Commit Graph

7992 Commits

Author SHA1 Message Date
bors
5926e82dd1 Auto merge of #124780 - Mark-Simulacrum:lockless-cache, r=lcnr
Improve VecCache under parallel frontend

This replaces the single Vec allocation with a series of progressively larger buckets. With the cfg for parallel enabled but with -Zthreads=1, this looks like a slight regression in i-count and cycle counts (~1%).

With the parallel frontend at -Zthreads=4, this is an improvement (-5% wall-time from 5.788 to 5.4688 on libcore) than our current Lock-based approach, likely due to reducing the bouncing of the cache line holding the lock. At -Zthreads=32 it's a huge improvement (-46%: 8.829 -> 4.7319 seconds).

try-job: i686-gnu-nopt
try-job: dist-x86_64-linux
2024-11-19 02:07:48 +00:00
bors
b71fb5edc0 Auto merge of #132460 - lcnr:questionable-uwu, r=compiler-errors
Use `TypingMode` throughout the compiler instead of `ParamEnv`

Hopefully the biggest single PR as part of https://github.com/rust-lang/types-team/issues/128.

## `infcx.typing_env` while defining opaque types

I don't know how'll be able to correctly handle opaque types when using something taking a `TypingEnv` while defining opaque types. To correctly handle the opaques we need to be able to pass in the current `opaque_type_storage` and return constraints, i.e. we need to use a proper canonical query. We should migrate all the queries used during HIR typeck and borrowck where this matters to proper canonical queries. This is

## `layout_of` and `Reveal::All`

We convert the `ParamEnv` to `Reveal::All` right at the start of the `layout_of` query, so I've changed callers of `layout_of` to already use a post analysis `TypingEnv` when encountering it.

ca87b535a0/compiler/rustc_ty_utils/src/layout.rs (L51)

## `Ty::is_[unpin|sized|whatever]`

I haven't migrated `fn is_item_raw` to use `TypingEnv`, will do so in a followup PR, this should significantly reduce the amount of `typing_env.param_env`. At some point there will probably be zero such uses as using the type system while ignoring the `typing_mode` is incorrect.

## `MirPhase` and phase-transitions

When inside of a MIR-body, we can mostly use its `MirPhase` to figure out the right `typing_mode`. This does not work during phase transitions, most notably when transitioning from `Analysis` to `Runtime`:

dae7ac133b/compiler/rustc_mir_transform/src/lib.rs (L606-L625)

All these passes still run with `MirPhase::Analysis`, but we should only use `Reveal::All` once we're run the `RevealAll` pass. This required me to manually construct the right `TypingEnv` in all these passes. Given that it feels somewhat easy to accidentally miss this going forward, I would maybe like to change `Body::phase` to an `Option` and replace it at the start of phase transitions. This then makes it clear that the MIR is currently in a weird state.

r? `@ghost`
2024-11-18 21:07:05 +00:00
Ralf Jung
c6974344a5 interpret: do not ICE when a promoted fails with OOM 2024-11-18 20:48:03 +01:00
Guillaume Gomez
86ba13ba2f
Rollup merge of #133157 - RalfJung:skip_stability_check_due_to_privacy, r=compiler-errors
stability: remove skip_stability_check_due_to_privacy

This was added in https://github.com/rust-lang/rust/pull/38689 to deal with https://github.com/rust-lang/rust/issues/38412. However, even after removing the check, the relevant tests still pass. Let's see if CI finds any other tests that rely on this. If not, it seems like logic elsewhere in the compiler changed so this is not required any more.
2024-11-18 17:17:42 +01:00
lcnr
2e087d2eaa review 2024-11-18 10:50:14 +01:00
lcnr
9cba14b95b use TypingEnv when no infcx is available
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
2024-11-18 10:38:56 +01:00
Ralf Jung
b07ed6ab16 stability: remove skip_stability_check_due_to_privacy 2024-11-18 08:07:46 +01:00
Ralf Jung
9d4b1b2db4 rename rustc_const_stable_intrinsic -> rustc_intrinsic_const_stable_indirect 2024-11-18 07:47:44 +01:00
Esteban Küber
912ee65ccd review comment: modify doc comment 2024-11-17 23:40:00 +00:00
Esteban Küber
bb37e5d3cd review comments 2024-11-17 23:40:00 +00:00
Esteban Küber
f563efec15 Unify expanded constants and named constants in PatKind 2024-11-17 23:40:00 +00:00
Esteban Küber
c25b44bee9 Fold PatKind::NamedConstant into PatKind::Constant 2024-11-17 23:39:59 +00:00
Esteban Küber
ff2f7a7a83 Point at const definition when used instead of a binding in a let statement
After:

```
error[E0005]: refutable pattern in local binding
  --> $DIR/bad-pattern.rs:19:13
   |
LL |     const PAT: u32 = 0;
   |     -------------- missing patterns are not covered because `PAT` is interpreted as a constant pattern, not a new variable
...
LL |         let PAT = v1;
   |             ^^^
   |             |
   |             pattern `1_u32..=u32::MAX` not covered
   |             help: introduce a variable instead: `PAT_var`
   |
   = note: `let` bindings require an "irrefutable pattern", like a `struct` or an `enum` with only one variant
   = note: for more information, visit https://doc.rust-lang.org/book/ch18-02-refutability.html
   = note: the matched value is of type `u32`
```

Before:

```
error[E0005]: refutable pattern in local binding
  --> $DIR/bad-pattern.rs:19:13
   |
LL |         let PAT = v1;
   |             ^^^
   |             |
   |             pattern `1_u32..=u32::MAX` not covered
   |             missing patterns are not covered because `PAT` is interpreted as a constant pattern, not a new variable
   |             help: introduce a variable instead: `PAT_var`
   |
   = note: `let` bindings require an "irrefutable pattern", like a `struct` or an `enum` with only one variant
   = note: for more information, visit https://doc.rust-lang.org/book/ch18-02-refutability.html
   = note: the matched value is of type `u32`
```
2024-11-17 23:39:59 +00:00
bors
ee4a56e353 Auto merge of #132566 - saethlin:querify-mir-collection, r=cjgillot
Querify MonoItem collection

Factored out of https://github.com/rust-lang/rust/pull/131650. These changes are required for post-mono MIR opts, because the previous implementation would load the MIR for every Instance that we traverse (as well as invoke queries on it). The cost of that would grow massively with post-mono MIR opts because we'll need to load new MIR for every Instance, instead of re-using the `optimized_mir` for every Instance with the same DefId.

So the approach here is to add two new queries, `items_of_instance` and `size_estimate`, which contain the specific information about an Instance's MIR that MirUsedCollector and CGU partitioning need, respectively. Caching these significantly increases the size of the query cache, but that's justified by our improved incrementality (I'm sure walking all the MIR for a huge crate scales quite poorly).

This also changes `MonoItems` into a type that will retain the traversal order (otherwise we perturb a bunch of diagnostics), and will also eliminate duplicate findings. Eliminating duplicates removes about a quarter of the query cache size growth.

The perf improvements in this PR are inflated because rustc-perf uses `-Zincremental-verify-ich`, which makes loading MIR a lot slower because MIR contains a lot of Spans and computing the stable hash of a Span is slow. And the primary goal of this PR is to load less MIR. Some squinting at `collector profile_local perf-record +stage1` runs suggests the magnitude of the improvements in this PR would be decreased by between a third and a half if that flag weren't being used. Though this effect may apply to the regressions too since most are incr-full and this change also causes such builds to encode more Spans.
2024-11-17 06:39:47 +00:00
Mark Rousskov
da58efb11d Improve VecCache under parallel frontend
This replaces the single Vec allocation with a series of progressively
larger buckets. With the cfg for parallel enabled but with -Zthreads=1,
this looks like a slight regression in i-count and cycle counts (<0.1%).

With the parallel frontend at -Zthreads=4, this is an improvement (-5%
wall-time from 5.788 to 5.4688 on libcore) than our current Lock-based
approach, likely due to reducing the bouncing of the cache line holding
the lock. At -Zthreads=32 it's a huge improvement (-46%: 8.829 -> 4.7319
seconds).
2024-11-15 18:20:32 -05:00
Guillaume Gomez
b3e2981ff7
Rollup merge of #132978 - WaffleLapkin:very-semantic-change-kind, r=compiler-errors
Mention both release *and* edition breakage for never type lints

This PR makes ~~two changes~~ a change to the never type lints (`dependency_on_unit_never_type_fallback` and `never_type_fallback_flowing_into_unsafe`):
1.  Change the wording of the note to mention that the breaking change will be made in an edition _and_ in a future release
2. ~~Make these warnings be reported in deps (hopefully the lints are matured enough)~~

r? ``@compiler-errors``
cc ``@ehuss``
closes #132930
2024-11-15 23:38:10 +01:00
Maybe Lapkin
673bb5e3ff
Mark never_type_fallback_flowing_into_unsafe as a semantic change
...rather than a future error
2024-11-14 06:01:14 +01:00
Maybe Lapkin
46967bd2e9
Mention both release *and* edition breakage for never type lints 2024-11-14 01:32:54 +01:00
Boxy
6dad074907 Handle infer vars in anon consts on stable 2024-11-12 21:36:42 +00:00
Ben Kimock
f6e913b259 Querify MonoItem collection 2024-11-12 14:48:10 -05:00
bors
6503543d11 Auto merge of #132282 - Noratrieb:it-is-the-end-of-serial, r=cjgillot
Delete the `cfg(not(parallel))` serial compiler

Since it's inception a long time ago, the parallel compiler and its cfgs have been a maintenance burden. This was a necessary evil the allow iteration while not degrading performance because of synchronization overhead.

But this time is over. Thanks to the amazing work by the parallel working group (and the dyn sync crimes), the parallel compiler has now been fast enough to be shipped by default in nightly for quite a while now.
Stable and beta have still been on the serial compiler, because they can't use `-Zthreads` anyways.
But this is quite suboptimal:
- the maintenance burden still sucks
- we're not testing the serial compiler in nightly

Because of these reasons, it's time to end it. The serial compiler has served us well in the years since it was split from the parallel one, but it's over now.

Let the knight slay one head of the two-headed dragon!

#113349

Note that the default is still 1 thread, as more than 1 thread is still fairly broken.

cc `@onur-ozkan` to see if i did the bootstrap field removal correctly, `@SparrowLii` on the sync parts
2024-11-12 15:14:56 +00:00
Noratrieb
505b8e1332 Delete the cfg(not(parallel)) serial compiler
Since it's inception a long time ago, the parallel compiler and its cfgs
have been a maintenance burden. This was a necessary evil the allow
iteration while not degrading performance because of synchronization
overhead.

But this time is over. Thanks to the amazing work by the parallel
working group (and the dyn sync crimes), the parallel compiler has now
been fast enough to be shipped by default in nightly for quite a while
now.
Stable and beta have still been on the serial compiler, because they
can't use `-Zthreads` anyways.
But this is quite suboptimal:
- the maintenance burden still sucks
- we're not testing the serial compiler in nightly

Because of these reasons, it's time to end it. The serial compiler has
served us well in the years since it was split from the parallel one,
but it's over now.

Let the knight slay one head of the two-headed dragon!
2024-11-12 13:38:58 +00:00
bors
583b25d8d1 Auto merge of #132843 - RalfJung:mono-time-checks, r=lcnr
move all mono-time checks into their own folder, and their own query

The mono item collector currently also drives two mono-time checks: the lint for "large moves", and the check whether function calls are done with all the required target features.

Instead of doing this "inside" the collector, this PR refactors things so that we have a new `rustc_monomorphize::mono_checks` module providing a per-instance query that does these checks. We already have a per-instance query for the ABI checks, so this should be "free" for incremental builds. Non-incremental builds might do a bit more work now since we now have two separate MIR visits (in the collector and the mono-time checks) -- but one of them is cached in case the MIR doesn't change, which is nice.

This slightly changes behavior of the large-move check since the "move_size_spans" deduplication logic now only works per-instance, not globally across the entire collector.

Cc `@saethlin` since you're also doing some work related to queries and caching and monomorphization, though I don't know if there's any interaction here.
2024-11-12 11:24:46 +00:00
bors
5700240aff Auto merge of #132943 - matthiaskrgr:rollup-164l3ej, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #132651 (Remove attributes from generics in built-in derive macros)
 - #132668 (Feature gate yield expressions not in 2024)
 - #132771 (test(configure): cover `parse_args` in `src/bootstrap/configure.py`)
 - #132895 (Generalize `NonNull::from_raw_parts` per ACP362)
 - #132914 (Update grammar in std::cell docs.)
 - #132927 (Consolidate type system const evaluation under `traits::evaluate_const`)
 - #132935 (Make sure to ignore elided lifetimes when pointing at args for fulfillment errors)
 - #132941 (Subtree update of `rust-analyzer`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-11-12 08:15:38 +00:00
Matthias Krüger
ea61714d52
Rollup merge of #132927 - BoxyUwU:consolidate_type_system_const_eval, r=compiler-errors
Consolidate type system const evaluation under `traits::evaluate_const`

Part of #130704

Fixes #128232
Fixes #118545

Removes `ty::Const::{normalize_internal, eval_valtree}` and `InferCtxt::(try_)const_eval_resolve`, consolidating the associated logic into `evaluate_const` in `rustc_trait_selection`. This results in an API for `ty::Const` that is free of any normalization/evaluation functions that would be incorrect to use under `min_generic_const_args`/`associated_const_equality`/`generic_const_exprs` or, more generally, that would be incorrect to use in the presence of generic type system constants.

Moving this logic to `rustc_trait_selection` and out of `rustc_middle` is also a pre-requisite for ensuring that we do not evaluate constants whose where clauses do not hold.

From this point it should be relatively simple (hah) to implement more complex normalization of type system constants such as: checking wf'ness before invoking CTFE machinery, or being able to normalize const aliases that still refer to generic parameters.

r? `@compiler-errors`
2024-11-12 08:07:18 +01:00
Matthias Krüger
2ad4a3568d
Rollup merge of #132627 - adwinwhite:thir_body_cleanup, r=compiler-errors
cleanup: Remove outdated comment of `thir_body`

When typeck fails, `thir_body` returns `ErrorGuaranteed` rather than empty body.

