Use parenthetical notation for `Fn` traits
Always use the `Fn(T) -> R` format when printing closure traits instead of `Fn<(T,), Output = R>`.
Address #67100:
```
error[E0277]: expected a `Fn()` closure, found `F`
--> file.rs:6:13
|
6 | call_fn(f)
| ------- ^ expected an `Fn()` closure, found `F`
| |
| required by a bound introduced by this call
|
= note: wrap the `F` in a closure with no arguments: `|| { /* code */ }`
note: required by a bound in `call_fn`
--> file.rs:1:15
|
1 | fn call_fn<F: Fn() -> ()>(f: &F) {
| ^^^^^^^^^^ required by this bound in `call_fn`
help: consider further restricting this bound
|
5 | fn call_any<F: std::any::Any + Fn()>(f: &F) {
| ++++++
```
Uplift `{Closure,Coroutine,CoroutineClosure}Args` and friends to `rustc_type_ir`
Part of converting the new solver's `structural_traits.rs` to be interner-agnostic.
I decided against aliasing `ClosureArgs<TyCtxt<'tcx>>` to `ClosureArgs<'tcx>` because it seemed so rare. I could do so if desired, though.
r? lcnr
Implement `needs_async_drop` in rustc and optimize async drop glue
This PR expands on #121801 and implements `Ty::needs_async_drop` which works almost exactly the same as `Ty::needs_drop`, which is needed for #123948.
Also made compiler's async drop code to look more like compiler's regular drop code, which enabled me to write an optimization where types which do not use `AsyncDrop` can simply forward async drop glue to `drop_in_place`. This made size of the async block from the [async_drop test](67980dd6fb/tests/ui/async-await/async-drop.rs) to decrease by 12%.
Rename HIR `TypeBinding` to `AssocItemConstraint` and related cleanup
Rename `hir::TypeBinding` and `ast::AssocConstraint` to `AssocItemConstraint` and update all items and locals using the old terminology.
Motivation: The terminology *type binding* is extremely outdated. "Type bindings" not only include constraints on associated *types* but also on associated *constants* (feature `associated_const_equality`) and on RPITITs of associated *functions* (feature `return_type_notation`). Hence the word *item* in the new name. Furthermore, the word *binding* commonly refers to a mapping from a binder/identifier to a "value" for some definition of "value". Its use in "type binding" made sense when equality constraints (e.g., `AssocTy = Ty`) were the only kind of associated item constraint. Nowadays however, we also have *associated type bounds* (e.g., `AssocTy: Bound`) for which the term *binding* doesn't make sense.
---
Old terminology (HIR, rustdoc):
```
`TypeBinding`: (associated) type binding
├── `Constraint`: associated type bound
└── `Equality`: (associated) equality constraint (?)
├── `Ty`: (associated) type binding
└── `Const`: associated const equality (constraint)
```
Old terminology (AST, abbrev.):
```
`AssocConstraint`
├── `Bound`
└── `Equality`
├── `Ty`
└── `Const`
```
New terminology (AST, HIR, rustdoc):
```
`AssocItemConstraint`: associated item constraint
├── `Bound`: associated type bound
└── `Equality`: associated item equality constraint OR associated item binding (for short)
├── `Ty`: associated type equality constraint OR associated type binding (for short)
└── `Const`: associated const equality constraint OR associated const binding (for short)
```
r? compiler-errors
coverage: Rename MC/DC `conditions_num` to `num_conditions`
Updated version of #124571, without the other changes that were split out into #125108 and #125700.
This value represents a quantity of conditions, not an ID, so the new spelling is more appropriate.
Some of the code touched by this PR could perhaps use some other changes, but I would prefer to keep this PR as a simple renaming and avoid scope creep.
`@rustbot` label +A-code-coverage
Always use the `Fn(T) -> R` format when printing closure traits instead of `Fn<(T,), Output = R>`.
Fix#67100:
```
error[E0277]: expected a `Fn()` closure, found `F`
--> file.rs:6:13
|
6 | call_fn(f)
| ------- ^ expected an `Fn()` closure, found `F`
| |
| required by a bound introduced by this call
|
= note: wrap the `F` in a closure with no arguments: `|| { /* code */ }`
note: required by a bound in `call_fn`
--> file.rs:1:15
|
1 | fn call_fn<F: Fn() -> ()>(f: &F) {
| ^^^^^^^^^^ required by this bound in `call_fn`
help: consider further restricting this bound
|
5 | fn call_any<F: std::any::Any + Fn()>(f: &F) {
| ++++++
```
Omit non-needs_drop drop_in_place in vtables
This replaces the drop_in_place reference with null in vtables. On librustc_driver.so, this drops about ~17k (11%) dynamic relocations from the output, since many vtables can now be placed in read-only memory, rather than having a relocated pointer included.
This makes a tradeoff by adding a null check at vtable call sites. I'm not sure that's readily avoidable without changing the vtable format (e.g., so that we can use a pc-relative relocation instead of an absolute address, and avoid the dynamic relocation that way). But it seems likely that the check is cheap at runtime.
Accepted MCP: https://github.com/rust-lang/compiler-team/issues/730
This replaces the drop_in_place reference with null in vtables. On
librustc_driver.so, this drops about ~17k dynamic relocations from the
output, since many vtables can now be placed in read-only memory, rather
than having a relocated pointer included.
This makes a tradeoff by adding a null check at vtable call sites.
That's hard to avoid without changing the vtable format (e.g., to use a
pc-relative relocation instead of an absolute address, and avoid the
dynamic relocation that way). But it seems likely that the check is
cheap at runtime.
Uplift `EarlyBinder` into `rustc_type_ir`
We also need to give `EarlyBinder` a `'tcx` param, so that we can carry the `Interner` in the `EarlyBinder` too. This is necessary because otherwise we have an unconstrained `I: Interner` parameter in many of the `EarlyBinder`'s inherent impls.
I also generally think that this is desirable to have, in case we later want to track some state in the `EarlyBinder`.
r? lcnr
[perf] Delay the construction of early lint diag structs
Attacks some of the perf regressions from https://github.com/rust-lang/rust/pull/124417#issuecomment-2123700666.
See individual commits for details. The first three commits are not strictly necessary.
However, the 2nd one (06bc4fc671, *Remove `LintDiagnostic::msg`*) makes the main change way nicer to implement.
It's also pretty sweet on its own if I may say so myself.
Remove `DefId` from `EarlyParamRegion`
Currently we represent usages of `Region` parameters via the `ReEarlyParam` or `ReLateParam` variants. The `ReEarlyParam` is effectively equivalent to `TyKind::Param` and `ConstKind::Param` (i.e. it stores a `Symbol` and a `u32` index) however it also stores a `DefId` for the definition of the lifetime parameter.
This was used in roughly two places:
- Borrowck diagnostics instead of threading the appropriate `body_id` down to relevant locations. Interestingly there were already some places that had to pass down a `DefId` manually.
- Some opaque type checking logic was using the `DefId` field to track captured lifetimes
I've split this PR up into a commit for generate rote changes to diagnostics code to pass around a `DefId` manually everywhere, and another commit for the opaque type related changes which likely require more careful review as they might change the semantics of lints/errors.
