 2]>,
}
impl<'p, 'tcx> Matrix<'p, 'tcx> {
impl<'a, 'p, Cx: TypeCx> Matrix<'a, 'p, Cx> {
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. Internal method, prefer [`Matrix::new`].
fn expand_and_push(&mut self, row: MatrixRow<'p, 'tcx>) {
fn expand_and_push(&mut self, row: MatrixRow<'a, 'p, Cx>) {
if !row.is_empty() && row.head().is_or_pat() {
// Expand nested or-patterns.
for new_row in row.expand_or_pat() {
@ -823,16 +839,14 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
}
/// Build a new matrix from an iterator of `MatchArm`s.
fn new<'a>(
cx: &MatchCheckCtxt<'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
scrut_ty: Ty<'tcx>,
fn new(
wildcard_arena: &'a TypedArena<DeconstructedPat<'p, Cx>>,
arms: &'a [MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: ValidityConstraint,
) -> Self
where
'p: 'a,
{
let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty, DUMMY_SP));
) -> Self {
let wild_pattern =
wildcard_arena.alloc(DeconstructedPat::wildcard(scrut_ty, Default::default()));
let wildcard_row = PatStack::from_pattern(wild_pattern);
let mut matrix = Matrix {
rows: Vec::with_capacity(arms.len()),
@ -851,7 +865,7 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
matrix
}
fn head_ty(&self) -> Option<Ty<'tcx>> {
fn head_ty(&self) -> Option<Cx::Ty> {
if self.column_count() == 0 {
return None;
}
@ -859,11 +873,10 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
let mut ty = self.wildcard_row.head().ty();
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..));
if is_opaque(ty) {
if Cx::is_opaque_ty(ty) {
for pat in self.heads() {
let pat_ty = pat.ty();
if !is_opaque(pat_ty) {
if !Cx::is_opaque_ty(pat_ty) {
ty = pat_ty;
break;
}
@ -875,34 +888,34 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
self.wildcard_row.len()
}
fn rows<'a>(
&'a self,
) -> impl Iterator<Item = &'a MatrixRow<'p, 'tcx>> + Clone + DoubleEndedIterator + ExactSizeIterator
fn rows<'b>(
&'b self,
) -> impl Iterator<Item = &'b MatrixRow<'a, 'p, Cx>> + Clone + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter()
}
fn rows_mut<'a>(
&'a mut self,
) -> impl Iterator<Item = &'a mut MatrixRow<'p, 'tcx>> + DoubleEndedIterator + ExactSizeIterator
fn rows_mut<'b>(
&'b mut self,
) -> impl Iterator<Item = &'b mut MatrixRow<'a, 'p, Cx>> + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter_mut()
}
/// Iterate over the first pattern of each row.
fn heads<'a>(
&'a self,
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
fn heads<'b>(
&'b self,
) -> impl Iterator<Item = &'b DeconstructedPat<'p, Cx>> + Clone + Captures<'a> {
self.rows().map(|r| r.head())
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
fn specialize_constructor(
&self,
pcx: &PatCtxt<'_, 'p, 'tcx>,
ctor: &Constructor<'tcx>,
) -> Matrix<'p, 'tcx> {
pcx: &PlaceCtxt<'a, 'p, Cx>,
ctor: &Constructor<Cx>,
) -> Matrix<'a, 'p, Cx> {
let wildcard_row = self.wildcard_row.pop_head_constructor(pcx, ctor);
let new_validity = self.place_validity[0].specialize(pcx, ctor);
let new_validity = self.place_validity[0].specialize(ctor);
let new_place_validity = std::iter::repeat(new_validity)
.take(ctor.arity(pcx))
.chain(self.place_validity[1..].iter().copied())
@ -929,7 +942,7 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
/// + _ + [_, _, tail @ ..] +
/// | ✓ | ? | // column validity
/// ```
impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
impl<'a, 'p, Cx: TypeCx> fmt::Debug for Matrix<'a, 'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
@ -1020,17 +1033,17 @@ impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
///
/// See the top of the file for more detailed explanations and examples.