No other code follows this outdated description except `check_unsafety`, which is also cleaned up in this PR.
2024-11-12 06:27:17 +01:00
Boxy
bea0148ac6 Consolidate type system const evaluation under traits::evaluate_const
mew
2024-11-12 02:54:03 +00:00
Matthias Krüger
b41baf8c81
Rollup merge of #132912 - fmease:simplify-gen-param-default-users, r=compiler-errors
Simplify some places that deal with generic parameter defaults
2024-11-11 21:58:33 +01:00
León Orell Valerian Liehr
d0ddba3d5b
Simplify some places that deal with generic parameter defaults 2024-11-11 21:29:18 +01:00
bors
3a258d1cf9 Auto merge of #132854 - RalfJung:query-key-limit, r=compiler-errors
query/plumbing: adjust comment to reality

The limit for the query key size got changed recently in f51ec110a7 but the comment was not updated.

Though maybe it is time to intern `CanonicalTypeOpAscribeUserTypeGoal` rather than copying it everywhere?

r? `@lcnr`
2024-11-11 05:17:13 +00:00
Matthias Krüger
b95232dabb
Rollup merge of #132675 - Zalathar:empty-spans, r=jieyouxu
coverage: Restrict empty-span expansion to only cover `{` and `}`

Coverage instrumentation has some tricky code for converting a coverage-relevant `Span` into a set of start/end line/byte-column coordinates that will be embedded in the CGU's coverage metadata.

A big part of this complexity is special code for handling empty spans, which are expanded into non-empty spans (if possible) because LLVM's coverage reporter does not handle empty spans well.

This PR simplifies that code by restricting it to only apply in two specific situations: when the character after the empty span is `{`, or the character before the empty span is `}`.

(As an added benefit, this means that the expanded spans no longer extend awkwardly beyond the end of a physical line, which was common under the previous implementation.)

Along the way, this PR also removes some unhelpful code for dealing with function source code spread across multiple files. Functions currently can't have coverage spans in multiple files, and if that ever changes (e.g. to properly support expansion regions) then this code will need to be completely overhauled anyway.
2024-11-10 17:43:07 +01:00
Ralf Jung
c8058c81bf query/plumbing: adjust comment to reality 2024-11-10 15:13:33 +01:00
Ralf Jung
23054c5dfc move all mono-time checks into their own folder, and their own query 2024-11-10 12:12:12 +01:00
bors
668959740f Auto merge of #132831 - workingjubilee:rollup-6fdif44, r=workingjubilee
Rollup of 6 pull requests

Successful merges:

 - #131258 (Stabilize s390x inline assembly)
 - #132801 (interpret: get_alloc_info: also return mutability)
 - #132823 (require const_impl_trait gate for all conditional and trait const calls)
 - #132824 (Update grammar in wasm-c-abi's compiler flag documentation)
 - #132825 (Exclude relnotes-tracking-issue from needs-triage)
 - #132828 (Additional tests to ensure let is rejected during parsing)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-11-10 05:54:13 +00:00
Jubilee
61f51931b2
Rollup merge of #132801 - RalfJung:alloc-mutability, r=oli-obk
interpret: get_alloc_info: also return mutability

This will be needed for https://github.com/rust-lang/miri/pull/3971

This then tuned into a larger refactor where we introduce a new type for the `get_alloc_info` return data, and we move some code to methods on `GlobalAlloc` to avoid duplicating it between the validity check and `get_alloc_info`.
2024-11-09 20:28:43 -08:00
bors
7660aed73d Auto merge of #132173 - veluca93:abi_checks, r=RalfJung,compiler-errors
Emit warning when calling/declaring functions with unavailable vectors.

On some architectures, vector types may have a different ABI depending on whether the relevant target features are enabled. (The ABI when the feature is disabled is often not specified, but LLVM implements some de-facto ABI.)

As discussed in rust-lang/lang-team#235, this turns out to very easily lead to unsound code.

This commit makes it a post-monomorphization future-incompat warning to declare or call functions using those vector types in a context in which the corresponding target features are disabled, if using an ABI for which the difference is relevant. This ensures that these functions are always called with a consistent ABI.

See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187) for more discussion.

Part of #116558

r? RalfJung
2024-11-10 02:52:25 +00:00
Matthias Krüger
3aa1a24799
Rollup merge of #132799 - zachs18:str-primitive-symbol, r=compiler-errors
Make `Ty::primitive_symbol` recognize `str`

Make `Ty::primitive_symbol` recognize `str`, which makes `str` eligible for the "expected primitive, found local type" (and vice versa) [diagnostic](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/error_reporting/infer/mod.rs#L1430-L1437) that already exists for other primitives.

<details><summary> diagnostic difference</summary>

```rs
#[allow(non_camel_case_types)]
struct str;

fn foo() {
    let _: &str = "hello";
    let _: &core::primitive::str = &str;
}
```

`rustc --crate-type lib --edition 2021 a.rs`

Current nightly:

```rs
error[E0308]: mismatched types
 --> a.rs:5:19
  |
5 |     let _: &str = "hello";
  |            ----   ^^^^^^^ expected `str`, found a different `str`
  |            |
  |            expected due to this
  |
  = note: expected reference `&str`
             found reference `&'static str`

error[E0308]: mismatched types
 --> a.rs:6:36
  |
6 |     let _: &core::primitive::str = &str;
  |            ---------------------   ^^^^ expected `str`, found a different `str`
  |            |
  |            expected due to this
  |
  = note: expected reference `&str` (`str`)
             found reference `&str` (`str`)

error: aborting due to 2 previous errors

For more information about this error, try `rustc --explain E0308`.
```

With this patch:

```rs
error[E0308]: mismatched types
 --> a.rs:5:19
  |
5 |     let _: &str = "hello";
  |            ----   ^^^^^^^ expected `str`, found a different `str`
  |            |
  |            expected due to this
  |
  = note: str and `str` have similar names, but are actually distinct types
  = note: str is a primitive defined by the language
note: `str` is defined in the current crate
 --> a.rs:2:1
  |
2 | struct str;
  | ^^^^^^^^^^

error[E0308]: mismatched types
 --> a.rs:6:36
  |
6 |     let _: &core::primitive::str = &str;
  |            ---------------------   ^^^^ expected `str`, found a different `str`
  |            |
  |            expected due to this
  |
  = note: str and `str` have similar names, but are actually distinct types
  = note: str is a primitive defined by the language
note: `str` is defined in the current crate
 --> a.rs:2:1
  |
2 | struct str;
  | ^^^^^^^^^^

error: aborting due to 2 previous errors

For more information about this error, try `rustc --explain E0308`.
```

</details>
2024-11-09 19:16:46 +01:00
bjorn3
8e9bbc899c Move some code from Compiler::enter to GlobalCtxt::finish 2024-11-09 17:55:39 +00:00
Ralf Jung
4a54ec8c18 make return type of get_alloc_info a struct, and reduce some code duplication with validity checking 2024-11-09 15:18:52 +01:00
Matthias Krüger
6e05afd744
Rollup merge of #132745 - RalfJung:pointee-info-inside-enum, r=DianQK
pointee_info_at: fix logic for recursing into enums

Fixes https://github.com/rust-lang/rust/issues/131834

The logic in `pointee_info_at` was likely written at a time when the null pointer optimization was the *only* enum layout optimization -- and as `Variant::Multiple` kept getting expanded, nobody noticed that the logic is now unsound.

The job of this function is to figure out whether there is a dereferenceable-or-null and aligned pointer at a given offset inside a type. So when we recurse into a multi-variant enum, we better make sure that all the other enum variants must be null! This is the part that was forgotten, and this PR adds it.

The reason this didn't explode in many ways so far is that our references only have 1 niche value (null), so it's not possible on stable to have a multi-variant enum with a dereferenceable pointer and other enum variants that are not null. But with `rustc_layout_scalar_valid_range` attributes one can force such a layout, and if `@the8472's` work on alignment niches ever lands, that will make this possible on stable.
2024-11-09 10:52:03 +01:00
Zachary S
d37e6dfee8 Add str to "expected primitive, found type" diagnostic 2024-11-09 00:18:47 -06:00
Jubilee
7a4970476e
Rollup merge of #132757 - compiler-errors:yeet-check-wf, r=lcnr
Get rid of `check_opaque_type_well_formed`

Instead, replicate it by improving the span of the opaque in `check_opaque_meets_bounds`.

This has two consequences:
1. We now prefer "concrete type differs" errors, since we'll hit those first before we check the opaque is WF.
2. Spans have gotten slightly worse.

Specifically, (2.) could be improved by adding a new obligation cause that explains that the definition's environment has stronger assumptions than the declaration.

r? lcnr
2024-11-08 20:46:12 -08:00
Michael Goulet
13ab08d7dc Do not reveal opaques in the param-env, we got lazy norm instead 2024-11-09 03:55:07 +00:00
Zalathar
996bdabc2a coverage: Remove unhelpful code for handling multiple files per function
Functions currently can't have mappings in multiple files, and if that ever
changes (e.g. to properly support expansion regions), this code will need to be
completely overhauled anyway.
2024-11-08 20:43:08 +11:00
Ralf Jung
e3010e84db remove support for rustc_safe_intrinsic attribute; use rustc_intrinsic functions instead 2024-11-08 09:16:00 +01:00
Ralf Jung
35a913b968 pointee_info_at: fix logic for recursing into enums 2024-11-08 07:35:29 +01:00
Michael Goulet
97dfe8b871 Manually register some bounds for a better span 2024-11-08 04:56:08 +00:00
Jubilee
4036472749
Rollup merge of #132131 - celinval:smir-crate-defs, r=compiler-errors
[StableMIR] API to retrieve definitions from crates

Add functions to retrieve function definitions and static items from all crates (local and external).

For external crates, we're still missing items from trait implementation and primitives.

r? ````@compiler-errors:```` Do you know what is the best way to retrieve the associated items for primitives and trait implementations for external crates? Thanks!
2024-11-07 18:48:22 -08:00
Celina G. Val
0ce579f6f3 [StableMIR] API to retrieve definitions from crates
Add functions to retrieve function definitions and static items from
all crates (local and external).

For external crates, add a query to retrieve the number of defs in a
foreign crate.
2024-11-07 13:11:46 -08:00
Matthias Krüger
fd41a373f3
Rollup merge of #132734 - RalfJung:platform-intrinsic, r=compiler-errors
remove 'platform-intrinsic' ABI leftovers

This was removed a while ago, but some parts haven't been fully cleaned up.
2024-11-07 18:19:38 +01:00
Ralf Jung
fa0b97268a remove 'platform-intrinsic' ABI leftovers 2024-11-07 17:42:49 +01:00
Esteban Küber
dceb3fc9fa Tweak E0320 overflow error wording
Surrount type with backticks as we should in every error.
2024-11-05 21:54:45 +00:00
bors
e8c698bb3b Auto merge of #129884 - RalfJung:forbidden-target-features, r=workingjubilee
mark some target features as 'forbidden' so they cannot be (un)set with -Ctarget-feature

The context for this is https://github.com/rust-lang/rust/issues/116344: some target features change the way floats are passed between functions. Changing those target features is unsound as code compiled for the same target may now use different ABIs.

So this introduces a new concept of "forbidden" target features (on top of the existing "stable " and "unstable" categories), and makes it a hard error to (un)set such a target feature. For now, the x86 and ARM feature `soft-float` is on that list. We'll have to make some effort to collect more relevant features, and similar features from other targets, but that can happen after the basic infrastructure for this landed. (These features are being collected in https://github.com/rust-lang/rust/issues/131799.)

I've made this a warning for now to give people some time to speak up if this would break something.

MCP: https://github.com/rust-lang/compiler-team/issues/780
2024-11-05 16:25:45 +00:00
bors
096277e989 Auto merge of #132580 - compiler-errors:globs, r=Noratrieb
Remove unnecessary pub enum glob-imports from `rustc_middle::ty`

We used to have an idiom in the compiler where we'd prefix or suffix all the variants of an enum, for example `BoundRegionKind`, with something like `Br`, and then *glob-import* that enum variant directly.

`@noratrieb` brought this up, and I think that it's easier to read when we just use the normal style `EnumName::Variant`.

This PR is a bit large, but it's just naming.

The only somewhat opinionated change that this PR does is rename `BorrowKind::Imm` to `BorrowKind::Immutable` and same for the other variants. I think these enums are used sparingly enough that the extra length is fine.

r? `@noratrieb` or reassign
2024-11-05 08:30:56 +00:00
Adwin White
15a71b64b8 cleanup: Remove outdated comment and logic of thir_body 2024-11-05 12:41:52 +08:00
Ralf Jung
a741b33c14 when an intrinsic has a const-stable fallback body, we can easily expose it on stable 2024-11-04 23:27:46 +01:00
Ralf Jung
1f0ed2b0f5 add new rustc_const_stable_intrinsic attribute for const-stable intrinsics 2024-11-04 23:27:46 +01:00
Ralf Jung
ffad9aac27 mark some target features as 'forbidden' so they cannot be (un)set
For now, this is just a warning, but should become a hard error in the future
2024-11-04 22:56:47 +01:00
Matthias Krüger
b9db639ea5
Rollup merge of #132544 - dianne:unstable-library-feature-backticks, r=compiler-errors
Use backticks instead of single quotes for library feature names in diagnostics

This PR changes the text of library feature errors for using unstable or body-unstable items. Displaying library feature names in backticks is consistent with other diagnostics (e.g. those from `rustc_passes`) and with the `reason`s on unstable attributes in the library. Additionally, this simplifies diagnostics when supporting multiple unstable attributes on items (see #131824) since `DiagSymbolList` also displays symbols using backticks.
2024-11-04 18:12:46 +01:00
Michael Goulet
e03e9abe3c Register const preds for Deref adjustments in HIR typeck 2024-11-04 04:51:31 +00:00
Michael Goulet
d458f850aa ty::BrK -> ty::BoundRegionKind::K 2024-11-04 04:45:52 +00:00
Michael Goulet
883f8705d4 Remove BorrowKind glob, make names longer 2024-11-04 04:45:52 +00:00
Michael Goulet
be4b0261c2 ty::KContainer -> ty::AssocItemContainer::K 2024-11-04 04:45:52 +00:00
Michael Goulet
8e6af16192 Remove the trivial constkind imports 2024-11-04 04:45:51 +00:00
Jubilee
72df7780dd
Rollup merge of #132574 - workingjubilee:abi-in-compiler, r=compiler-errors
compiler: Directly use rustc_abi almost everywhere

Use rustc_abi instead of rustc_target where applicable. This is mostly described by the following substitutions:
```rust
match path_substring {
    rustc_target::spec::abi::Abi => rustc_abi::ExternAbi,
    rustc_target::abi::call => rustc_target::callconv,
    rustc_target::abi => rustc_abi,
}
```

A number of spot-fixes make that not quite the whole story.