Instead of manually passing the `DefId` around everywhere I previously tried to bundle it in with `TypeErrCtxt` but ran into issues with some call sites of `infcx.err_ctxt` being unable to provide a `DefId`, particularly places involved with trait solving and normalization. It might be worth investigating adding some new wrapper type to pass this around everywhere but I think this might be acceptable for now.
This pr also has the effect of reducing the size of `EarlyParamRegion` from 16 bytes -> 8 bytes. I wouldn't expect this to have any direct performance improvement however, other variants of `RegionKind` over `8` bytes are all because they contain a `BoundRegionKind` which is, as far as I know, mostly there for diagnostics. If we're ever able to remove this it would shrink the `RegionKind` type from `24` bytes to `12` (and with clever bit packing we might be able to get it to `8` bytes). I am curious what the performance impact would be of removing interning of `Region`'s if we ever manage to shrink `RegionKind` that much.
Sidenote: by removing the `DefId` the `Debug` output for `Region` has gotten significantly nicer. As an example see this opaque type debug print before vs after this PR:
`Opaque(DefId(0:13 ~ impl_trait_captures[aeb9]::foo::{opaque#0}), [DefId(0:9 ~ impl_trait_captures[aeb9]::foo::'a)_'a/#0, T, DefId(0:9 ~ impl_trait_captures[aeb9]::foo::'a)_'a/#0])`
`Opaque(DefId(0:13 ~ impl_trait_captures[aeb9]::foo::{opaque#0}), ['a/#0, T, 'a/#0])`
r? `@compiler-errors` (I would like someone who understands the opaque type setup to atleast review the type system commit, but the rest is likely reviewable by anyone)
remove proof tree formatting, make em shallow
Debugging via tracing `RUSTC_LOG=rustc_trait_selection::solve=debug` is now imo slightly more readable then the actual proof tree formatter. Removing everything that's not needed for the `analyse` visitor allows us to remove a bunch of code.
I personally believe that we should continue to use tracing over proof trees for debugging:
- it eagerly prints, allowing us to debug ICEs
- the proof tree builder ends up going out of sync with the actual runtime behavior, which is confusing
- using shallow proof trees is a lot more performant as we frequently do not recurse into all nested goals when using an analyse visitor
- this allows us to clean up the implementation and remove some code
r? ```@compiler-errors```
Fail relating constants of different types
fixes#121585fixes#121858fixes#124151
I gave this several attempts before, but we lost too many important diagnostics until I managed to make compilation never bail out early. We have reached this point, so now we can finally fix all those ICEs by bubbling up an error instead of continueing when we encounter a bug.
Warn (or error) when `Self` ctor from outer item is referenced in inner nested item
This implements a warning `SELF_CONSTRUCTOR_FROM_OUTER_ITEM` when a self constructor from an outer impl is referenced in an inner nested item. This is a proper fix mentioned https://github.com/rust-lang/rust/pull/117246#discussion_r1374648388.
This warning is additionally bumped to a hard error when the self type references generic parameters, since it's almost always going to ICE, and is basically *never* correct to do.
This also reverts part of https://github.com/rust-lang/rust/pull/117246, since I believe this is the proper fix and we shouldn't need the helper functions (`opt_param_at`/`opt_type_param`) any longer, since they shouldn't really ever be used in cases where we don't have this problem.
Remove more `#[macro_use] extern crate tracing`
Because explicit importing of macros via use items is nicer (more standard and readable) than implicit importing via `#[macro_use]`. Continuing the work from #124511 and #124914.
r? `@jackh726`
With the removal of `LintDiagnostic::msg` / the `msg` param from
lint diag APIs, primary messages for lint diags are always constructed
lazily inside decorator fns rendering this wrapper type unused / useless.
* instead simply set the primary message inside the lint decorator functions
* it used to be this way before [#]101986 which introduced `msg` to prevent
good path delayed bugs (which no longer exist) from firing under certain
circumstances when lints were suppressed / silenced
* this is no longer necessary for various reasons I presume
* it shaves off complexity and makes further changes easier to implement
Rollup of 7 pull requests
Successful merges:
- #125043 (reference type safety invariant docs: clarification)
- #125306 (Force the inner coroutine of an async closure to `move` if the outer closure is `move` and `FnOnce`)
- #125355 (Use Backtrace::force_capture instead of Backtrace::capture in rustc_log)
- #125382 (rustdoc: rename `issue-\d+.rs` tests to have meaningful names (part 7))
- #125391 (Minor serialize/span tweaks)
- #125395 (Remove unnecessary `.md` from the documentation sidebar)
- #125399 (Stop using `to_hir_binop` in codegen)
r? `@ghost`
`@rustbot` modify labels: rollup
Stop using `to_hir_binop` in codegen
This came up in https://github.com/rust-lang/rust/pull/125359#discussion_r1609401311 , and looking into it we can just use the `mir::BinOp`s directly instead of `hir::BinOpKind`s.
(AKA rather than going `mir::BinOp` → `hir::BinOpKind` → `IntPredicate`, just go `mir::BinOp` → `IntPredicate`.)
An async closure may implement `FnMut`/`Fn` if it has no self-borrows
There's no reason that async closures may not implement `FnMut` or `Fn` if they don't actually borrow anything with the closure's env lifetime. Specifically, #123660 made it so that we don't always need to borrow captures from the closure's env.
See the doc comment on `should_reborrow_from_env_of_parent_coroutine_closure`:
c00957a3e2/compiler/rustc_hir_typeck/src/upvar.rs (L1777-L1823)
If there are no such borrows, then we are free to implement `FnMut` and `Fn` as permitted by our closure's inferred `ClosureKind`.
As far as I can tell, this change makes `async || {}` work in precisely the set of places they used to work before #120361.
Fixes#125247.
r? oli-obk
Add a footer in FileEncoder and check for it in MemDecoder
We have a few reports of ICEs due to decoding failures, where the fault does not lie with the compiler. The goal of this PR is to add some very lightweight and on-by-default validation to the compiler's outputs. If validation fails, we emit a fatal error for rmeta files in general that mentions the path that didn't load, and for incremental compilation artifacts we emit a verbose warning that tries to explain the situation and treat the artifacts as outdated.
The validation currently implemented here is very crude, and yet I think we have 11 ICE reports currently open (you can find them by searching issues for `1002111927320821928687967599834759150`) which this simple validation would have detected. The structure of the code changes here should permit the addition of further validation code, such as a checksum, if it is merited. I would like to have code to detect corruption such as reported in https://github.com/rust-lang/rust/issues/124719, but I'm not yet sure how to do that efficiently, and this PR is already a good size.
The ICE reports I have in mind that this PR would have smoothed over are:
https://github.com/rust-lang/rust/issues/124469https://github.com/rust-lang/rust/issues/123352https://github.com/rust-lang/rust/issues/123376 [^1]
https://github.com/rust-lang/rust/issues/99763https://github.com/rust-lang/rust/issues/93900.
---
[^1]: This one might be a compiler bug, but even if it is I think the workflow described is pushing the envelope of what we can support. This issue is one of the reasons this warning still asks people to file an issue.