#[derive(Debug, Clone)]
struct WitnessStack<'tcx>(Vec<WitnessPat<'tcx>>);
struct WitnessStack<Cx: TypeCx>(Vec<WitnessPat<Cx>>);
impl<'tcx> WitnessStack<'tcx> {
impl<Cx: TypeCx> WitnessStack<Cx> {
/// Asserts that the witness contains a single pattern, and returns it.
fn single_pattern(self) -> WitnessPat<'tcx> {
fn single_pattern(self) -> WitnessPat<Cx> {
assert_eq!(self.0.len(), 1);
self.0.into_iter().next().unwrap()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<'tcx>) {
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
self.0.push(pat);
}
@ -1048,7 +1061,7 @@ impl<'tcx> WitnessStack<'tcx> {
/// pats: [(false, "foo"), _, true]
/// result: [Enum::Variant { a: (false, "foo"), b: _ }, true]
/// ```
fn apply_constructor(&mut self, pcx: &PatCtxt<'_, '_, 'tcx>, ctor: &Constructor<'tcx>) {
fn apply_constructor(&mut self, pcx: &PlaceCtxt<'_, '_, Cx>, ctor: &Constructor<Cx>) {
let len = self.0.len();
let arity = ctor.arity(pcx);
let fields = self.0.drain((len - arity)..).rev().collect();
@ -1067,9 +1080,9 @@ impl<'tcx> WitnessStack<'tcx> {
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(Debug, Clone)]
struct WitnessMatrix<'tcx>(Vec<WitnessStack<'tcx>>);
struct WitnessMatrix<Cx: TypeCx>(Vec<WitnessStack<Cx>>);
impl<'tcx> WitnessMatrix<'tcx> {
impl<Cx: TypeCx> WitnessMatrix<Cx> {
/// New matrix with no witnesses.
fn empty() -> Self {
WitnessMatrix(vec![])
@ -1084,12 +1097,12 @@ impl<'tcx> WitnessMatrix<'tcx> {
self.0.is_empty()
}
/// Asserts that there is a single column and returns the patterns in it.
fn single_column(self) -> Vec<WitnessPat<'tcx>> {
fn single_column(self) -> Vec<WitnessPat<Cx>> {
self.0.into_iter().map(|w| w.single_pattern()).collect()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<'tcx>) {
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
for witness in self.0.iter_mut() {
witness.push_pattern(pat.clone())
}
@ -1098,9 +1111,9 @@ impl<'tcx> WitnessMatrix<'tcx> {
/// Reverses specialization by `ctor`. See the section on `unspecialize` at the top of the file.
fn apply_constructor(
&mut self,
pcx: &PatCtxt<'_, '_, 'tcx>,
missing_ctors: &[Constructor<'tcx>],
ctor: &Constructor<'tcx>,
pcx: &PlaceCtxt<'_, '_, Cx>,
missing_ctors: &[Constructor<Cx>],
ctor: &Constructor<Cx>,
report_individual_missing_ctors: bool,
) {
if self.is_empty() {
@ -1160,12 +1173,12 @@ impl<'tcx> WitnessMatrix<'tcx> {
/// - unspecialization, where we lift the results from the previous step into results for this step
/// (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(cx, is_top_level), ret)]
fn compute_exhaustiveness_and_usefulness<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
matrix: &mut Matrix<'p, 'tcx>,
#[instrument(level = "debug", skip(mcx, is_top_level), ret)]
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
mcx: MatchCtxt<'a, 'p, Cx>,
matrix: &mut Matrix<'a, 'p, Cx>,
is_top_level: bool,
) -> WitnessMatrix<'tcx> {
) -> WitnessMatrix<Cx> {
debug_assert!(matrix.rows().all(|r| r.len() == matrix.column_count()));
let Some(ty) = matrix.head_ty() else {
@ -1185,7 +1198,7 @@ fn compute_exhaustiveness_and_usefulness<'p, 'tcx>(
};
debug!("ty: {ty:?}");
let pcx = &PatCtxt { cx, ty, is_top_level };
let pcx = &PlaceCtxt { mcx, ty, is_scrutinee: is_top_level };
// Whether the place/column we are inspecting is known to contain valid data.