The main exception is in 33edc68 where I get a lot more persnickety about how things are imported, especially in `rustc_middle::ty::layout`, not just from where. This includes putting an end to a reexport of `rustc_middle::ty::ReprOptions`, for the same reason that the rest of this change is happening: reexports mostly confound things.

This notably omits rustc_passes and the ast crates, as I'm still examining a question I have about how they do stability checking of `extern "Abi"` strings and if I can simplify their logic. The rustc_abi and rustc_target crates also go untouched because they will be entangled in that cleanup.

r? compiler-errors
2024-11-03 15:25:00 -08:00
dianne
d7d6238b23 use backticks instead of single quotes when reporting "use of unstable library feature"
This is consistent with all other diagnostics I could find containing
features and enables the use of `DiagSymbolList` for generalizing
diagnostics for unstable library features to multiple features.
2024-11-03 13:55:52 -08:00
Jubilee Young
236fe33345 compiler: Directly use rustc_abi in metadata and middle
Stop reexporting ReprOptions from middle::ty
2024-11-03 13:38:47 -08:00
Michael Goulet
6b96103bf3 Rename the FIXMEs, remove a few that dont matter anymore 2024-11-03 18:59:41 +00:00
Esteban Küber
c6017badb4 Fix type shortening writing to file
Make sure that we append to the file for long ty paths. Do not write the same type more than once. Shorten the calculated width a bit.
2024-11-02 03:08:04 +00:00
Luca Versari
c8b76bcf58 Emit warning when calling/declaring functions with unavailable vectors.
On some architectures, vector types may have a different ABI depending
on whether the relevant target features are enabled. (The ABI when the
feature is disabled is often not specified, but LLVM implements some
de-facto ABI.)

As discussed in rust-lang/lang-team#235, this turns out to very easily
lead to unsound code.

This commit makes it a post-monomorphization future-incompat warning to
declare or call functions using those vector types in a context in which
the corresponding target features are disabled, if using an ABI for
which the difference is relevant. This ensures that these functions are
always called with a consistent ABI.

See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187)
for more discussion.

Part of #116558
2024-11-01 22:24:35 +01:00
bjorn3
760338526f Show actual MIR when MIR building forgot to terminate block
This makes it significantly easier to debug bugs of this kind.
2024-11-01 11:24:14 +01:00
Jubilee
c57b351d38
Rollup merge of #132403 - lcnr:typing-mode, r=compiler-errors
continue `TypingMode` refactor

There are still quite a few places which (indirectly) rely on the `Reveal` of a `ParamEnv`, but we're slowly getting there

r? `@compiler-errors`
2024-10-31 17:50:43 -07:00
lcnr
2cde638ac0 stop using ParamEnv::reveal while handling MIR 2024-10-31 14:55:53 +01:00
lcnr
aab149b58c ConstCx stop using ParamEnv::reveal 2024-10-31 12:43:22 +01:00
bors
9ccfedf186 Auto merge of #132301 - compiler-errors:adjust, r=lcnr
Remove region from adjustments

It's not necessary to store this region, because it's only used in THIR and MemCat/ExprUse, both of which already basically only deal with erased regions anyways.
2024-10-31 10:17:49 +00:00
bors
c8b83785dc Auto merge of #131186 - compiler-errors:precise-capturing-borrowck, r=estebank
Try to point out when edition 2024 lifetime capture rules cause borrowck issues

Lifetime capture rules in 2024 are modified to capture more lifetimes, which sometimes lead to some non-local borrowck errors. This PR attempts to link these back together with a useful note pointing out the capture rule changes.

This is not a blocking concern, but I'd appreciate feedback (though, again, I'd like to stress that I don't want to block this PR on this): I'm worried about this note drowning in the sea of other diagnostics that borrowck emits. I was tempted to change the level of the note to `.span_warn` just so it would show up in a different color. Thoughts?

Fixes #130545

Opening as a draft first since it's stacked on #131183.
r? `@ghost`
2024-10-31 03:36:06 +00:00
Michael Goulet
c1457798db Try to point out when edition 2024 lifetime capture rules cause borrowck issues 2024-10-31 01:35:14 +00:00
Michael Goulet
e093b82a41 Encode cross-crate opaque type origin 2024-10-31 01:35:13 +00:00
bors
75eff9a574 Auto merge of #132377 - matthiaskrgr:rollup-3p1c6hs, r=matthiaskrgr
Rollup of 3 pull requests

Successful merges:

 - #132368 (Remove `do_not_const_check` from `Iterator` methods)
 - #132373 (Make sure `type_param_predicates` resolves correctly for RPITIT)
 - #132374 (Remove dead code stemming from the old effects desugaring)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-31 00:46:22 +00:00
León Orell Valerian Liehr
a6bbdf0fd4
Remove dead code stemming from the old effects desugaring 2024-10-30 23:55:13 +01:00
Jubilee
7b19508abe
Rollup merge of #132344 - compiler-errors:same-thing, r=lcnr
Merge `HostPolarity` and `BoundConstness`

They're basically the same thing, and I think `BoundConstness` is easier to use.

r? fee1-dead or reassign
2024-10-30 14:01:38 -07:00
Jubilee
847b6fe6b0
Rollup merge of #132246 - workingjubilee:campaign-on-irform, r=compiler-errors
Rename `rustc_abi::Abi` to `BackendRepr`

Remove the confabulation of `rustc_abi::Abi` with what "ABI" actually means by renaming it to `BackendRepr`, and rename `Abi::Aggregate` to `BackendRepr::Memory`. The type never actually represented how things are passed, as that has to have `PassMode` considered, at minimum, but rather it just is how we represented some things to the backend. This conflation arose because LLVM, the primary backend at the time, would lower certain IR forms using certain ABIs. Even that only somewhat was true, as it broke down when one ventured significantly afield of what is described by the System V AMD64 ABI either by using different architectures, ABI-modifying IR annotations, the same architecture **with different ISA extensions enabled**, or other... unexpected delights.

Unfortunately both names are still somewhat of a misnomer right now, as people have written code for years based on this misunderstanding. Still, their original names are even moreso, and for better or worse, this backend code hasn't received as much maintenance as the rest of the compiler, lately. Actually arriving at a correct end-state will simply require us to disentangle a lot of code in order to fix, much of it pointlessly repeated in several places. Thus this is not an "actual fix", just a way to deflect further misunderstandings.
2024-10-30 14:01:37 -07:00
Michael Goulet
802f3a78a6 Merge HostPolarity and BoundConstness 2024-10-30 16:23:16 +00:00
Camille GILLOT
b6e1214ac0 Remap impl-trait lifetimes on HIR instead of AST lowering. 2024-10-30 16:18:50 +00:00
Jubilee Young
7086dd83cc compiler: rustc_abi::Abi => BackendRepr
The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.

Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
  we "actually" want this value to be handled, so we leave the backend
  interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
  others it is in fact using memory, and in some cases it is a scalar!

Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
2024-10-29 14:56:00 -07:00
lcnr
f51ec110a7 TypingMode 🤔 2024-10-29 17:01:24 +01:00
Jubilee
5d0f52efa4
Rollup merge of #131375 - klensy:clone_on_ref_ptr, r=cjgillot
compiler: apply clippy::clone_on_ref_ptr for CI

Apply lint https://rust-lang.github.io/rust-clippy/master/index.html#/clone_on_ref_ptr for compiler, also see https://github.com/rust-lang/rust/pull/131225#discussion_r1790109443.

Some Arc's can be misplaced with Lrc's, sorry.

https://rust-lang.zulipchat.com/#narrow/channel/131828-t-compiler/topic/enable.20more.20clippy.20lints.20for.20compiler.20.28and.5Cor.20std.29
2024-10-29 03:11:39 -07:00
Michael Goulet
599ffab6cd Remove region from adjustments 2024-10-29 01:34:06 +00:00
Jubilee
259ddf9b50
Rollup merge of #132255 - workingjubilee:layout-is-🏚️, r=compiler-errors
Add `LayoutS::is_uninhabited` and use it

Use accessors for the things that accessors are good at: reducing everyone's need to be nosy and peek at the internals of every data structure.
2024-10-28 10:18:50 -07:00
Jubilee Young
88a9edc091 compiler: Add is_uninhabited and use LayoutS accessors
This reduces the need of the compiler to peek on the fields of LayoutS.
2024-10-28 09:58:30 -07:00
klensy
746b675c5a fix clippy::clone_on_ref_ptr for compiler 2024-10-28 18:05:08 +03:00
Matthias Krüger
a4acbd561b
Rollup merge of #132252 - workingjubilee:rename-layouts-to-layoutdata, r=jieyouxu
compiler: rename LayoutS to LayoutData

Bid `LayoutS` goodbye because it looks like a typo.

`LayoutS` is the last of the types that use the "`{TypeName}` is the interned type, `{TypeName}S` is the backing data that is interned" convention. This is pretty confusing to those not intimately familiar with the history of rustc's names for its types over time, and doubly so now that there are no other examples in the tree. Abolish this convention.
2024-10-28 12:14:59 +01:00
Jubilee Young
e1781297f3 compiler: Rename LayoutS to LayoutData
The last {UninternedType}S is in captivity. The galaxy is at peace.
2024-10-27 22:31:14 -07:00
Michael Goulet
7f54b9ecef Remove ObligationCause::span() method 2024-10-27 23:54:06 +00:00
Michael Goulet
2507e83d7b Stop using the whole match expr span for an arm's obligation span 2024-10-27 22:48:03 +00:00
bors
4d88de2acd Auto merge of #125116 - blyxyas:ignore-allowed-lints-final, r=cjgillot
(Big performance change) Do not run lints that cannot emit

Before this change, adding a lint was a difficult matter because it always had some overhead involved. This was because all lints would run, no matter their default level, or if the user had `#![allow]`ed them. This PR changes that. This change would improve both the Rust lint infrastructure and Clippy, but Clippy will see the most benefit, as it has about 900 registered lints (and growing!)

So yeah, with this little patch we filter all lints pre-linting, and remove any lint that is either:
- Manually `#![allow]`ed in the whole crate,
- Allowed in the command line, or
- Not manually enabled with `#[warn]` or similar, and its default level is `Allow`

As some lints **need** to run, this PR also adds **loadbearing lints**. On a lint declaration, you can use the ``@eval_always` = true` marker to label it as loadbearing. A loadbearing lint will never be filtered (it will always run)

Fixes #106983
2024-10-26 16:37:43 +00:00
Matthias Krüger
56463df1be
Rollup merge of #132168 - fee1-dead-contrib:fxclean, r=compiler-errors
Effects cleanup

- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers

r? compiler-errors
2024-10-26 06:29:48 +02:00
Deadbeef
f6fea83342 Effects cleanup
- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers
2024-10-26 10:19:07 +08:00
Ralf Jung
8849ac6042 tcx.is_const_fn doesn't work the way it is described, remove it
Then we can rename the _raw functions to drop their suffix, and instead
explicitly use is_stable_const_fn for the few cases where that is really what
you want.
2024-10-25 20:52:39 +02:00
Ralf Jung
a0215d8e46 Re-do recursive const stability checks
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features

This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.

Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.

The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.

Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
2024-10-25 20:31:40 +02:00
Michael Goulet
0f5a47d088 Be better at enforcing that const_conditions is only called on const items 2024-10-24 09:46:36 +00:00
Michael Goulet
cde29b9ec9 Implement const effect predicate in new solver 2024-10-24 09:46:36 +00:00
Michael Goulet
a16d491054 Remove associated type based effects logic 2024-10-24 09:46:36 +00:00
Stuart Cook
77f2c57b3f
Rollup merge of #131623 - matthiaskrgr:clippy_sat, r=Nadrieril
misc cleanups
2024-10-24 14:19:54 +11:00
Matthias Krüger
dab76eccdf fix a couple clippy:complexitys
double_parens
 filter_map_identity
 needless_question_mark
 redundant_guards
2024-10-23 22:15:59 +02:00
León Orell Valerian Liehr
6b70ff44bc
Rollup merge of #131979 - compiler-errors:compare-pred-entail, r=fmease
Minor tweaks to `compare_impl_item.rs`

1. Stop using the `InstantiatedPredicates` struct for `hybrid_preds` in `compare_impl_item.rs`, since we never actually push anything into the `spans` part of it.
2. Remove redundant impl args and don't do useless identity substitution, prefer calling `instantiate_identity`.
2024-10-23 22:11:04 +02:00
Michael Goulet
21d95fb7b2 More compare_impl_item simplifications 2024-10-23 14:33:44 +00:00
bors
be01dabfef Auto merge of #132027 - RalfJung:lang-feature-bool-fields, r=nnethercote
nightly feature tracking: get rid of the per-feature bool fields

The `struct Features` that tracks which features are enabled has a ton of public `bool`-typed fields that are basically caching the result of looking up the corresponding feature in `enabled_lang_features`. Having public fields with an invariant is not great, so at least they should be made private. However, it turns out caching these lookups is actually [not worth it](https://github.com/rust-lang/rust/pull/131321#issuecomment-2402068336), so this PR just entirely gets rid of these fields. (The alternative would be to make them private and have a method for each of them to expose them in a read-only way. Most of the diff of this PR would be the same in that case.)

r? `@nnethercote`
2024-10-23 12:16:41 +00:00
bors
ffd978b7bf Auto merge of #132044 - lcnr:no-relate-abi, r=compiler-errors
do not implement `Relate`  for "boring" types

and update some macros while we're at it. This means we don't have to implement `TypeVisitable` for them.

r? `@compiler-errors`
2024-10-23 08:41:24 +00:00
Ralf Jung
ad3991d303 nightly feature tracking: get rid of the per-feature bool fields 2024-10-23 09:14:41 +01:00
lcnr
00266eeaa5 remove PredicatePolarity and BoundConstness relate impls
Also removes `TypeError::ConstnessMismatch`. It is unused.
2024-10-23 00:52:37 +02:00
lcnr
196fdf144f do not relate Abi and Safety
and update some macros while we're at it
2024-10-22 23:13:04 +02:00
Michael Goulet
febb3f7c88 Represent TraitBoundModifiers as distinct parts in HIR 2024-10-22 19:48:44 +00:00
bors
86d69c705a Auto merge of #132035 - matthiaskrgr:rollup-ty1e4q0, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #125205 (Fixup Windows verbatim paths when used with the `include!` macro)
 - #131049 (Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`)
 - #131549 (Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function)
 - #131731 (add `TestFloatParse` to `tools.rs` for bootstrap)
 - #131732 (Add doc(plugins), doc(passes), etc. to INVALID_DOC_ATTRIBUTES)
 - #132006 (don't stage-off to previous compiler when CI rustc is available)
 - #132022 (Move `cmp_in_dominator_order` out of graph dominator computation)
 - #132033 (compiletest: Make `line_directive` return a `DirectiveLine`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-22 14:16:37 +00:00
Matthias Krüger
3f15d296f4
Rollup merge of #131049 - compiler-errors:more-validation, r=spastorino
Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`

For the `Existential*` ones, we have to do some adjustment to the args list to deal with the missing `Self` type, so we introduce a `debug_assert_existential_args_compatible` function to the interner as well.
2024-10-22 15:28:38 +02:00
bors
bca5fdebe0 Auto merge of #131321 - RalfJung:feature-activation, r=nnethercote
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)

Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions  `tcx.features().active(...)` and  `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]`  exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.

So really, our terminology is just a mess.

I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for  `#[feature(name)]`. This PR implements that.
2024-10-22 11:02:35 +00:00
Ralf Jung
46ce5cbf33 terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it) 2024-10-22 07:37:54 +01:00
Jubilee
fe2cbbd2d5
Rollup merge of #130432 - azhogin:azhogin/regparm, r=workingjubilee,pnkfelix
rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972)

Command line flag `-Zregparm=<N>` for X86 (32-bit) for rust-for-linux: https://github.com/rust-lang/rust/issues/116972
Implemented in the similar way as fastcall/vectorcall support (args are marked InReg if fit).
2024-10-21 20:32:00 -07:00
Matthias Krüger
20b1dadf92
Rollup merge of #130350 - RalfJung:strict-provenance, r=dtolnay
stabilize Strict Provenance and Exposed Provenance APIs

Given that [RFC 3559](https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html) has been accepted, t-lang has approved the concept of provenance to exist in the language. So I think it's time that we stabilize the strict provenance and exposed provenance APIs, and discuss provenance explicitly in the docs:
```rust
// core::ptr
pub const fn without_provenance<T>(addr: usize) -> *const T;
pub const fn dangling<T>() -> *const T;
pub const fn without_provenance_mut<T>(addr: usize) -> *mut T;
pub const fn dangling_mut<T>() -> *mut T;
pub fn with_exposed_provenance<T>(addr: usize) -> *const T;
pub fn with_exposed_provenance_mut<T>(addr: usize) -> *mut T;

impl<T: ?Sized> *const T {
    pub fn addr(self) -> usize;
    pub fn expose_provenance(self) -> usize;
    pub fn with_addr(self, addr: usize) -> Self;
    pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}

impl<T: ?Sized> *mut T {
    pub fn addr(self) -> usize;
    pub fn expose_provenance(self) -> usize;
    pub fn with_addr(self, addr: usize) -> Self;
    pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}

impl<T: ?Sized> NonNull<T> {
    pub fn addr(self) -> NonZero<usize>;
    pub fn with_addr(self, addr: NonZero<usize>) -> Self;
    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self;
}
```

I also did a pass over the docs to adjust them, because this is no longer an "experiment". The `ptr` docs now discuss the concept of provenance in general, and then they go into the two families of APIs for dealing with provenance: Strict Provenance and Exposed Provenance. I removed the discussion of how pointers also have an associated "address space" -- that is not actually tracked in the pointer value, it is tracked in the type, so IMO it just distracts from the core point of provenance. I also adjusted the docs for `with_exposed_provenance` to make it clear that we cannot guarantee much about this function, it's all best-effort.

There are two unstable lints associated with the strict_provenance feature gate; I moved them to a new [strict_provenance_lints](https://github.com/rust-lang/rust/issues/130351) feature since I didn't want this PR to have an even bigger FCP. ;)

`@rust-lang/opsem` Would be great to get some feedback on the docs here. :)
Nominating for `@rust-lang/libs-api.`

Part of https://github.com/rust-lang/rust/issues/95228.

[FCP comment](https://github.com/rust-lang/rust/pull/130350#issuecomment-2395114536)
2024-10-21 18:11:19 +02:00
Ralf Jung
56ee492a6e move strict provenance lints to new feature gate, remove old feature gates 2024-10-21 15:22:17 +01:00
bors
93742bd782 Auto merge of #131988 - matthiaskrgr:rollup-tx173wn, r=matthiaskrgr
Rollup of 4 pull requests

Successful merges:

 - #126588 (Added more scenarios where comma to be removed in the function arg)
 - #131728 (bootstrap: extract builder cargo to its own module)
 - #131968 (Rip out old effects var handling code from traits)
 - #131981 (Remove the `BoundConstness::NotConst` variant)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-21 06:13:34 +00:00
Matthias Krüger
62b7293a90
Rollup merge of #131981 - compiler-errors:bound-constness, r=cjgillot
Remove the `BoundConstness::NotConst` variant

I find it easier to represent `BoundConstness::NotConst` as just `None` for some refactorings I'm doing.
2024-10-21 07:01:37 +02:00
bors
f2ba41113d Auto merge of #130950 - compiler-errors:yeet-eval, r=BoxyUwU
Continue to get rid of `ty::Const::{try_}eval*`

This PR mostly does:

* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.

I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.

r? BoxyUwU

Part of https://github.com/rust-lang/rust/issues/130704
2024-10-21 03:46:28 +00:00
Michael Goulet
61ed4cb5b4 Remove the BoundConstness::NotConst variant 2024-10-20 18:33:59 +00:00
Michael Goulet
6f6f91ab82 Rip out old effects var handling code from traits 2024-10-20 13:40:22 +00:00
Michael Goulet
38bbcc001e Rename normalize to normalize_internal, remove unnecessary usages 2024-10-19 18:07:35 +00:00
Michael Goulet
e83e4e8112 Get rid of const eval_* and try_eval_* helpers 2024-10-19 18:07:35 +00:00
blyxyas
637d5cc56f Remove module passes filtering 2024-10-19 16:20:51 +02:00
blyxyas
71b4d108c7 Follow review comments (optimize the filtering) 2024-10-19 16:20:33 +02:00
blyxyas
edc6577627 Change lints_to_emit to lints_that_actually_run 2024-10-19 16:19:44 +02:00
blyxyas
b4da058595 Do not run lints that cannot emit
Before this change, adding a lint was a difficult matter
because it always had some overhead involved. This was
because all lints would run, no matter their default level,
or if the user had #![allow]ed them. This PR changes that
2024-10-19 16:19:44 +02:00
Ralf Jung
eea74be5c1 interpret errors: add map_err_kind, rename InterpError -> InterpErrorKind 2024-10-19 09:22:38 +02:00
许杰友 Jieyou Xu (Joe)
aae4730c78
Rollup merge of #131802 - compiler-errors:fnonce-coverage, r=Zalathar
Dont ICE when computing coverage of synthetic async closure body

I'm not totally certain if this is *right*, but at least it doesn't ICE.

The issue is that we end up generating two MIR bodies for each async closure, since the `FnOnce` and `Fn`/`FnMut` implementations have different borrowing behavior of their captured variables. They should ideally both contribute to the coverage, since those MIR bodies are (*to the user*) the same code and should have no behavioral differences.

This PR at least suppresses the ICEs, and then I guess worst case we can fix this the right way later.

r? Zalathar or re-roll

Fixes #131190
2024-10-18 12:00:51 +01:00
Michael Goulet
cdbf28af76 Dont ICE when computing coverage of synthetic async closure body 2024-10-18 20:14:02 +11:00
Andrew Zhogin
b3ae64d24f rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972) 2024-10-18 00:29:31 +07:00
lcnr
3360c1773a move defining_opaque_types out of Canonical 2024-10-17 10:22:52 +02:00
lcnr
f3ce557fcd DropckOutlives to rustc_middle 2024-10-17 09:53:27 +02:00
lcnr
9334d85e69 remove type_op constructors 2024-10-17 09:53:27 +02:00
lcnr
401f9b4e0a ImpliedOutlivesBounds to rustc_middle 2024-10-17 09:53:27 +02:00
Matthias Krüger
c1ed1f133e
Rollup merge of #131381 - Nadrieril:min-match-ergonomics, r=pnkfelix
Implement edition 2024 match ergonomics restrictions

This implements the minimalest version of [match ergonomics for edition 2024](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html). This minimal version makes it an error to ever reset the default binding mode. The implemented proposal is described precisely [here](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q#RFC-3627-nano), where it is called "RFC 3627-nano".

Rules:
- Rule 1C: When the DBM (default binding mode) is not `move` (whether or not behind a reference), writing `mut`, `ref`, or `ref mut` on a binding is an error.
- Rule 2C: Reference patterns can only match against references in the scrutinee when the DBM is `move`.

This minimal version is forward-compatible with the main proposals for match ergonomics 2024: [RFC3627](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html) itself, the alternative [rule 4-early variant](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html), and [others](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q). The idea is to give us more time to iron out a final proposal.

This includes a migration lint that desugars any offending pattern into one that doesn't make use of match ergonomics. Such patterns have identical meaning across editions.

This PR insta-stabilizes the proposed behavior onto edition 2024.

r? `@ghost`

Tracking:

- https://github.com/rust-lang/rust/issues/123076
2024-10-16 19:18:30 +02:00
bors
d829780c4e Auto merge of #131481 - nnethercote:rm-GenKillSet, r=cjgillot
Remove `GenKillAnalysis`

There are two kinds of dataflow analysis in the compiler: `Analysis`, which is the basic kind, and `GenKillAnalysis`, which is a more specialized kind for gen/kill analyses that is intended as an optimization. However, it turns out that `GenKillAnalysis` is actually a  pessimization! It's faster (and much simpler) to do all the gen/kill analyses via `Analysis`. This lets us remove `GenKillAnalysis`, and `GenKillSet`, and a few other things, and also merge `AnalysisDomain` into `Analysis`. The PR removes 500 lines of code and improves performance.

r? `@tmiasko`
2024-10-16 09:45:05 +00:00
bors
9618da7c99 Auto merge of #131422 - GnomedDev:smallvec-predicate-obligations, r=compiler-errors
Use `ThinVec` for PredicateObligation storage

~~I noticed while profiling clippy on a project that a large amount of time is being spent allocating `Vec`s for `PredicateObligation`, and the `Vec`s are often quite small. This is an attempt to optimise this by using SmallVec to avoid heap allocations for these common small Vecs.~~

This PR turns all the `Vec<PredicateObligation>` into a single type alias while avoiding referring to `Vec` around it, then swaps the type over to `ThinVec<PredicateObligation>` and fixes the fallout. This also contains an implementation of `ThinVec::extract_if`, copied from `Vec::extract_if` and currently being upstreamed to https://github.com/Gankra/thin-vec/pull/66.

This leads to a small (0.2-0.7%) performance gain in the latest perf run.
2024-10-16 04:06:14 +00:00
bors
a0c2aba29a Auto merge of #130654 - lcnr:stabilize-coherence-again, r=compiler-errors
stabilize `-Znext-solver=coherence` again

r? `@compiler-errors`

---

This PR stabilizes the use of the next generation trait solver in coherence checking by enabling `-Znext-solver=coherence` by default. More specifically its use in the *implicit negative overlap check*. The tracking issue for this is https://github.com/rust-lang/rust/issues/114862. Closes #114862.

This is a direct copy of #121848 which has been reverted due to a hang in `nalgebra`: #130056. This hang should have been fixed by #130617 and #130821. See the added section in the stabilization report containing user facing changes merged since the original FCP.

## Background

### The next generation trait solver

The new solver lives in [`rustc_trait_selection::solve`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/solve/mod.rs) and is intended to replace the existing *evaluate*, *fulfill*, and *project* implementation. It also has a wider impact on the rest of the type system, for example by changing our approach to handling associated types.

For a more detailed explanation of the new trait solver, see the [rustc-dev-guide](https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html). This does not stabilize the current behavior of the new trait solver, only the behavior impacting the implicit negative overlap check. There are many areas in the new solver which are not yet finalized. We are confident that their final design will not conflict with the user-facing behavior observable via coherence. More on that further down.

Please check out [the chapter](https://rustc-dev-guide.rust-lang.org/solve/significant-changes.html) summarizing the most significant changes between the existing and new implementations.

### Coherence and the implicit negative overlap check

Coherence checking detects any overlapping impls. Overlapping trait impls always error while overlapping inherent impls result in an error if they have methods with the same name. Coherence also results in an error if any other impls could exist, even if they are currently unknown. This affects impls which may get added to upstream crates in a backwards compatible way and impls from downstream crates.