Move `#[do_not_recommend]` to the `#[diagnostic]` namespace
This commit moves the `#[do_not_recommend]` attribute to the `#[diagnostic]` namespace. It still requires
`#![feature(do_not_recommend)]` to work.
r? `@compiler-errors`
Translation of the lint message happens when the actual diagnostic is
created, not when the lint is buffered. Generating the message from
BuiltinLintDiag ensures that all required data to construct the message
is preserved in the LintBuffer, eventually allowing the messages to be
moved to fluent.
Remove the `msg` field from BufferedEarlyLint, it is either generated
from the data in the BuiltinLintDiag or stored inside
BuiltinLintDiag::Normal.
Add `IntoIterator` for `Box<[T]>` + edition 2024-specific lints
* Adds a similar method probe opt-out mechanism to the `[T;N]: IntoIterator` implementation for edition 2021.
* Adjusts the relevant lints (shadowed `.into_iter()` calls, new source of method ambiguity).
* Adds some tests.
* Took the liberty to rework the logic in the `ARRAY_INTO_ITER` lint, since it was kind of confusing.
Based mostly off of #116607.
ACP: rust-lang/libs-team#263
References #59878
Tracking for Rust 2024: https://github.com/rust-lang/rust/issues/123759
Crater run was done here: https://github.com/rust-lang/rust/pull/116607#issuecomment-1770293013
Consensus afaict was that there is too much breakage, so let's do this in an edition-dependent way much like `[T; N]: IntoIterator`.
Follow-up fixes to `report_return_mismatched_types`
Some renames, simplifications, fixes, etc. Follow-ups to #123804. I don't think it totally disentangles this code, but it does remove some of the worst offenders on the "I am so confused" scale (e.g. `get_node_fn_decl`).
Uplift `RegionVid`, `TermKind` to `rustc_type_ir`, and `EagerResolver` to `rustc_next_trait_solver`
- Uplift `RegionVid`. This was complicated due to the fact that we implement `polonius_engine::Atom` for `RegionVid` -- but I just separated that into `PoloniusRegionVid`, and added `From`/`Into` impls so it can be defined in `rustc_borrowck` separately. Coherence 😵
- Change `InferCtxtLike` to expose `opportunistically_resolve_{ty,ct,lt,int,float}_var` so that we can uplift `EagerResolver` for use in the canonicalization methods.
- Uplift `TermKind` much like `GenericArgKind`
All of this is miscellaneous dependencies for making more `EvalCtxt` methods generic.
coverage: Memoize and simplify counter expressions
When creating coverage counter expressions as part of coverage instrumentation, we often end up creating obviously-redundant expressions like `c1 + (c0 - c1)`, which is equivalent to just `c0`.
To avoid doing so, this PR checks when we would create an expression matching one of 5 patterns, and uses the simplified form instead:
- `(a - b) + b` → `a`.
- `(a + b) - b` → `a`.
- `(a + b) - a` → `b`.
- `a + (b - a)` → `b`.
- `a - (a - b)` → `b`.
Of all the different ways to combine 3 operands and 2 operators, these are the patterns that allow simplification.
(Some of those patterns currently don't occur in practice, but are included anyway for completeness, to avoid having to add them later as branch coverage and MC/DC coverage support expands.)
---
This PR also adds memoization for newly-created (or newly-simplified) counter expressions, to avoid creating duplicates.
This currently makes no difference to the final mappings, but is expected to be useful for MC/DC coverage of match expressions, as proposed by https://github.com/rust-lang/rust/pull/124278#issuecomment-2106754753.
Uplift more query stuff
- Uplift various query input/response internals
- Uplift the `ProofTree` structures and make the `ProofTreeBuilder` stuff (mostly) generic over `Interner`
- Stop using `TyCtxt::def_kind` in favor of `AliasTerm::kind`
r? lcnr
Rename Unsafe to Safety
Alternative to #124455, which is to just have one Safety enum to use everywhere, this opens the posibility of adding `ast::Safety::Safe` that's useful for unsafe extern blocks.
This leaves us today with:
```rust
enum ast::Safety {
Unsafe(Span),
Default,
// Safe (going to be added for unsafe extern blocks)
}
enum hir::Safety {
Unsafe,
Safe,
}
```
We would convert from `ast::Safety::Default` into the right Safety level according the context.
MIR operators: clarify Shl/Shr handling of negative offsets
"made unsigned" was not fully clear (made unsigned how? by using `abs`? no), so let's say "re-interpreted as an unsigned value of the same size" instead.
r? `@scottmcm`
coverage: `CoverageIdsInfo::mcdc_bitmap_bytes` is never needed
This code for recalculating `mcdc_bitmap_bytes` in a query doesn't provide any benefit, because its result won't have changed from the value in `FunctionCoverageInfo` that was computed during the MIR instrumentation pass.
Extracted from #124571, to avoid having this held up by unrelated issues with condition count checks.
`@rustbot` label +A-code-coverage
Also expand weak alias tys inside consts inside `expand_weak_alias_tys`
Ever since #121344 has been merged, I couldn't let go of the fear that I might've slipped a tiny bug into rustc (:P).
Checking the type flags of the `Const` is strictly more correct than only checking the ones of the `Const`'s `Ty`. I don't think it's possible to trigger an ICE rn (i.e., one of the two `bug!("unexpected weak alias type")` I added in branches where `expand_weak_alias_tys` should've expanded *all* weak alias tys) because presently const exprs aren't allowed to capture late-bound vars. To be future-proof however, we should iron this out.
A possible reproducer would be the following if I'm not mistaken (currently fails to compile due to the aforementioned restriction):
```rs
#![feature(lazy_type_alias, adt_const_params, generic_const_exprs)]
type F = for<'a> fn(A<{ S::<Weak<'a>>(loop {}) }>) -> &'a ();
type A<const N: S<Weak<'static>>> = ();
#[derive(PartialEq, Eq, std::marker::ConstParamTy)]
struct S<T>(T);
type Weak<'a> = &'a ();
```
Whether a late-bound region should actually be considered constrained by a const expr is a separate question — one which we don't need to answer until / unless we actually allow them in such contexts (probable answer: only inside the return exprs of a block but not inside the stmts).
r? oli-obk (he's not available rn but that's fine) or types or compiler
These comments appear to be inspired by the similar comments on
`CounterIncrement` and `ExpressionUsed`. But those comments refer to specific
simplification steps performed during coverage codegen, and there is no
corresponding step for the MC/DC coverage statements.
If these statements do not survive optimization, they will simply not
participate in code generation, just like any other statement.
This code for recalculating `mcdc_bitmap_bytes` doesn't provide any benefit,
because its result won't have changed from the value in `FunctionCoverageInfo`
that was computed during the MIR instrumentation pass.
Split out `ty::AliasTerm` from `ty::AliasTy`
Splitting out `AliasTerm` (for use in project and normalizes goals) and `AliasTy` (for use in `ty::Alias`)
r? lcnr
Many, many projects use `size_of` to get the size of a type. However,
it's also often equally easy to hardcode a size (e.g. `8` instead of
`size_of::<u64>()`). Minimizing friction in the use of `size_of` helps
ensure that people use it and make code more self-documenting.
The name `size_of` is unambiguous: the name alone, without any prefix or
path, is self-explanatory and unmistakeable for any other functionality.
Adding it to the prelude cannot produce any name conflicts, as any local
definition will silently shadow the one from the prelude. Thus, we don't
need to wait for a new edition prelude to add it.