let place_validity = matrix.place_validity[0];
@ -1194,7 +1207,7 @@ fn compute_exhaustiveness_and_usefulness<'p, 'tcx>(
// Analyze the constructors present in this column.
let ctors = matrix.heads().map(|p| p.ctor());
let ctors_for_ty = &cx.ctors_for_ty(ty);
let ctors_for_ty = pcx.ctors_for_ty();
let is_integers = matches!(ctors_for_ty, ConstructorSet::Integers { .. }); // For diagnostics.
let split_set = ctors_for_ty.split(pcx, ctors);
let all_missing = split_set.present.is_empty();
@ -1228,7 +1241,7 @@ fn compute_exhaustiveness_and_usefulness<'p, 'tcx>(
// Dig into rows that match `ctor`.
let mut spec_matrix = matrix.specialize_constructor(pcx, &ctor);
let mut witnesses = ensure_sufficient_stack(|| {
compute_exhaustiveness_and_usefulness(cx, &mut spec_matrix, false)
compute_exhaustiveness_and_usefulness(mcx, &mut spec_matrix, false)
});
let counts_for_exhaustiveness = match ctor {
@ -1270,34 +1283,34 @@ fn compute_exhaustiveness_and_usefulness<'p, 'tcx>(
/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness {
pub enum Usefulness<'p, Cx: TypeCx> {
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
/// found to be redundant despite the overall arm being useful. Used only in the presence of
/// or-patterns, otherwise it stays empty.
Useful(Vec<Span>),
Useful(Vec<&'p DeconstructedPat<'p, Cx>>),
/// The arm is redundant and can be removed without changing the behavior of the match
/// expression.
Redundant,
}
/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, 'tcx> {
pub struct UsefulnessReport<'p, Cx: TypeCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
pub arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness)>,
pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
/// exhaustiveness.
pub non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
}
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(cx, arms), level = "debug")]
pub(crate) fn compute_match_usefulness<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
scrut_ty: Ty<'tcx>,
) -> UsefulnessReport<'p, 'tcx> {
let scrut_validity = ValidityConstraint::from_bool(cx.known_valid_scrutinee);
let mut matrix = Matrix::new(cx, arms, scrut_ty, scrut_validity);
pub fn compute_match_usefulness<'p, Cx: TypeCx>(
cx: MatchCtxt<'_, 'p, Cx>,
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: ValidityConstraint,
) -> UsefulnessReport<'p, Cx> {
let mut matrix = Matrix::new(cx.wildcard_arena, arms, scrut_ty, scrut_validity);
let non_exhaustiveness_witnesses = compute_exhaustiveness_and_usefulness(cx, &mut matrix, true);
let non_exhaustiveness_witnesses: Vec<_> = non_exhaustiveness_witnesses.single_column();
@ -1308,7 +1321,7 @@ pub(crate) fn compute_match_usefulness<'p, 'tcx>(
debug!(?arm);
// We warn when a pattern is not useful.
let usefulness = if arm.pat.is_useful() {
Usefulness::Useful(arm.pat.redundant_spans())
Usefulness::Useful(arm.pat.redundant_subpatterns())
} else {
Usefulness::Redundant
};

View File

@ -357,6 +357,7 @@ const PERMITTED_RUSTC_DEPENDENCIES: &[&str] = &[
"tracing-tree",
"twox-hash",
"type-map",
"typed-arena",
"typenum",
"unic-langid",
"unic-langid-impl",