Coherence failing to detect overlap is generally considered to be unsound, even if it is difficult to actually get runtime UB this way. It is quite easy to get ICEs due to bugs in coherence.

It currently consists of two checks:

The [orphan check] validates that impls do not overlap with other impls we do not know about: either because they may be defined in a sibling crate, or because an upstream crate is allowed to add it without being considered a breaking change.

The [overlap check] validates that impls do not overlap with other impls we know about. This is done as follows:
- Instantiate the generic parameters of both impls with inference variables
- Equate the `TraitRef`s of both impls. If it fails there is no overlap.
- [implicit negative]: Check whether any of the instantiated `where`-bounds of one of the impls definitely do not hold when using the constraints from the previous step. If a `where`-bound does not hold, there is no overlap.
- *explicit negative (still unstable, ignored going forward)*: Check whether the any negated `where`-bounds can be proven, e.g. a `&mut u32: Clone` bound definitely does not hold as an explicit `impl<T> !Clone for &mut T` exists.

The overlap check has to *prove that unifying the impls does not succeed*. This means that **incorrectly getting a type error during coherence is unsound** as it would allow impls to overlap: coherence has to be *complete*.

Completeness means that we never incorrectly error. This means that during coherence we must only add inference constraints if they are definitely necessary. During ordinary type checking [this does not hold](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=01d93b592bd9036ac96071cbf1d624a9), so the trait solver has to behave differently, depending on whether we're in coherence or not.

The implicit negative check only considers goals to "definitely not hold" if they could not be implemented downstream, by a sibling, or upstream in a backwards compatible way. If the goal is is "unknowable" as it may get added in another crate, we add an ambiguous candidate: [source](bea5bebf3d/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L858-L883)).

[orphan check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L566-L579)
[overlap check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L92-L98)
[implicit negative]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L223-L281)

## Motivation

Replacing the existing solver in coherence fixes soundness bugs by removing sources of incompleteness in the type system. The new solver separately strengthens coherence, resulting in more impls being disjoint and passing the coherence check. The concrete changes will be elaborated further down. We believe the stabilization to reduce the likelihood of future bugs in coherence as the new implementation is easier to understand and reason about.

It allows us to remove the support for coherence and implicit-negative reasoning in the old solver, allowing us to remove some code and simplifying the old trait solver. We will only remove the old solver support once this stabilization has reached stable to make sure we're able to quickly revert in case any unexpected issues are detected before then.

Stabilizing the use of the next-generation trait solver expresses our confidence that its current behavior is intended and our work towards enabling its use everywhere will not require any breaking changes to the areas used by coherence checking. We are also confident that we will be able to replace the existing solver everywhere, as maintaining two separate systems adds a significant maintainance burden.

## User-facing impact and reasoning

### Breakage due to improved handling of associated types

The new solver fixes multiple issues related to associated types. As these issues caused coherence to consider more types distinct, fixing them results in more overlap errors. This is therefore a breaking change.

#### Structurally relating aliases containing bound vars

Fixes https://github.com/rust-lang/rust/issues/102048. In the existing solver relating ambiguous projections containing bound variables is structural. This is *incomplete* and allows overlapping impls. These was mostly not exploitable as the same issue also caused impls to not apply when trying to use them. The new solver defers alias-relating to a nested goal, fixing this issue:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Trait {}

trait Project {
    type Assoc<'a>;
}

impl Project for u32 {
    type Assoc<'a> = &'a u32;
}

// Eagerly normalizing `<?infer as Project>::Assoc<'a>` is ambiguous,
// so the old solver ended up structurally relating
//
//     (?infer, for<'a> fn(<?infer as Project>::Assoc<'a>))
//
// with
//
//     ((u32, fn(&'a u32)))
//
// Equating `&'a u32` with `<u32 as Project>::Assoc<'a>` failed, even
// though these types are equal modulo normalization.
impl<T: Project> Trait for (T, for<'a> fn(<T as Project>::Assoc<'a>)) {}

impl<'a> Trait for (u32, fn(&'a u32)) {}
//[next]~^ ERROR conflicting implementations of trait `Trait` for type `(u32, for<'a> fn(&'a u32))`
```

A crater run did not discover any breakage due to this change.

#### Unknowable candidates for higher ranked trait goals

This avoids an unsoundness by attempting to normalize in `trait_ref_is_knowable`, fixing https://github.com/rust-lang/rust/issues/114061. This is a side-effect of supporting lazy normalization, as that forces us to attempt to normalize when checking whether a `TraitRef` is knowable: [source](47dd709bed/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L754-L764)).

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait IsUnit {}
impl IsUnit for () {}

pub trait WithAssoc<'a> {
    type Assoc;
}

// We considered `for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit`
// to be knowable, even though the projection is ambiguous.
pub trait Trait {}
impl<T> Trait for T
where
    T: 'static,
    for<'a> T: WithAssoc<'a>,
    for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit,
{
}
impl<T> Trait for Box<T> {}
//[next]~^ ERROR conflicting implementations of trait `Trait`
```
The two impls of `Trait` overlap given the following downstream crate:
```rust
use dep::*;
struct Local;
impl WithAssoc<'_> for Box<Local> {
    type Assoc = ();
}
```

There a similar coherence unsoundness caused by our handling of aliases which is fixed separately in https://github.com/rust-lang/rust/pull/117164.

This change breaks the [`derive-visitor`](https://crates.io/crates/derive-visitor) crate. I have opened an issue in that repo: nikis05/derive-visitor#16.

### Evaluating goals to a fixpoint and applying inference constraints

In the old implementation of the implicit-negative check, each obligation is [checked separately without applying its inference constraints](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L323-L338)). The new solver instead [uses a `FulfillmentCtxt`](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L315-L321)) for this, which evaluates all obligations in a loop until there's no further inference progress.

This is necessary for backwards compatibility as we do not eagerly normalize with the new solver, resulting in constraints from normalization to only get applied by evaluating a separate obligation. This also allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Mirror {
    type Assoc;
}
impl<T> Mirror for T {
    type Assoc = T;
}

trait Foo {}
trait Bar {}

// The self type starts out as `?0` but is constrained to `()`
// due to the where-clause below. Because `(): Bar` is known to
// not hold, we can prove the impls disjoint.
impl<T> Foo for T where (): Mirror<Assoc = T> {}
//[current]~^ ERROR conflicting implementations of trait `Foo` for type `()`
impl<T> Foo for T where T: Bar {}

fn main() {}
```
The old solver does not run nested goals to a fixpoint in evaluation. The new solver does do so, strengthening inference and improving the overlap check:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Foo {}
impl<T> Foo for (u8, T, T) {}
trait NotU8 {}
trait Bar {}
impl<T, U: NotU8> Bar for (T, T, U) {}

trait NeedsFixpoint {}
impl<T: Foo + Bar> NeedsFixpoint for T {}
impl NeedsFixpoint for (u8, u8, u8) {}

trait Overlap {}
impl<T: NeedsFixpoint> Overlap for T {}
impl<T, U: NotU8, V> Overlap for (T, U, V) {}
//[current]~^ ERROR conflicting implementations of trait `Foo`
```

### Breakage due to removal of incomplete candidate preference

Fixes #107887. In the old solver we incompletely prefer the builtin trait object impl over user defined impls. This can break inference guidance, inferring `?x` in `dyn Trait<u32>: Trait<?x>` to `u32`, even if an explicit impl of `Trait<u64>` also exists.

This caused coherence to incorrectly allow overlapping impls, resulting in ICEs and a theoretical unsoundness. See https://github.com/rust-lang/rust/issues/107887#issuecomment-1997261676. This compiles on stable but results in an overlap error with `-Znext-solver=coherence`:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
struct W<T: ?Sized>(*const T);

trait Trait<T: ?Sized> {
    type Assoc;
}

// This would trigger the check for overlap between automatic and custom impl.
// They actually don't overlap so an impl like this should remain possible
// forever.
//
// impl Trait<u64> for dyn Trait<u32> {}
trait Indirect {}
impl Indirect for dyn Trait<u32, Assoc = ()> {}
impl<T: Indirect + ?Sized> Trait<u64> for T {
    type Assoc = ();
}

// Incomplete impl where `dyn Trait<u32>: Trait<_>` does not hold, but
// `dyn Trait<u32>: Trait<u64>` does.
trait EvaluateHack<U: ?Sized> {}
impl<T: ?Sized, U: ?Sized> EvaluateHack<W<U>> for T
where
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
    U: IsU64,
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
{
}

trait IsU64 {}
impl IsU64 for u64 {}

trait Overlap<U: ?Sized> {
    type Assoc: Default;
}
impl<T: ?Sized + EvaluateHack<W<U>>, U: ?Sized> Overlap<U> for T {
    type Assoc = Box<u32>;
}
impl<U: ?Sized> Overlap<U> for dyn Trait<u32, Assoc = ()> {
//[next]~^ ERROR conflicting implementations of trait `Overlap<_>`
    type Assoc = usize;
}
```

### Considering region outlives bounds in the `leak_check`

For details on the `leak_check`, see the FCP proposal #119820.[^leak_check]

[^leak_check]: which should get moved to the dev-guide :3

In both coherence and during candidate selection, the `leak_check` relies on the region constraints added in `evaluate`. It therefore currently does not register outlives obligations: [source](ccb1415eac/compiler/rustc_trait_selection/src/traits/select/mod.rs (L792-L810)). This was likely done as a performance optimization without considering its impact on the `leak_check`. This is the case as in the old solver, *evaluatation* and *fulfillment* are split, with evaluation being responsible for candidate selection and fulfillment actually registering all the constraints.

This split does not exist with the new solver. The `leak_check` can therefore eagerly detect errors caused by region outlives obligations. This improves both coherence itself and candidate selection:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait LeakErr<'a, 'b> {}
// Using this impl adds an `'b: 'a` bound which results
// in a higher-ranked region error. This bound has been
// previously ignored but is now considered.
impl<'a, 'b: 'a> LeakErr<'a, 'b> for () {}

trait NoOverlapDir<'a> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> NoOverlapDir<'a> for T {}
impl<'a> NoOverlapDir<'a> for () {}
//[current]~^ ERROR conflicting implementations of trait `NoOverlapDir<'_>`

// --------------------------------------

// necessary to avoid coherence unknowable candidates
struct W<T>(T);

trait GuidesSelection<'a, U> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> GuidesSelection<'a, W<u32>> for T {}
impl<'a, T> GuidesSelection<'a, W<u8>> for T {}

trait NotImplementedByU8 {}
trait NoOverlapInd<'a, U> {}
impl<'a, T: GuidesSelection<'a, W<U>>, U> NoOverlapInd<'a, U> for T {}
impl<'a, U: NotImplementedByU8> NoOverlapInd<'a, U> for () {}
//[current]~^ conflicting implementations of trait `NoOverlapInd<'_, _>`
```

### Removal of `fn match_fresh_trait_refs`

The old solver tries to [eagerly detect unbounded recursion](b14fd2359f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1196-L1211)), forcing the affected goals to be ambiguous. This check is only an approximation and has not been added to the new solver.

The check is not necessary in the new solver and it would be problematic for caching. As it depends on all goals currently on the stack, using a global cache entry would have to always make sure that doing so does not circumvent this check.

This changes some goals to error - or succeed - instead of failing with ambiguity. This allows more code to compile:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence

// Need to use this local wrapper for the impls to be fully
// knowable as unknowable candidate result in ambiguity.
struct Local<T>(T);

trait Trait<U> {}
// This impl does not hold, but is ambiguous in the old
// solver due to its overflow approximation.
impl<U> Trait<U> for Local<u32> where Local<u16>: Trait<U> {}
// This impl holds.
impl Trait<Local<()>> for Local<u8> {}

// In the old solver, `Local<?t>: Trait<Local<?u>>` is ambiguous,
// resulting in `Local<?u>: NoImpl`, also being ambiguous.
//
// In the new solver the first impl does not apply, constraining
// `?u` to `Local<()>`, causing `Local<()>: NoImpl` to error.
trait Indirect<T> {}
impl<T, U> Indirect<U> for T
where
    T: Trait<U>,
    U: NoImpl
{}

// Not implemented for `Local<()>`
trait NoImpl {}
impl NoImpl for Local<u8> {}
impl NoImpl for Local<u16> {}

// `Local<?t>: Indirect<Local<?u>>` cannot hold, so
// these impls do not overlap.
trait NoOverlap<U> {}
impl<T: Indirect<U>, U> NoOverlap<U> for T {}
impl<T, U> NoOverlap<Local<U>> for Local<T> {}
//~^ ERROR conflicting implementations of trait `NoOverlap<Local<_>>`
```

### Non-fatal overflow

The old solver immediately emits a fatal error when hitting the recursion limit. The new solver instead returns overflow. This both allows more code to compile and is results in performance and potential future compatability issues.

Non-fatal overflow is generally desirable. With fatal overflow, changing the order in which we evaluate nested goals easily causes breakage if we have goal which errors and one which overflows. It is also required to prevent breakage due to the removal of `fn match_fresh_trait_refs`, e.g. [in `typenum`](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

#### Enabling more code to compile

In the below example, the old solver first tried to prove an overflowing goal, resulting in a fatal error. The new solver instead returns ambiguity due to overflow for that goal, causing the implicit negative overlap check to succeed as `Box<u32>: NotImplemented` does not hold.
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
//[current] ERROR overflow evaluating the requirement

trait Indirect<T> {}
impl<T: Overflow<()>> Indirect<T> for () {}

trait Overflow<U> {}
impl<T, U> Overflow<U> for Box<T>
where
    U: Indirect<Box<Box<T>>>,
{}

trait NotImplemented {}

trait Trait<U> {}
impl<T, U> Trait<U> for T
where
    // T: NotImplemented, // causes old solver to succeed
    U: Indirect<T>,
    T: NotImplemented,
{}

impl Trait<()> for Box<u32> {}
```

#### Avoiding hangs with non-fatal overflow

Simply returning ambiguity when reaching the recursion limit can very easily result in hangs, e.g.
```rust
trait Recur {}
impl<T, U> Recur for ((T, U), (U, T))
where
    (T, U): Recur,
    (U, T): Recur,
{}

trait NotImplemented {}
impl<T: NotImplemented> Recur for T {}
```
This can happen quite frequently as it's easy to have exponential blowup due to multiple nested goals at each step. As the trait solver is depth-first, this immediately caused a fatal overflow error in the old solver. In the new solver we have to handle the whole proof tree instead, which can very easily hang.