Add `size_of_val`, `align_of`, and `align_of_val` as well, with similar
justification: widely useful, self-explanatory, unmistakeable for
anything else, won't produce conflicts.
Remove `#[macro_use] extern crate rustc middle` from numerous crates
Because explicit importing of macros via `use` items is nicer (more standard and readable) than implicit importing via `#[macro_use]`. This PR mops up some cases I didn't get to in #124511.
r? `@saethlin`
Unfortunately, we can't always offer a machine-applicable suggestion when there are subpatterns from macro expansion.
Co-Authored-By: Guillaume Boisseau <Nadrieril@users.noreply.github.com>
Rename some `FulfillmentErrorCode`/`ObligationCauseCode` variants to be less redundant
1. Rename some `FulfillmentErrorCode` variants.
2. Always use `ObligationCauseCode::` to prefix a code, rather than using a glob import and naming them through `traits::`.
3. Rename some `ObligationCauseCode` variants -- I wasn't particularly thorough with thinking of a new names for these, so could workshop them if necessary.
4. Misc stuff from renaming.
r? lcnr
Refactor float `Primitive`s to a separate `Float` type
Now there are 4 of them, it makes sense to refactor `F16`, `F32`, `F64` and `F128` out of `Primitive` and into a separate `Float` type (like integers already are). This allows patterns like `F16 | F32 | F64 | F128` to be simplified into `Float(_)`, and is consistent with `ty::FloatTy`.
As a side effect, this PR also makes the `Ty::primitive_size` method work with `f16` and `f128`.
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
Eliminate some `FIXME(lcnr)` comments
In some cases this involved changing code. In some cases the comment was able to removed or replaced.
r? ``@lcnr``
Rename `Generics::params` to `Generics::own_params`
I hope this makes it slightly more obvious that `generics.own_params` is insufficient when considering nested items. I didn't actually audit any of the usages, for the record.
r? lcnr
Fix#124819, where a if-less block causes a wrong output. It is
caused by get_return_block in get_fn_decl. In get_return_block,
when a else-less if expression is the tail expression, the check
for next_node will keep iterating. So it is necessary to make a
early return in the check.
It is optimized for lists with a single element, avoiding the need for
an allocation in that case. But `SmallVec<[T; 1]>` also avoids the
allocation, and is better in general: more standard, log2 number of
allocations if the list exceeds one item, and a much more capable API.
This commit removes `TinyList` and converts the two uses to
`SmallVec<[T; 1]>`. It also reorders the `use` items in the relevant
file so they are in just two sections (`pub` and non-`pub`), ordered
alphabetically, instead of many sections. (This is a relevant part of
the change because I had to decide where to add a `use` item for
`SmallVec`.)
Handle normalization failure in `struct_tail_erasing_lifetimes`
Fixes#113272
The ICE occurred because the struct being normalized had an error. This PR adds some defensive code to guard against that.
never patterns: lower never patterns to `Unreachable` in MIR
This lowers a `!` pattern to "goto Unreachable". Ideally I'd like to read from the place to make it clear that the UB is coming from an invalid value, but that's tricky so I'm leaving it for later.
r? `@compiler-errors` how do you feel about a lil bit of MIR lowering
Use a proof tree visitor to refine the `Obligation` for error reporting in new solver
With the magic of `ProofTreeVisitor`, we can close the gap that we have on `ObligationCause`s being not as descriptive in the new trait solver.
r? lcnr
Needs some work and obviously documentation.
Some hir cleanups
It seemed odd to not put `AnonConst` in the arena, compared with the other types that we did put into an arena. This way we can also give it a `Span` without growing a lot of other HIR data structures because of the extra field.
r? compiler
coverage: Clean up creation of MC/DC condition bitmaps
This PR improves the code for creating and initializing [MC/DC](https://en.wikipedia.org/wiki/Modified_condition/decision_coverage) condition bitmap variables, as introduced by #123409 and modified by #124255.
- The condition bitmap variables are now created eagerly at the start of per-function codegen, via a new `init_coverage` method in `CoverageInfoBuilderMethods`. This avoids having to retroactively create the bitmaps while doing codegen for an individual coverage statement.
- As a result, we can now create and initialize those bitmaps using existing safe APIs, instead of having to perform our own unsafe call to `llvm::LLVMBuildAlloca`.
- This PR also tweaks the way we count the number of condition bitmaps needed, by tracking the total number of bitmaps needed (max depth + 1), instead of only tracking the maximum depth. This reduces the potential for subtle off-by-one confusion.
Stabilize the size of incr comp object file names
The current implementation does not produce stable-length paths, and we create the paths in a way that makes our allocation behavior is nondeterministic. I think `@eddyb` fixed a number of other cases like this in the past, and this PR fixes another one. Whether that actually matters I have no idea, but we still have bimodal behavior in rustc-perf and the non-uniformity in `find` and `ls` was bothering me.
I've also removed the truncation of the mangled CGU names. Before this PR incr comp paths look like this:
```
target/debug/incremental/scratch-38izrrq90cex7/s-gux6gz0ow8-1ph76gg-ewe1xj434l26w9up5bedsojpd/261xgo1oqnd90ry5.o
```
And after, they look like this:
```
target/debug/incremental/scratch-035omutqbfkbw/s-gux6borni0-16r3v1j-6n64tmwqzchtgqzwwim5amuga/55v2re42sztc8je9bva6g8ft3.o
```
On the one hand, I'm sure this will break some people's builds because they're on Windows and only a few bytes from the path length limit. But if we're that seriously worried about the length of our file names, I have some other ideas on how to make them smaller. And last time I deleted some hash truncations from the compiler, there was a huge drop in the number if incremental compilation ICEs that were reported: https://github.com/rust-lang/rust/pull/110367https://github.com/rust-lang/rust/pull/110367
---
Upon further reading, this PR actually fixes a bug. This comment says the CGU names are supposed to be a fixed-length hash, and before this PR they aren't: ca7d34efa9/compiler/rustc_monomorphize/src/partitioning.rs (L445-L448)
Generalize `adjust_from_tcx` for `Allocation`
Previously, `adjust_from_tcx` would take an `Allocation` and "adjust allocation from the ones in `tcx` to a custom Machine instance [...]".
This PR generalizes this so the Machine instance can also determine the `Bytes` type of the output `Allocation`.
r? `@RalfJung`
`ConstKind::Value` is the only variant where control flow leaves the
first match on `impl_ct.kind()`, so there is no need for a second match
on the same expression later on.
Use `tcx.types.unit` instead of `Ty::new_unit(tcx)`
I don't think there is any need for the function, given that we can just access the `.types`, similarly to all other primitives?
Remove many `#[macro_use] extern crate foo` items
This requires the addition of more `use` items, which often make the code more verbose. But they also make the code easier to read, because `#[macro_use]` obscures where macros are defined.
r? `@fee1-dead`
MCDC coverage: support nested decision coverage
#123409 provided the initial MCDC coverage implementation.
As referenced in #124144, it does not currently support "nested" decisions, like the following example :
```rust
fn nested_if_in_condition(a: bool, b: bool, c: bool) {
if a && if b || c { true } else { false } {
say("yes");
} else {
say("no");
}
}
```
Note that there is an if-expression (`if b || c ...`) embedded inside a boolean expression in the decision of an outer if-expression.