To avoid this we restrict the recursion depth after hitting the recursion limit for the first time. We also **ignore all inference constraints from goals resulting in overflow**. This is mostly backwards compatible as any overflow in the old solver resulted in a fatal error.

### sidenote about normalization

We return ambiguous nested goals of `NormalizesTo` goals to the caller and ignore their impact when computing the `Certainty` of the current goal. See the [normalization chapter](https://rustc-dev-guide.rust-lang.org/solve/normalization.html) for more details.This means we apply constraints resulting from other nested goals and from equating the impl header when normalizing, even if a nested goal results in overflow. This is necessary to avoid breaking the following example:
```rust
trait Trait {
    type Assoc;
}

struct W<T: ?Sized>(*mut T);
impl<T: ?Sized> Trait for W<W<T>>
where
    W<T>: Trait,
{
    type Assoc = ();
}

// `W<?t>: Trait<Assoc = u32>` does not hold as
// `Assoc` gets normalized to `()`. However, proving
// the where-bounds of the impl results in overflow.
//
// For this to continue to compile we must not discard
// constraints from normalizing associated types.
trait NoOverlap {}
impl<T: Trait<Assoc = u32>> NoOverlap for T {}
impl<T: ?Sized> NoOverlap for W<T> {}
```

#### Future compatability concerns

Non-fatal overflow results in some unfortunate future compatability concerns. Changing the approach to avoid more hangs by more strongly penalizing overflow can cause breakage as we either drop constraints or ignore candidates necessary to successfully compile. Weakening the overflow penalities instead allows more code to compile and strengthens inference while potentially causing more code to hang.

While the current approach is not perfect, we believe it to be good enough. We believe it to apply the necessary inference constraints to avoid breakage and expect there to not be any desirable patterns broken by our current penalities. Similarly we believe the current constraints to avoid most accidental hangs. Ignoring constraints of overflowing goals is especially useful, as it may allow major future optimizations to our overflow handling. See [this summary](https://hackmd.io/ATf4hN0NRY-w2LIVgeFsVg) and the linked documents in case you want to know more.

### changes to performance

In general, trait solving during coherence checking is not significant for performance. Enabling the next-generation trait solver in coherence does not impact our compile time benchmarks. We are still unable to compile the benchmark suite when fully enabling the new trait solver.

There are rare cases where the new solver has significantly worse performance due to non-fatal overflow, its reliance on fixpoint algorithms and the removal of the `fn match_fresh_trait_refs` approximation. We encountered such issues in [`typenum`](https://crates.io/crates/typenum) and believe it should be [pretty much as bad as it can get](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

Due to an improved structure and far better caching, we believe that there is a lot of room for improvement and that the new solver will outperform the existing implementation in nearly all cases, sometimes significantly. We have not yet spent any time micro-optimizing the implementation and have many unimplemented major improvements, such as fast-paths for trivial goals.

### Unstable features

#### Unsupported unstable features

The new solver currently does not support all unstable features, most notably `#![feature(generic_const_exprs)]`, `#![feature(associated_const_equality)]` and `#![feature(adt_const_params)]` are not yet fully supported in the new solver. We are confident that supporting them is possible, but did not consider this to be a priority. This stabilization introduces new ICE when using these features in impl headers.

#### fixes to `#![feature(specialization)]`

- fixes #105782
- fixes #118987

#### fixes to `#![feature(type_alias_impl_trait)]`

- fixes #119272
- https://github.com/rust-lang/rust/issues/105787#issuecomment-1750112388
- fixes #124207

### Important changes since the original FCP

https://github.com/rust-lang/rust/pull/127574 changes the coherence unknowable candidate to only apply if all the super trait bounds may hold. This allows more code to compile and fixes a regression in `pyella`

https://github.com/rust-lang/rust/pull/130617 bails with ambiguity if the query response would contain too many non-region inference variables. This should only be triggered in case the result contains a lot of ambiguous aliases in which case further constraining the goal should resolve this.

https://github.com/rust-lang/rust/pull/130821 adds caching to a lot of type folders, which is necessary to handle exponentially large types and handles the hang in `nalgebra` together with #130617.

## This does not stabilize the whole solver

While this stabilizes the use of the new solver in coherence checking, there are many parts of the solver which will remain fully unstable. We may still adapt these areas while working towards stabilizing the new solver everywhere. We are confident that we are able to do so without negatively impacting coherence.

### goals with a non-empty `ParamEnv`

Coherence always uses an empty environment. We therefore do not depend on the behavior of `AliasBound` and `ParamEnv` candidates. We only stabilizes the behavior of user-defined and builtin implementations of traits. There are still many open questions there.

### opaque types in the defining scope

The handling of opaque types - `impl Trait` - in both the new and old solver is still not fully figured out. Luckily this can be ignored for now. While opaque types are reachable during coherence checking by using `impl_trait_in_associated_types`, the behavior during coherence is separate and self-contained. The old and new solver fully agree here.

### normalization is hard

This stabilizes that we equate associated types involving bound variables using deferred-alias-equality. We also stop eagerly normalizing in coherence, which should not have any user-facing impact.

We do not stabilize the normalization behavior outside of coherence, e.g. we currently deeply normalize all types during writeback with the new solver. This may change going forward

### how to replace `select` from the old solver

We sometimes depend on getting a single `impl` for a given trait bound, e.g. when resolving a concrete method for codegen/CTFE. We do not depend on this during coherence, so the exact approach here can still be freely changed going forward.

## Acknowledgements

This work would not have been possible without `@compiler-errors.` He implemented large chunks of the solver himself but also and did a lot of testing and experimentation, eagerly discovering multiple issues which had a significant impact on our approach. `@BoxyUwU` has also done some amazing work on the solver. Thank you for the endless hours of discussion resulting in the current approach. Especially the way aliases are handled has gone through multiple revisions to get to its current state.

There were also many contributions from - and discussions with - other members of the community and the rest of `@rust-lang/types.` This solver builds upon previous improvements to the compiler, as well as lessons learned from `chalk` and `a-mir-formality`. Getting to this point  would not have been possible without that and I am incredibly thankful to everyone involved. See the [list of relevant PRs](https://github.com/rust-lang/rust/pulls?q=is%3Apr+is%3Amerged+label%3AWG-trait-system-refactor+-label%3Arollup+closed%3A%3C2024-03-22+).
2024-10-15 14:21:34 +00:00
lcnr
1a9d2d82a5 stabilize -Znext-solver=coherence 2024-10-15 13:11:00 +02:00
Matthias Krüger
4d53a28cac
Rollup merge of #131652 - compiler-errors:modifiers, r=Nadrieril,jieyouxu
Move polarity into `PolyTraitRef` rather than storing it on the side

Arguably we could move these modifiers into `TraitRef` instead of `PolyTraitRef`, but I see `TraitRef` as simply the *path* part of the trait ref. It doesn't really matter -- refactoring this further is much easier now.
2024-10-15 05:11:37 +02:00
Michael Goulet
7500e09b8b Move trait bound modifiers into hir::PolyTraitRef 2024-10-14 09:20:38 -04:00
Nicholas Nethercote
e0b83c34c3 Remove Engine::new_gen_kill.
This is an alternative to `Engine::new_generic` for gen/kill analyses.
It's supposed to be an optimization, but it has negligible effect.
The commit merges `Engine::new_generic` into `Engine::new`.

This allows the removal of various other things: `GenKillSet`,
`gen_kill_statement_effects_in_block`, `is_cfg_cyclic`.
2024-10-14 16:35:28 +11:00
Matthias Krüger
cb140dcb00
Rollup merge of #131473 - workingjubilee:move-that-abi-up, r=saethlin
compiler: `{TyAnd,}Layout` comes home

The `Layout` and `TyAndLayout` types are heavily abstract and have no particular target-specific qualities, though we do use them to answer questions particular to targets. We can keep it that way if we simply move them out of `rustc_target` and into `rustc_abi`. They bring a small entourage of connected types with them, but that's fine.

This will allow us to strengthen a few abstraction barriers over time and thus make the notoriously gnarly layout code easier to refactor. For now, we don't need to worry about that and deliberately use reexports to minimize this particular diff.
2024-10-14 06:04:28 +02:00
Trevor Gross
39071fdc58
Rollup merge of #131626 - matthiaskrgr:dont_string, r=lqd
remove a couple of redundant String to String conversion
2024-10-12 21:38:38 -05:00
Trevor Gross
19f6c17df4 Stabilize const_option
This makes the following API stable in const contexts:

    impl<T> Option<T> {
        pub const fn as_mut(&mut self) -> Option<&mut T>;
        pub const fn expect(self, msg: &str) -> T;
        pub const fn unwrap(self) -> T;
        pub const unsafe fn unwrap_unchecked(self) -> T;
        pub const fn take(&mut self) -> Option<T>;
        pub const fn replace(&mut self, value: T) -> Option<T>;
    }

    impl<T> Option<&T> {
        pub const fn copied(self) -> Option<T>
        where T: Copy;
    }

    impl<T> Option<&mut T> {
        pub const fn copied(self) -> Option<T>
        where T: Copy;
    }

    impl<T, E> Option<Result<T, E>> {
        pub const fn transpose(self) -> Result<Option<T>, E>
    }

    impl<T> Option<Option<T>> {
        pub const fn flatten(self) -> Option<T>;
    }

The following functions make use of the unstable
`const_precise_live_drops` feature:

- `expect`
- `unwrap`
- `unwrap_unchecked`
- `transpose`
- `flatten`

Fixes: <https://github.com/rust-lang/rust/issues/67441>
2024-10-12 17:07:13 -04:00
Matthias Krüger
4bc21e318c remove a couple of redundant String to String conversion 2024-10-12 22:07:46 +02:00
GnomedDev
8de8f46f78 Swap PredicateObligation to ThinVec 2024-10-12 15:17:16 +01:00
Ralf Jung
89623439f7 mark InterpResult as must_use 2024-10-12 13:13:50 +02:00
Jubilee Young
10721909f2 compiler: Wire {TyAnd,}Layout into rustc_abi
This finally unites TyAndLayout, Layout, and LayoutS into the same crate,
as one might imagine they would be placed. No functional changes.
2024-10-11 17:41:52 -07:00
bors
f4966590d8 Auto merge of #131045 - compiler-errors:remove-unnamed_fields, r=wesleywiser
Retire the `unnamed_fields` feature for now

`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.

However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.

Fixes #117942
Fixes #121161
Fixes #121263
Fixes #121299
Fixes #121722
Fixes #121799
Fixes #126969
Fixes #131041

Tracking:
* https://github.com/rust-lang/rust/issues/49804

[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
2024-10-11 13:11:13 +00:00
Michael Goulet
a7dc98733d Add variances to RPITITs 2024-10-10 11:46:48 -07:00
Michael Goulet
efb1c23ff6 Introduce SolverRelating 2024-10-10 06:07:51 -04:00
Jubilee Young
8da92b5ce2 compiler: Factor rustc_target::abi::* out of middle::ty::layout 2024-10-08 18:14:48 -07:00
zhuyunxing
6e3e19f714 coverage. Adapt to mcdc mapping formats introduced by llvm 19 2024-10-08 11:15:24 +08:00
zhuyunxing
99bd601df5 coverage. MCDC ConditionId start from 0 to keep with llvm 19 2024-10-08 10:50:18 +08:00
Nadrieril
4107322766 Error on resetted binding mode in edition 2024 2024-10-08 00:23:28 +02:00
bors
0b16baa570 Auto merge of #131235 - codemountains:rename-nestedmetaitem-to-metaitemlnner, r=nnethercote
Rename `NestedMetaItem` to `MetaItemInner`

Fixes #131087

r? `@nnethercote`
2024-10-07 08:59:55 +00:00
bors
8841a3dadd Auto merge of #131226 - nnethercote:rustc_infer-cleanups, r=lcnr
`rustc_infer` cleanups

Various small improvements I found while reading over this code.

r? `@lcnr`
2024-10-07 03:22:04 +00:00
Nicholas Nethercote
e800967478 Simplify two matches.
Matches involving `GenericArgKind` pairs typically use a single `_` for
the impossible case. This commit shortens two verbose matches in this
way.
2024-10-07 09:50:51 +11:00
Folkert de Vries
5fc60d1e52 various fixes for naked_asm! implementation
- fix for divergence
- fix error message
- fix another cranelift test
- fix some cranelift things
- don't set the NORETURN option for naked asm
- fix use of naked_asm! in doc comment
- fix use of naked_asm! in run-make test
- use `span_bug` in unreachable branch
2024-10-06 19:00:09 +02:00
codemountains
6dfc4a0473 Rename NestedMetaItem to MetaItemInner 2024-10-06 23:28:30 +09:00
Ralf Jung
f0ddc7b472 clarify semantics of ConstantIndex MIR projection 2024-10-05 12:19:14 +02:00
bors
5a4ee43c38 Auto merge of #129244 - cjgillot:opaque-hir, r=compiler-errors
Make opaque types regular HIR nodes

Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.

I haven't gone through all the test changes yet, so there may be a few surprises.

Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023

Fixes #129099
Fixes #125843
Fixes #119716
Fixes #121422
2024-10-05 06:19:35 +00:00
Jubilee
68de7d11a9
Rollup merge of #130633 - eholk:pin-reborrow-self, r=compiler-errors
Add support for reborrowing pinned method receivers

This builds on #130526 to add pinned reborrowing for method receivers. This enables the folllowing examples to work:

```rust
#![feature(pin_ergonomics)]
#![allow(incomplete_features)]

use std::pin::Pin;

pub struct Foo;

impl Foo {
    fn foo(self: Pin<&mut Self>) {
    }

    fn baz(self: Pin<&Self>) {
    }
}

pub fn bar(x: Pin<&mut Foo>) {
    x.foo();
    x.foo();

    x.baz(); // Pin<&mut Foo> is downgraded to Pin<&Foo>
}

pub fn baaz(x: Pin<&Foo>) {
    x.baz();
    x.baz();
}
```

This PR includes the original one, which is currently in the commit queue, but the only code changes are in the latest commit (d3c53aaa5c6fcb1018c58d229bc5d92202fa6880).

#130494

r? `@compiler-errors`
2024-10-04 19:19:24 -07:00
Camille GILLOT
6ec58a44e2 Simplify bound var resolution. 2024-10-04 23:44:27 +00:00
Camille GILLOT
68f7ed4495 WfCheck opaques. 2024-10-04 23:28:27 +00:00
Noah Lev
d6f247f3d5 rm ItemKind::OpaqueTy
This introduce an additional collection of opaques on HIR, as they can no
longer be listed using the free item list.
2024-10-04 23:28:22 +00:00
Camille GILLOT
4ec7839afa Make naming more consistent. 2024-10-04 23:02:41 +00:00
Camille GILLOT
99144726a4 Make query backtrace more useful. 2024-10-04 23:01:09 +00:00
Michael Goulet
fd7ee484f9 Elaborate supertrait span correctly to label the error better 2024-10-04 17:15:28 -04:00
Guillaume Gomez
ba94a2ada1
Rollup merge of #131202 - Urgau:wide-ptrs-compiler, r=jieyouxu
Use wide pointers consistenly across the compiler

This PR replace every use of "fat pointer" for the more recent "wide pointer" terminology.

Since some time T-lang as preferred the "wide pointer" terminology, as can be seen on [the last RFCs](https://github.com/search?q=repo%3Arust-lang%2Frfcs+%22wide+pointer%22&type=code), on some [lints](https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#ambiguous-wide-pointer-comparisons), but also in [the reference](https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html?highlight=wide%20pointer#pointer-to-pointer-cast).

Currently we have a [mix of both](https://github.com/search?q=repo%3Arust-lang%2Frust+%22wide+pointer%22&type=code) (including in error messages), which isn't great, but with this PR no more.

r? `@jieyouxu` (feel free to re-roll)
2024-10-04 15:42:54 +02:00
Urgau
018ba0528f Use wide pointers consistenly across the compiler 2024-10-04 14:06:48 +02:00
bors
e1e3cac26d Auto merge of #131215 - matthiaskrgr:rollup-i021ef7, r=matthiaskrgr
Rollup of 7 pull requests

Successful merges:

 - #131024 (Don't give method suggestions when method probe fails due to bad implementation of `Deref`)
 - #131112 (TransmuteFrom: Gracefully handle unnormalized types and normalization errors)
 - #131176 (.gitignore files for nix)
 - #131183 (Refactoring to `OpaqueTyOrigin`)
 - #131187 (Avoid ICE in coverage builds with bad `#[coverage(..)]` attributes)
 - #131192 (Handle `rustc_query_impl` cases of `rustc::potential_query_instability` lint)
 - #131197 (Avoid emptiness check in `PeekMut::pop`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-03 22:32:04 +00:00
Matthias Krüger
da81f64d84
Rollup merge of #131183 - compiler-errors:opaque-ty-origin, r=estebank
Refactoring to `OpaqueTyOrigin`

Pulled out of a larger PR that uses these changes to do cross-crate encoding of opaque origin, so we can use them for edition 2024 migrations. These changes should be self-explanatory on their own, tho 😄
2024-10-03 21:52:46 +02:00
ismailarilik
3d8bd6bbc5 Handle rustc_metadata cases of rustc::potential_query_instability lint 2024-10-03 08:38:51 +03:00
Michael Goulet
7cd466a036 Move in_trait into OpaqueTyOrigin 2024-10-02 22:48:26 -04:00
Michael Goulet
f95bdf453e Remove redundant in_trait from hir::TyKind::OpaqueDef 2024-10-02 21:59:55 -04:00
bors
18b1161ec9 Auto merge of #130821 - lcnr:nalgebra-hang-2, r=compiler-errors
add caching to most type folders, rm region uniquification

Fixes the new minimization of the hang in nalgebra and nalgebra itself :3

this is a bit iffy, especially the cache in `TypeRelating`. I believe all the caches are correct, but it definitely adds some non-local complexity in places. The first commit removes region uniquification, reintroducing the ICE from https://github.com/rust-lang/trait-system-refactor-initiative/issues/27. This does not affect coherence and I would like to fix this by introducing OR-region constraints

r? `@compiler-errors`
2024-10-02 19:21:44 +00:00
Matthias Krüger
b38f7ad9b1
Rollup merge of #131152 - fee1-dead-contrib:fxdiag, r=compiler-errors
Improve const traits diagnostics for new desugaring

r? project-const-traits
2024-10-02 17:10:47 +02:00
Matthias Krüger
2e0db79f0b
Rollup merge of #131150 - bvanjoi:issue-128327, r=chenyukang
only query `params_in_repr` if def kind is adt

Fixes #128327

`params_in_repr` was only stored in `encode_info_for_adt`, so we only query it when the def kind belongs to them.

9e3e517446/compiler/rustc_metadata/src/rmeta/encoder.rs (L1566-L1567)
2024-10-02 17:10:45 +02:00
Matthias Krüger
7e0797c13f
Rollup merge of #131140 - ismailarilik:handle-potential-query-instability-lint-for-rustc-hir-analysis, r=compiler-errors
Handle `rustc_hir_analysis` cases of `potential_query_instability` lint

This PR removes `#![allow(rustc::potential_query_instability)]` line from [`compiler/rustc_hir_analysis/src/lib.rs`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_hir_analysis/src/lib.rs#L61) and converts `FxHash{Map,Set}` types into `FxIndex{Map,Set}` to suppress lint errors.

A somewhat tracking issue: https://github.com/rust-lang/rust/issues/84447
2024-10-02 17:10:44 +02:00
lcnr
1a04a317c4 review 2024-10-02 14:49:36 +02:00
Deadbeef
7f6150b577 Improve const traits diagnostics for new desugaring 2024-10-02 19:45:17 +08:00
bohan
e9b2d09ad7 only query params_in_repr if def kind is adt 2024-10-02 17:36:31 +08:00
Jubilee
ea453bb10b
Rollup merge of #130885 - RalfJung:interp-error-discard, r=oli-obk
panic when an interpreter error gets unintentionally discarded

One important invariant of Miri is that when an interpreter error is raised (*in particular* a UB error), those must not be discarded: it's not okay to just check `foo().is_err()` and then continue executing.

This seems to catch new contributors by surprise fairly regularly, so this PR tries to make it so that *if* this ever happens, we get a panic rather than a silent missed UB bug. The interpreter error type now contains a "guard" that panics on drop, and that is explicitly passed to `mem::forget` when an error is deliberately discarded.

Fixes https://github.com/rust-lang/miri/issues/3855
2024-10-01 23:15:59 -07:00
ismailarilik
807e812077 Handle rustc-hir-analysis cases of rustc::potential_query_instability lint 2024-10-02 08:28:45 +03:00
Ralf Jung
c4ce8c114b make InterpResult a dedicated type to avoid accidentally discarding the error 2024-10-01 21:45:35 +02:00
Michael Goulet
e3a0da1863 Remove unnamed field feature 2024-10-01 13:55:46 -04:00
lcnr
13881f5404 add caches to multiple type folders 2024-10-01 17:20:31 +02:00
David Lattimore
f48194ea55 Replace -Z default-hidden-visibility with -Z default-visibility
MCP: https://github.com/rust-lang/compiler-team/issues/782

Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
2024-10-01 22:32:13 +10:00
Ralf Jung
4b8a5bd511 panic when an interpreter error gets unintentionally discarded 2024-09-30 08:37:00 +02:00
Michael Goulet
2239f1c5cd Validate ExistentialPredicate args 2024-09-30 01:14:03 -04:00
Michael Goulet
9368b9f57e Debug assert that unevaluated consts have the right substs 2024-09-30 00:34:58 -04:00
bors
4e91cedaed Auto merge of #129499 - fee1-dead-contrib:supereffects, r=compiler-errors
properly elaborate effects implied bounds for super traits

Summary: This PR makes it so that we elaborate `<T as Tr>::Fx: EffectsCompat<somebool>` into `<T as SuperTr>::Fx: EffectsCompat<somebool>` when we know that `trait Tr: ~const SuperTr`.

Some discussion at https://github.com/rust-lang/project-const-traits/issues/2.

r? project-const-traits
`@rust-lang/project-const-traits:` how do we feel about this approach?
2024-09-30 00:30:09 +00:00
Matthias Krüger
a0ae32d6a2
Rollup merge of #130990 - RalfJung:mir-const-normalize, r=compiler-errors
try to get rid of mir::Const::normalize

It was easy to make this compile, let's see if anything breaks...

r? `@compiler-errors`
2024-09-29 20:17:37 +02:00
Matthias Krüger
71cd918dc7 cleanup: don't clone types that are Copy 2024-09-29 13:31:30 +02:00
Ralf Jung
c55c4c9f9d tweak Const::identity_unevaluated name and docs 2024-09-28 21:28:08 +02:00
Ralf Jung
921a5ef6d7 try to get rid of mir::Const::normalize 2024-09-28 21:15:18 +02:00
bors
83e4e18896 Auto merge of #130946 - matthiaskrgr:rollup-ia4mf0y, r=matthiaskrgr
Rollup of 6 pull requests

Successful merges:

 - #130718 (Cleanup some known-bug issues)
 - #130730 (Reorganize Test Headers)
 - #130826 (Compiler: Rename "object safe" to "dyn compatible")
 - #130915 (fix typo in triagebot.toml)
 - #130926 (Update cc to 1.1.22 in library/)
 - #130932 (etc: Add sample rust-analyzer configs for eglot & helix)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-09-27 21:23:29 +00:00
Matthias Krüger
a935064fae
Rollup merge of #130826 - fmease:compiler-mv-obj-safe-dyn-compat, r=compiler-errors
Compiler: Rename "object safe" to "dyn compatible"

Completed T-lang FCP: https://github.com/rust-lang/lang-team/issues/286#issuecomment-2338905118.
Tracking issue: https://github.com/rust-lang/rust/issues/130852

Excludes `compiler/rustc_codegen_cranelift` (to be filed separately).
Includes Stable MIR.

Regarding https://github.com/rust-lang/rust/labels/relnotes, I guess I will manually open a https://github.com/rust-lang/rust/labels/relnotes-tracking-issue since this change affects everything (compiler, library, tools, docs, books, everyday language).

r? ghost
2024-09-27 21:35:08 +02:00
Deadbeef
7c2a24b50c properly elaborate effects implied bounds for super traits 2024-09-27 22:36:46 +08:00
Josh Stone
4160a54dc5 Use &raw in the compiler
Like #130865 did for the standard library, we can use `&raw` in the
compiler now that stage0 supports it. Also like the other issue, I did
not make any doc or test changes at this time.
2024-09-26 20:33:26 -07:00
León Orell Valerian Liehr
01a063f9df
Compiler: Rename "object safe" to "dyn compatible" 2024-09-25 13:26:48 +02:00
bors
4c62024cd5 Auto merge of #130803 - cuviper:file-buffered, r=joshtriplett
Add `File` constructors that return files wrapped with a buffer

In addition to the light convenience, these are intended to raise visibility that buffering is something you should consider when opening a file, since unbuffered I/O is a common performance footgun to Rust newcomers.

ACP: https://github.com/rust-lang/libs-team/issues/446
Tracking Issue: #130804
2024-09-25 04:57:12 +00:00
Trevor Gross
3b45f8f310
Rollup merge of #130764 - compiler-errors:inherent, r=estebank
Separate collection of crate-local inherent impls from error tracking

#119895 changed the return type of the `crate_inherent_impls` query from `CrateInherentImpls` to `Result<CrateInherentImpls, ErrorGuaranteed>` to avoid needing to use the non-parallel-friendly `track_errors()` to track if an error was reporting from within the query... This was mostly fine until #121113, which stopped halting compilation when we hit an `Err(ErrorGuaranteed)` in the `crate_inherent_impls` query.

Thus we proceed onwards to typeck, and since a return type of `Result<CrateInherentImpls, ErrorGuaranteed>` means that the query can *either* return one of "the list inherent impls" or "error has been reported", later on when we want to assemble method or associated item candidates for inherent impls, we were just treating any `Err(ErrorGuaranteed)` return value as if Rust had no inherent impls defined anywhere at all! This leads to basically every inherent method call failing with an error, lol, which was reported in #127798.

This PR changes the `crate_inherent_impls` query to return `(CrateInherentImpls, Result<(), ErrorGuaranteed>)`, i.e. returning the inherent impls collected *and* whether an error was reported in the query itself. It firewalls the latter part of that query into a new `crate_inherent_impls_validity_check` just for the `ensure()` call.

This fixes #127798.
2024-09-24 19:47:50 -04:00
Josh Stone
0999b019f8 Dogfood feature(file_buffered) 2024-09-24 14:25:16 -07:00
Lukas Markeffsky
b62e72ce8c update doc comment 2024-09-24 23:12:02 +02:00
Lukas Markeffsky
bd31e3ed70 be even more precise about "cast" vs "coercion" 2024-09-24 23:12:02 +02:00
Lukas Markeffsky
5e60d1f87e replace "cast" with "coercion" where applicable
This changes the remaining span for the cast, because the new `Cast`
category has a higher priority (lower `Ord`) than the old `Coercion`
category, so we no longer report the region error for the "unsizing"
coercion from `*const Trait` to itself.
2024-09-24 22:20:46 +02:00
Lukas Markeffsky
d1e82d438f use more accurate spans for user type ascriptions 2024-09-24 22:20:42 +02:00
Lukas Markeffsky
46ecb23198 unify dyn* coercions with other pointer coercions 2024-09-24 22:17:55 +02:00
Michael Goulet
cfb8419900 Separate collection of crate-local inherent impls from error reporting 2024-09-24 10:12:05 -04:00
Michael Goulet
ec1ccff8ce
Rollup merge of #130727 - compiler-errors:objects, r=RalfJung
Check vtable projections for validity in miri

Currently, miri does not catch when we transmute `dyn Trait<Assoc = A>` to `dyn Trait<Assoc = B>`. This PR implements such a check, and fixes https://github.com/rust-lang/miri/issues/3905.