This PR proposes a workaround for this cases, by introducing a Decision context stack, and by handing several `temporary condition bitmaps` instead of just one.
When instrumenting boolean expressions, if the current node is a leaf condition (i.e. not a `||`/`&&` logical operator nor a `!` not operator), we insert a new decision context, such that if there are more boolean expressions inside the condition, they are handled as separate expressions.
On the codegen LLVM side, we allocate as many `temp_cond_bitmap`s as necessary to handle the maximum encountered decision depth.
Add decision_depth field to TVBitmapUpdate/CondBitmapUpdate statements
Add decision_depth field to BcbMappingKinds MCDCBranch and MCDCDecision
Add decision_depth field to MCDCBranchSpan and MCDCDecisionSpan
Record certainty of `evaluate_added_goals_and_make_canonical_response` call in candidate
Naming subject to bikeshedding, but I will need this when moving `select` to a proof tree visitor.
r? lcnr
Do not ICE on invalid consts when walking mono-reachable blocks
The `bug!` here was written under the logic of "this condition is impossible, right?" except that of course, if the compiler is given code that results in an compile error, then the situation is possible.
So now we just direct errors into the already-existing path for when we can't do a mono-time optimization.
`obligations_for_self_ty`: use `ProofTreeVisitor` for nested goals
As always, dealing with proof trees continues to be a hacked together mess. After this PR and #124380 the only remaining blocker for core is https://github.com/rust-lang/trait-system-refactor-initiative/issues/90. There is also a `ProofTreeVisitor` issue causing an ICE when compiling `alloc` which I will handle in a separate PR. This issue likely affects coherence diagnostics more generally.
The core idea is to extend the proof tree visitor to support visiting nested candidates without using a `probe`. We then simply recurse into nested candidates if they are the only potentially applicable candidate for a given goal and check whether the self type matches the expected one.
For that to work, we need to improve `CanonicalState` to also handle unconstrained inference variables created inside of the trait solver. This is done by extending the `var_values` of `CanoncalState` with each fresh inference variables. Furthermore, we also store the state of all inference variables at the end of each probe. When recursing into `InspectCandidates` we then unify the values of all these states.
r? `@compiler-errors`
Remove special-casing for `SimplifiedType` for next solver
It's unnecessary due to the way that we fully normalize the self type before assembly begins.
r? lcnr
uses a `ProofTreeVisitor` to look into nested
goals when looking at the pending obligations
during hir typeck. Used by closure signature
inference, coercion, and for async functions.
`-Z debug-macros` is "stabilized" by enabling it by default and removing.
`-Z collapse-macro-debuginfo` is stabilized as `-C collapse-macro-debuginfo`.
It now supports all typical boolean values (`parse_opt_bool`) in addition to just yes/no.
Default value of `collapse_debuginfo` was changed from `false` to `external` (i.e. collapsed if external, not collapsed if local).
`#[collapse_debuginfo]` attribute without a value is no longer supported to avoid guessing the default.
Stabilise inline_const
# Stabilisation Report
## Summary
This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised.
The feature will allow code like this:
```rust
foo(const { 1 + 1 })
```
which is roughly desugared into
```rust
struct Foo;
impl Foo {
const FOO: i32 = 1 + 1;
}
foo(Foo::FOO)
```
This feature is from https://github.com/rust-lang/rfcs/pull/2920 and is tracked in #76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in #77124.
## Difference from RFC
There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. #89964). The inference is implemented in #89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body.
This allows code like:
```rust
let v: Vec<i32> = const { Vec::new() };
```
Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in #96557.
This allows code like:
```rust
fn create_none_array<T, const N: usize>() -> [Option<T>; N] {
[const { None::<T> }; N]
}
```
This enhancement also makes inline const usable as static asserts:
```rust
fn require_zst<T>() {
const { assert!(std::mem::size_of::<T>() == 0) }
}
```
## Documentation
Reference: rust-lang/reference#1295
## Unresolved issues
We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation:
* expr fragment specifier issue: #86730
* ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~
## Tests
There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
delegation: Support renaming, and async, const, extern "ABI" and C-variadic functions
Also allow delegating to functions with opaque types (`impl Trait`).
The delegation item will refer to the original opaque type from the callee, fresh opaque type won't be created, which seems like a reasonable behavior.
(Such delegation items will cause query cycles when used in trait impls, but it can be fixed later.)
Part of https://github.com/rust-lang/rust/issues/118212.
restrict promotion of `const fn` calls
We only promote them in `const`/`static` initializers, but even that is still unfortunate -- we still cannot add promoteds to required_consts. But we should add them there to make sure it's always okay to evaluate every const we encounter in a MIR body. That effort of not promoting things that can fail to evaluate is tracked in https://github.com/rust-lang/rust/issues/80619. These `const fn` calls are the last missing piece.
So I propose that we do not promote const-fn calls in const when that may fail without the entire const failing, thereby completing https://github.com/rust-lang/rust/issues/80619. Unfortunately we can't just reject promoting these functions outright due to backwards compatibility. So let's see if we can find a hack that makes crater happy...
For the record, this is the [crater analysis](https://github.com/rust-lang/rust/pull/80243#issuecomment-751885520) from when I tried to entirely forbid this kind of promotion. It's a tiny amount of breakage and if we had a nice alternative for code like that, we could conceivably push it through... but sadly, inline const expressions are still blocked on t-lang concerns about post-monomorphization errors and we haven't yet figured out an implementation that can resolve those concerns. So we're forced to make progress via other means, such as terrible hacks like this.
Attempt one: only promote calls on the "safe path" at the beginning of a MIR block. This is the path that starts at the start block and continues via gotos and calls, but stops at the first branch. If we had imposed this restriction before stabilizing `if` and `match` in `const`, this would have definitely been sufficient...
EDIT: Turns out that works. :)
**Here's the t-lang [nomination comment](https://github.com/rust-lang/rust/pull/121557#issuecomment-1990902440).** And here's the [FCP comment](https://github.com/rust-lang/rust/pull/121557#issuecomment-2010306165).
r? `@oli-obk`
Enable `CrateNum` query feeding via `TyCtxt`
Instead of having a magic function that violates some `TyCtxtFeed` invariants, add a `create_def` equivalent for `CrateNum`s.
Note that this still isn't tracked by the query system (unlike `create_def`), and that feeding most `CrateNum` queries for crates other than the local one will likely cause performance regressions.
These things should be attempted on their own separately, but this PR should stand on its own
Also allow `impl Trait` in delegated functions.
The delegation item will refer to the original opaque type from the callee, fresh opaque type won't be created.
Do `check_coroutine_obligations` once per typeck root
We only need to do `check_coroutine_obligations` once per typeck root, especially since the new solver can't really (easily) associate which obligations correspond to which coroutines.
This requires us to move the checks for sized coroutine fields into `mir_coroutine_witnesses`, but that's fine imo.
r? lcnr
deref patterns: lower deref patterns to MIR
This lowers deref patterns to MIR. This is a bit tricky because this is the first kind of pattern that requires storing a value in a temporary. Thanks to https://github.com/rust-lang/rust/pull/123324 false edges are no longer a problem.
The thing I'm not confident about is the handling of fake borrows. This PR ignores any fake borrows inside a deref pattern. We are guaranteed to at least fake borrow the place of the first pointer value, which could be enough, but I'm not certain.
weak lang items are not allowed to be #[track_caller]
For instance the panic handler will be called via this import
```rust
extern "Rust" {
#[lang = "panic_impl"]
fn panic_impl(pi: &PanicInfo<'_>) -> !;
}
```
A `#[track_caller]` would add an extra argument and thus make this the wrong signature.
The 2nd commit is a consistency rename; based on the docs [here](https://doc.rust-lang.org/unstable-book/language-features/lang-items.html) and [here](https://rustc-dev-guide.rust-lang.org/lang-items.html) I figured "lang item" is more widely used. (In the compiler output, "lang item" and "language item" seem to be pretty even.)
Rollup of 7 pull requests
Successful merges:
- #123680 (Deny gen keyword in `edition_2024_compat` lints)
- #124057 (Fix ICE when ADT tail has type error)
- #124168 (Use `DefiningOpaqueTypes::Yes` in rustdoc, where the `InferCtxt` is guaranteed to have no opaque types it can define)
- #124197 (Move duplicated code in functions in `tests/rustdoc-gui/notable-trait.goml`)
- #124200 (Improve handling of expr->field errors)
- #124220 (Miri: detect wrong vtables in wide pointers)
- #124266 (remove an unused type from the reentrant lock tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Add simple async drop glue generation
This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work).
This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit).
Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work.
Feature completeness:
- [x] `AsyncDrop` trait
- [ ] `async_drop_in_place_raw`/async drop glue generation support for
- [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.)
- [x] Arrays and slices (array pointer is unsized into slice pointer)
- [x] ADTs (enums, structs, unions)
- [x] tuple-like types (tuples, closures)
- [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait))
- [ ] coroutines (https://github.com/rust-lang/rust/pull/123948)
- [x] Async drop glue includes sync drop glue code
- [x] Cleanup branch generation for `async_drop_in_place_raw`
- [ ] Union rejects non-trivially async destructible fields
- [ ] `AsyncDrop` implementation requires same bounds as type definition
- [ ] Skip trivially destructible fields (optimization)
- [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators
- [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop)
- [ ] Automatic async drop at the end of the scope in async context
coverage: Prepare for improved branch coverage
When trying to rebase my new branch coverage work (including #124154) on top of the introduction of MC/DC coverage (#123409), I found it a lot harder than anticipated. With the benefit of hindsight, the branch coverage code and MC/DC code have become more interdependent than I'm happy with.
This PR therefore disentangles them a bit, so that it will be easier for both areas of code to evolve independently without interference.
---
This PR also includes a few extra branch coverage tests that I had sitting around from my current branch coverage work. They mostly just demonstrate that certain language constructs listed in #124118 currently don't have branch coverage support.
``@rustbot`` label +A-code-coverage
PatRangeBoundary::compare_with: als add a fast-path for signed integers
Not sure if we have a benchmark that hits this... but it seems odd to only do this for unsigned integers.
Implement Modified Condition/Decision Coverage
This is an implementation based on llvm backend support (>= 18) by `@evodius96` and branch coverage support by `@Zalathar.`
### Major changes:
* Add -Zcoverage-options=mcdc as switch. Now coverage options accept either `no-branch`, `branch`, or `mcdc`. `mcdc` also enables `branch` because it is essential to work.
* Add coverage mapping for MCDCBranch and MCDCDecision. Note that MCDCParameter evolves from llvm 18 to llvm 19. The mapping in rust side mainly references to 19 and is casted to 18 types in llvm wrapper.
* Add wrapper for mcdc instrinc functions from llvm. And inject associated statements to mir.
* Add BcbMappingKind::Decision, I'm not sure is it proper but can't find a better way temporarily.
* Let coverage-dump support parsing MCDCBranch and MCDCDecision from llvm ir.
* Add simple tests to check whether mcdc works.
* Same as clang, currently rustc does not generate instrument for decision with more than 6 condtions or only 1 condition due to considerations of resource.
### Implementation Details
1. To get information about conditions and decisions, `MCDCState` in `BranchInfoBuilder` is used during hir lowering to mir. For expressions with logical op we call `Builder::visit_coverage_branch_operation` to record its sub conditions, generate condition ids for them and save their spans (to construct the span of whole decision). This process mainly references to the implementation in clang and is described in comments over `MCDCState::record_conditions`. Also true marks and false marks introduced by branch coverage are used to detect where the decision evaluation ends: the next id of the condition == 0.
2. Once the `MCDCState::decision_stack` popped all recorded conditions, we can ensure that the decision is checked over and push it into `decision_spans`. We do not manually insert decision span to avoid complexity from then_else_break in nested if scopes.
3. When constructing CoverageSpans, add condition info to BcbMappingKind::Branch and decision info to BcbMappingKind::Decision. If the branch mapping has non-zero condition id it will be transformed to MCDCBranch mapping and insert `CondBitmapUpdate` statements to its evaluated blocks. While decision bcb mapping will insert `TestVectorBitmapUpdate` in all its end blocks.
### Usage
```bash
echo "[build]\nprofiler=true" >> config.toml
./x build --stage 1
./x test tests/coverage/mcdc_if.rs
```
to build the compiler and run tests.
```shell
export PATH=path/to/llvm-build:$PATH
rustup toolchain link mcdc build/host/stage1
cargo +mcdc rustc --bin foo -- -Cinstrument-coverage -Zcoverage-options=mcdc
cd target/debug
LLVM_PROFILE_FILE="foo.profraw" ./foo
llvm-profdata merge -sparse foo.profraw -o foo.profdata
llvm-cov show ./foo -instr-profile=foo.profdata --show-mcdc
```
to check "foo" code.
### Problems to solve
For now decision mapping will insert statements to its all end blocks, which may be optimized by inserting a final block of the decision. To do this we must also trace the evaluated value at each end of the decision and join them separately.
This implementation is not heavily tested so there should be some unrevealed issues. We are going to check our rust products in the next. Please let me know if you had any suggestions or comments.
Introduce perma-unstable `wasm-c-abi` flag
Now that `wasm-bindgen` v0.2.88 supports the spec-compliant C ABI, the idea is to switch to that in a future version of Rust. In the meantime it would be good to let people test and play around with it.
This PR introduces a new perma-unstable `-Zwasm-c-abi` compiler flag, which switches to the new spec-compliant C ABI when targeting `wasm32-unknown-unknown`.
Alternatively, we could also stabilize this and then deprecate it when we switch. I will leave this to the Rust maintainers to decide.
This is a companion PR to #117918, but they could be merged independently.
MCP: https://github.com/rust-lang/compiler-team/issues/703
Tracking issue: https://github.com/rust-lang/rust/issues/122532
Outline default query and hook provider function implementations
The default query and hook provider functions call `bug!` with a decently long message.
Due to argument inlining in `format_args!` ([`flatten_format_args`](https://github.com/rust-lang/rust/issues/78356)), this ends up duplicating the message for each query, adding ~90KB to `librustc_driver.so` of unreachable panic messages.
To avoid this, we can outline the common `bug!` logic.