To do this, we modify `GlobalAlloc::VTable` to contain the *whole* list of `PolyExistentialPredicate`, and then modify `check_vtable_for_type` to validate the `PolyExistentialProjection`s of the vtable, along with the principal trait that was already being validated.

cc ``@RalfJung``
r? ``@lcnr`` or types

I also tweaked the diagnostics a bit.

---

**Open question:** We don't validate the auto traits. You can transmute `dyn Foo` into `dyn Foo + Send`. Should we check that? We currently have a test that *exercises* this as not being UB:

6c6d210089/src/tools/miri/tests/pass/dyn-upcast.rs (L14-L20)

I'm not actually sure if we ever decided that's actually UB or not 🤔

We could perhaps still check that the underlying type of the object (i.e. the concrete type that was unsized) implements the auto traits, to catch UB like:

```rust
fn main() {
    let x: &dyn Trait = &std::ptr::null_mut::<()>();
    let _: &(dyn Trait + Send) = std::mem::transmute(x);
    //~^ this vtable is not allocated for a type that is `Send`!
}
```
2024-09-23 23:49:12 -04:00
Michael Goulet
c0f1a69229
Rollup merge of #130618 - m-ou-se:skip-query, r=compiler-errors
Skip query in get_parent_item when possible.

For HirIds with a non-zero item local id, `self.parent_owner_iter(hir_id).next()` just returns the same HirId with the item local id set to 0, but also does a query to retrieve the Node which is ignored here, which seems wasteful.
2024-09-23 23:49:11 -04:00
Michael Goulet
702a644b74 Check vtable projections for validity in miri 2024-09-23 19:38:26 -04:00
Eric Holk
3dfb30c70a
Allow reborrowing pinned self methods 2024-09-23 09:12:52 -07:00
Mara Bos
c0c569f99d
Update compiler/rustc_middle/src/hir/map/mod.rs
Co-authored-by: Michael Goulet <michael@errs.io>
2024-09-23 09:36:17 +00:00
Michael Goulet
c682aa162b Reformat using the new identifier sorting from rustfmt 2024-09-22 19:11:29 -04:00
Michael Goulet
2a9525bb90
Rollup merge of #127766 - folkertdev:c-cmse-nonsecure-entry, r=jackh726
add `extern "C-cmse-nonsecure-entry" fn`

tracking issue #75835

in https://github.com/rust-lang/rust/issues/75835#issuecomment-1183517255 it was decided that using an abi, rather than an attribute, was the right way to go for this feature.

This PR adds that ABI and removes the `#[cmse_nonsecure_entry]` attribute. All relevant tests have been updated, some are now obsolete and have been removed.

Error 0775 is no longer generated. It contains the list of targets that support the CMSE feature, and maybe we want to still use this? right now a generic "this abi is not supported on this platform" error is returned when this abi is used on an unsupported platform. On the other hand, users of this abi are likely to be experienced rust users, so maybe the generic error is good enough.
2024-09-21 15:18:55 -04:00
bors
1d68e6dd1d Auto merge of #127546 - workingjubilee:5-level-paging-exists, r=saethlin
Correct outdated object size limit

The comment here about 48 bit addresses being enough was written in 2016 but was made incorrect in 2019 by 5-level paging, and then persisted for another 5 years before being noticed and corrected.

The bolding of the "exclusive" part is merely to call attention to something I missed when reading it and doublechecking the math.

try-job: i686-msvc
try-job: test-various
2024-09-21 16:20:10 +00:00
bors
2836482241 Auto merge of #129283 - saethlin:unreachable-allocas, r=scottmcm
Don't alloca for unused locals

We already have a concept of mono-unreachable basic blocks; this is primarily useful for ensuring that we do not compile code under an `if false`. But since we never gave locals the same analysis, a large local only used under an `if false` will still have stack space allocated for it.

There are 3 places we traverse MIR during monomorphization: Inside the collector, `non_ssa_locals`, and the walk to generate code. Unfortunately, https://github.com/rust-lang/rust/pull/129283#issuecomment-2297925578 indicates that we cannot afford the expense of tracking reachable locals during the collector's traversal, so we do need at least two mono-reachable traversals. And of course caching is of no help here because the benchmarks that regress are incr-unchanged; they don't do any codegen.

This fixes the second problem in https://github.com/rust-lang/rust/issues/129282, and brings us anther step toward `const if` at home.
2024-09-21 13:48:14 +00:00
Folkert
5722a80782 remove #[cmse_nonsecure_entry] 2024-09-21 13:05:21 +02:00
Folkert de Vries
1ddd67a79a add C-cmse-nonsecure-entry ABI 2024-09-21 13:04:14 +02:00
Ben Kimock
523f8f8398 Compute reachable locals as part of non_ssa_locals 2024-09-21 01:07:00 -04:00
Ben Kimock
0ea5dc506f Don't alloca for unused locals 2024-09-21 01:06:59 -04:00
Michael Goulet
c0d1a1305d Only expect mono consts in CFI 2024-09-20 20:38:13 -04:00
Guillaume Gomez
fe5f734e6a
Rollup merge of #130526 - eholk:pin-reborrow, r=compiler-errors
Begin experimental support for pin reborrowing

This commit adds basic support for reborrowing `Pin` types in argument position. At the moment it only supports reborrowing `Pin<&mut T>` as `Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in argument position (not as the receiver in a method call).

This PR makes the following example compile:

```rust
#![feature(pin_ergonomics)]

fn foo(_: Pin<&mut Foo>) {
}

fn bar(mut x: Pin<&mut Foo>) {
    foo(x);
    foo(x);
}
```

Previously, you would have had to write `bar` as:

```rust
fn bar(mut x: Pin<&mut Foo>) {
    foo(x.as_mut());
    foo(x);
}
```

Tracking:

- #130494

r? `@compiler-errors`
2024-09-20 19:46:38 +02:00
Jubilee Young
325af25c94 TL note: current means target 2024-09-20 10:02:14 -07:00
Mara Bos
7a19b17084 Skip query in get_parent_item when possible. 2024-09-20 16:12:44 +02:00
Eric Holk
b2b76fb706
Allow shortening reborrows
Generating a call to `as_mut()` let to more restrictive borrows than
what reborrowing usually gives us. Instead, we change the desugaring to
reborrow the pin internals directly which makes things more expressive.
2024-09-19 15:34:00 -07:00
Eric Holk
a73c8b1171
Apply code review suggestions 2024-09-18 15:37:50 -07:00
Eric Holk
7b7992fbcf
Begin experimental support for pin reborrowing
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
2024-09-18 12:36:31 -07:00
Matthias Krüger
21313d7947
Rollup merge of #130457 - nnethercote:cleanup-codegen-traits, r=bjorn3
Cleanup codegen traits

The traits governing codegen are quite complicated and hard to follow. This PR cleans them up a bit.

r? `@bjorn3`
2024-09-18 17:49:43 +02:00
Jesse Rusak
3cb1f334b8 Fix circular fn_sig queries to return the correct number of arguments for methods 2024-09-17 20:54:04 -04:00
bors
e2dc1a1c0f Auto merge of #129970 - lukas-code:LayoutCalculator, r=compiler-errors
layout computation: gracefully handle unsized types in unexpected locations

This PR reworks the layout computation to eagerly return an error when encountering an unsized field where a sized field was expected, rather than delaying a bug and attempting to recover a layout. This is required, because with trivially false where clauses like `[T]: Sized`, any field can possible be an unsized type, without causing a compile error.

Since this PR removes the `delayed_bug` method from the `LayoutCalculator` trait, it essentially becomes the same as the `HasDataLayout` trait, so I've also refactored the `LayoutCalculator` to be a simple wrapper struct around a type that implements `HasDataLayout`.

The majority of the diff is whitespace changes, so viewing with whitespace ignored is advised.

implements https://github.com/rust-lang/rust/pull/123169#issuecomment-2025788480

r? `@compiler-errors` or compiler

fixes https://github.com/rust-lang/rust/issues/123134
fixes https://github.com/rust-lang/rust/issues/124182
fixes https://github.com/rust-lang/rust/issues/126939
fixes https://github.com/rust-lang/rust/issues/127737
2024-09-17 01:17:48 +00:00
Nicholas Nethercote
acb832d640 Use associative type defaults in {Layout,FnAbi}OfHelpers.
This avoids some repetitive boilerplate code.
2024-09-17 10:25:06 +10:00
Michael Goulet
1e9fa7eb79 Don't ICE when RPITIT captures more method args than trait definition 2024-09-16 10:57:06 -04:00
Lukas Markeffsky
697450151c layout computation: eagerly error for unexpected unsized fields 2024-09-16 15:53:21 +02:00
Lukas Markeffsky
16be6666d4 make LayoutCx not generic 2024-09-16 15:53:17 +02:00
bors
13b5a4e43b Auto merge of #129716 - compiler-errors:closure-debuginfo, r=cjgillot
Don't use `typeck_root_def_id` in codegen for finding closure's root

Generating debuginfo in codegen currently peels off all the closure-specific generics (which presumably is done because they're redundant). This doesn't currently work correctly for the bodies we synthesize for async closures's returned coroutines (#128506), leading to #129702.

Specifically, `typeck_root_def_id` for some `DefKind::SyntheticCoroutineBody` just returns itself (because it loops while `is_typeck_child` is `true`, and that returns `false` for this defkind), which means we don't end up peeling off the coroutine-specific generics, and we end up encountering an otherwise unreachable `CoroutineWitness` type leading to an ICE.

This PR fixes `is_typeck_child` to consider `DefKind::SyntheticCorotuineBody` to be a typeck child, fixing `typeck_root_def_id` and suppressing this debuginfo bug.

Fixes #129702
2024-09-16 10:16:32 +00:00
bors
9b72238eb8 Auto merge of #128543 - RalfJung:const-interior-mut, r=fee1-dead
const-eval interning: accept interior mutable pointers in final value

…but keep rejecting mutable references

This fixes https://github.com/rust-lang/rust/issues/121610 by no longer firing the lint when there is a pointer with interior mutability in the final value of the constant. On stable, such pointers can be created with code like:
```rust
pub enum JsValue {
    Undefined,
    Object(Cell<bool>),
}
impl Drop for JsValue {
    fn drop(&mut self) {}
}
// This does *not* get promoted since `JsValue` has a destructor.
// However, the outer scope rule applies, still giving this 'static lifetime.
const UNDEFINED: &JsValue = &JsValue::Undefined;
```
It's not great to accept such values since people *might* think that it is legal to mutate them with unsafe code. (This is related to how "infectious" `UnsafeCell` is, which is a [wide open question](https://github.com/rust-lang/unsafe-code-guidelines/issues/236).) However, we [explicitly document](https://doc.rust-lang.org/reference/behavior-considered-undefined.html) that things created by `const` are immutable. Furthermore, we also accept the following even more questionable code without any lint today:
```rust
let x: &'static Option<Cell<i32>> = &None;
```
This is even more questionable since it does *not* involve a `const`, and yet still puts the data into immutable memory. We could view this as promotion [potentially introducing UB](https://github.com/rust-lang/unsafe-code-guidelines/issues/493). However, we've accepted this since ~forever and it's [too late to reject this now](https://github.com/rust-lang/rust/pull/122789); the pattern is just too useful.

So basically, if you think that `UnsafeCell` should be tracked fully precisely, then you should want the lint we currently emit to be removed, which this PR does. If you think `UnsafeCell` should "infect" surrounding `enum`s, the big problem is really https://github.com/rust-lang/unsafe-code-guidelines/issues/493 which does not trigger the lint -- the cases the lint triggers on are actually the "harmless" ones as there is an explicit surrounding `const` explaining why things end up being immutable.

What all this goes to show is that the hard error added in https://github.com/rust-lang/rust/pull/118324 (later turned into the future-compat lint that I am now suggesting we remove) was based on some wrong assumptions, at least insofar as it concerns shared references. Furthermore, that lint does not help at all for the most problematic case here where the potential UB is completely implicit. (In fact, the lint is actively in the way of [my preferred long-term strategy](https://github.com/rust-lang/unsafe-code-guidelines/issues/493#issuecomment-2028674105) for dealing with this UB.) So I think we should go back to square one and remove that error/lint for shared references. For mutable references, it does seem to work as intended, so we can keep it. Here it serves as a safety net in case the static checks that try to contain mutable references to the inside of a const initializer are not working as intended; I therefore made the check ICE to encourage users to tell us if that safety net is triggered.

Closes https://github.com/rust-lang/rust/issues/122153 by removing the lint.

Cc `@rust-lang/opsem` `@rust-lang/lang`
2024-09-14 21:11:04 +00:00
Michael Goulet
63405fc2b3 Consider synthetic closure bodies to be typeck children 2024-09-14 16:33:25 -04:00
Stuart Cook
89dd3f91a8
Rollup merge of #130317 - compiler-errors:no-ord, r=jackh726
`ProjectionElem` and `UnOp`/`BinOp` dont need to be `PartialOrd`/`Ord`

These types don't really admit a natural ordering and no code seems to rely on it, so let's remove it.
2024-09-14 11:53:13 +10:00
Stuart Cook
04e744e77d
Rollup merge of #130199 - compiler-errors:by-move, r=cjgillot
Don't call closure_by_move_body_def_id on FnOnce async closures in MIR validation

Refactors the check in #129847 to not unncessarily call the `closure_by_move_body_def_id` query for async closures that don't *need* a by-move body.

Fixes #130167
2024-09-14 11:53:12 +10:00
Michael Goulet
c8233a4c6f ProjectionElem and UnOp/BinOp dont need to be PartialOrd/Ord 2024-09-13 14:17:32 -04:00