Move size assertions for `mir::syntax` types into the same file
A redundant size assertion for `StatementKind` was added in #122937, because the existing assertion was in a different file.
This PR cleans that up, and also moves the `TerminatorKind` assertion into the same file where it belongs, to avoid the same thing happening again.
r? `@nnethercote`
Implement syntax for `impl Trait` to specify its captures explicitly (`feature(precise_capturing)`)
Implements `impl use<'a, 'b, T, U> Sized` syntax that allows users to explicitly list the captured parameters for an opaque, rather than inferring it from the opaque's bounds (or capturing *all* lifetimes under 2024-edition capture rules). This allows us to exclude some implicit captures, so this syntax may be used as a migration strategy for changes due to #117587.
We represent this list of captured params as `PreciseCapturingArg` in AST and HIR, resolving them between `rustc_resolve` and `resolve_bound_vars`. Later on, we validate that the opaques only capture the parameters in this list.
We artificially limit the feature to *require* mentioning all type and const parameters, since we don't currently have support for non-lifetime bivariant generics. This can be relaxed in the future.
We also may need to limit this to require naming *all* lifetime parameters for RPITIT, since GATs have no variance. I have to investigate this. This can also be relaxed in the future.
r? `@oli-obk`
Tracking issue:
- https://github.com/rust-lang/rust/issues/123432
A redundant size assertion for `StatementKind` was added in #122937, because
the existing assertion was in a different file.
This patch cleans that up, and also moves the `TerminatorKind` assertion into
the same file where it belongs, to avoid the same thing happening again.
Fix pretty HIR for anon consts in diagnostics
This removes the `NoAnn` printer which skips over nested bodies altogether, which is confusing, and requires users of `{ty|qpath|pat}_to_string` to pass in `&tcx` which now impleemnts `hir_pretty::PpAnn`.
There's one case where this "regresses" by actually printing out the body of the anon const -- we could suppress that, but I don't expect people to actually get anon consts like that unless they're fuzzing, tbh.
r? estebank
Don't even parse an intrinsic unless the feature gate is enabled
Don't return true in `tcx.is_intrinsic` if the function is defined locally and `#![feature(intrinsics)]` is not enabled. This is a slightly more general fix than #123526, since #123587 shows that we have simplifying assumptions about intrinsics elsewhere in the compiler.
This will make the code ICE again if the user **enables** `#[feature(intrinsics)]`, but I kind of feel like if we want to fix that, we should make the `INTERNAL_FEATURES` lint `Deny` again. Perhaps we could do that on non-nightly compilers. Or we should just stop compilation altogether if they have `#![feature]` enabled on a non-nightly compiler.
As for the UX of *real* cases of hitting these ICEs, I believe pretty strongly that if a compiler/stdlib dev is modifying internal intrinsics (intentionally, like when making a change to rustc) we have no guarantee to make the ICE better looking for them. Honestly, *not* spitting out a stack trace is probably a disservice to the people who hit those ICEs in that case.
r? `@Nilstrieb` `@estebank`
Remove `TypeVariableOriginKind` and `ConstVariableOriginKind`
It's annoying to have to import `TypeVariableOriginKind` just to fill it with `MiscVariable` for almost every use. Every other usage other than `TypeParameterDefinition` wasn't even used -- I can see how it may have been useful once for debugging, but I do quite a lot of typeck debugging and I've never really needed it.
So let's just remove it, and keep around the only useful thing which is the `DefId` of the param for `var_for_def`.
This is based on #123006, which removed the special use of `TypeVariableOriginKind::OpaqueInference`, which I'm pretty sure I was the one that added.
r? lcnr or re-roll to types
Make the computation of `coroutine_captures_by_ref_ty` more sophisticated
Currently, we treat all the by-(mut/)ref borrows of a coroutine-closure as having a "closure env" borrowed lifetime.
When we have the given code:
```rust
let x: &'a i32 = ...;
let c = async || {
let _x = *x;
};
```
Then when we call:
```rust
c()
// which, because `AsyncFn` takes a `&self`, we insert an autoref:
(&c /* &'env {coroutine-closure} */)()
```
We will return a future whose captures contain `&'env i32` instead of `&'a i32`, which is way more restrictive than necessary. We should be able to drop `c` while the future is alive since it's not actually borrowing any data *originating from within* the closure's captures, but since the capture has that `'env` lifetime, this is not possible.
This wouldn't be true, for example, if the closure captured `i32` instead of `&'a i32`, because the `'env` lifetime is actually *necessary* since the data (`i32`) is owned by the closure.
This PR identifies two criteria where we *need* to take the borrow with the closure env lifetime:
1. If the closure borrows data from inside the closure's captures. This is not true if the parent capture is by-ref, OR if the parent capture is by-move and the child capture begins with a deref projection. This is the example described above.
2. If we're dealing with mutable references, since we cannot reborrow `&'env mut &'a mut i32` into `&'a mut i32`, *only* `&'env mut i32`.
See the documentation on `should_reborrow_from_env_of_parent_coroutine_closure` for more info.
**important:** As disclaimer states on that function, luckily, if this heuristic is not correct, then the program is not unsound, since we still borrowck and validate the choices made from this function -- the only side-effect is that the user may receive unnecessary borrowck errors.
Fixes#123241
Rework ptr-to-ref conversion suggestion for method calls
If we have a value `z` of type `*const u8` and try to call `z.to_string()`, the upstream compiler will show you a note suggesting to call `<*const u8>::as_ref` first.
This PR extends that:
- The note will only be shown when the method would exist on the corresponding reference type
- It can now suggest any of `<*const u8>::as_ref`, `<*mut u8>::as_ref` and `<*mut u8>::as_mut`, depending on what the method needs.
I didn't introduce a `help` message because that's not a good idea with `unsafe` functions (and you'd also need to unwrap the `Option<&_>` somehow).
People should check the safety requirements.
For the simplest case
```rust
fn main() {
let x = 8u8;
let z: *const u8 = &x;
// issue #21596
println!("{}", z.to_string()); //~ ERROR E0599
}
```
the output changes like this:
```diff
error[E0599]: `*const u8` doesn't implement `std::fmt::Display`
--> $DIR/suggest-convert-ptr-to-ref.rs:5:22
|
LL | println!("{}", z.to_string());
| ^^^^^^^^^ `*const u8` cannot be formatted with the default formatter
|
- = note: try using `<*const T>::as_ref()` to get a reference to the type behind the pointer: https://doc.rust-lang.org/std/primitive.pointer.html#method.as_ref
- = note: using `<*const T>::as_ref()` on a pointer which is unaligned or points to invalid or uninitialized memory is undefined behavior
+note: the method `to_string` exists on the type `&u8`
+ --> $SRC_DIR/alloc/src/string.rs:LL:COL
+ = note: try using the unsafe method `<*const T>::as_ref` to get an optional reference to the value behind the pointer: https://doc.rust-lang.org/std/primitive.pointer.html#method.as_ref
= note: the following trait bounds were not satisfied:
`*const u8: std::fmt::Display`
which is required by `*const u8: ToString`
```
I removed the separate note about the safety requirements because it was incomplete and the linked doc page already has the information you need.
Fixes#83695, but that's more of a side effect. The upstream compiler already suggests the right method name here.
Provide suggestion to dereference closure tail if appropriate
When encoutnering a case like
```rust
use std::collections::HashMap;
fn main() {
let vs = vec![0, 0, 1, 1, 3, 4, 5, 6, 3, 3, 3];
let mut counts = HashMap::new();
for num in vs {
let count = counts.entry(num).or_insert(0);
*count += 1;
}
let _ = counts.iter().max_by_key(|(_, v)| v);
```
produce the following suggestion
```
error: lifetime may not live long enough
--> $DIR/return-value-lifetime-error.rs:13:47
|
LL | let _ = counts.iter().max_by_key(|(_, v)| v);
| ------- ^ returning this value requires that `'1` must outlive `'2`
| | |
| | return type of closure is &'2 &i32
| has type `&'1 (&i32, &i32)`
|
help: dereference the return value
|
LL | let _ = counts.iter().max_by_key(|(_, v)| **v);
| ++
```
Fix#50195.
Don't rely on upvars being assigned just because coroutine-closure kind is assigned
Previously, code relied on the implicit assumption that if a coroutine-closure's kind variable was constrained, then its upvars were also constrained. This is because we assign all of them at once at the end up upvar analysis.
However, there's another way that a coroutine-closure's kind can be constrained: from a signature hint in closure signature deduction. After #123350, we use these hints, which means the implicit assumption above no longer holds.
This PR adds the necessary checks so that we don't ICE.
r? oli-obk
Replace some `CrateStore` trait methods with hooks.
Just like with the `CrateStore` trait, this avoids the cyclic definition issues with `CStore` being
defined after TyCtxt, but needing to be used in TyCtxt.
Pass list of defineable opaque types into canonical queries
This eliminates `DefiningAnchor::Bubble` for good and brings the old solver closer to the new one wrt cycles and nested obligations. At that point the difference between `DefiningAnchor::Bind([])` and `DefiningAnchor::Error` was academic. We only used the difference for some sanity checks, which actually had to be worked around in places, so I just removed `DefiningAnchor` entirely and just stored the list of opaques that may be defined.
fixes#108498
fixes https://github.com/rust-lang/rust/issues/116877
* [x] run crater
- https://github.com/rust-lang/rust/pull/122077#issuecomment-2013293931
CFI: Fix ICE in KCFI non-associated function pointers
We oddly weren't testing the more usual case of casting non-methods to function pointers. The KCFI shim insertion logic would ICE on these due to asking for an irrefutable associated item if we cast a function to a function pointer without needing a traditional shim.
r? `@compiler-errors`
We oddly weren't testing the more usual case of casting non-methods to
function pointers. The KCFI shim insertion logic would ICE on these due
to asking for an irrefutable associated item if we cast a function to a
function pointer without needing a traditional shim.
When encoutnering a case like
```rust
//@ run-rustfix
use std::collections::HashMap;
fn main() {
let vs = vec![0, 0, 1, 1, 3, 4, 5, 6, 3, 3, 3];
let mut counts = HashMap::new();
for num in vs {
let count = counts.entry(num).or_insert(0);
*count += 1;
}
let _ = counts.iter().max_by_key(|(_, v)| v);
```
produce the following suggestion
```
error: lifetime may not live long enough
--> $DIR/return-value-lifetime-error.rs:13:47
|
LL | let _ = counts.iter().max_by_key(|(_, v)| v);
| ------- ^ returning this value requires that `'1` must outlive `'2`
| | |
| | return type of closure is &'2 &i32
| has type `&'1 (&i32, &i32)`
|
help: dereference the return value
|
LL | let _ = counts.iter().max_by_key(|(_, v)| **v);
| ++
```
Fix#50195.
Match ergonomics: implement "`&`pat everywhere"
Implements the eat-two-layers (feature gate `and_pat_everywhere`, all editions) ~and the eat-one-layer (feature gate `and_eat_one_layer_2024`, edition 2024 only, takes priority on that edition when both feature gates are active)~ (EDIT: will be done in later PR) semantics.
cc #123076
r? ``@Nadrieril``
``@rustbot`` label A-patterns A-edition-2024
Cleanup: Rename `HAS_PROJECTIONS` to `HAS_ALIASES` etc.
The name of the bitflag `HAS_PROJECTIONS` and of its corresponding method `has_projections` is quite historical dating back to a time when projections were the only kind of alias type.
I think it's time to update it to clear up any potential confusion for newcomers and to reduce unnecessary friction during contributor onboarding.
r? types
change `NormalizesTo` to fully structurally normalize
notes in https://hackmd.io/wZ016dE4QKGIhrOnHLlThQ
need to also update the dev-guide once this PR lands. in short, the setup is now as follows:
`normalizes-to` internally implements one step normalization, applying that normalization to the `goal.predicate.term` causes the projected term to get recursively normalized. With this `normalizes-to` normalizes until the projected term is rigid, meaning that we normalize as many steps necessary, but at least 1.
To handle rigid aliases, we add another candidate only if the 1 to inf step normalization failed. With this `normalizes-to` is now full structural normalization. We can now change `AliasRelate` to simply emit `normalizes-to` goals for the rhs and lhs.
This avoids the concerns from https://github.com/rust-lang/trait-system-refactor-initiative/issues/103 and generally feels cleaner
Try using a `dyn Debug` trait object instead of a closure
These closures were introduced in https://github.com/rust-lang/rust/pull/93098
let's see if we can't use fmt::Arguments instead
cc `@Aaron1011`
coverage: Remove useless constants
After #122972 and #123419, these constants don't serve any useful purpose, so get rid of them.
`@rustbot` label +A-code-coverage
CFI: Support function pointers for trait methods
Adds support for both CFI and KCFI for function pointers to trait methods by attaching both concrete and abstract types to functions.
KCFI does this through generation of a `ReifyShim` on any function pointer for a method that could go into a vtable, and keeping this separate from `ReifyShim`s that are *intended* for vtable us by setting a `ReifyReason` on them.
CFI does this by setting both the concrete and abstract type on every instance.
This should land after #123024 or a similar PR, as it diverges the implementation of CFI vs KCFI.
r? `@compiler-errors`
Check `x86_64` size assertions on `aarch64`, too
(Context: https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Checking.20size.20assertions.20on.20aarch64.3F)
Currently the compiler has around 30 sets of `static_assert_size!` for various size-critical data structures (e.g. various IR nodes), guarded by `#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]`.
(Presumably this cfg avoids having to maintain separate size values for 32-bit targets and unusual 64-bit targets. Apparently it may have been necessary before the i128/u128 alignment changes, too.)
This is slightly incovenient for people on aarch64 workstations (e.g. Macs), because the assertions normally aren't checked until we push to a PR. So this PR adds `aarch64` to the `#[cfg(..)]` guarding all of those assertions in the compiler.
---
Implemented with a simple find/replace. Verified by manually inspecting each `static_assert_size!` in `compiler/`, and checking that either the replacement succeeded, or adding aarch64 wouldn't have been appropriate.
Assert that args are actually compatible with their generics, rather than just their count
Right now we just check that the number of args is right, rather than actually checking the kinds. Uplift a helper fn that I wrote from trait selection to do just that. Found a couple bugs along the way.
r? `@lcnr` or `@fmease` (or anyone really lol)
pattern analysis: fix union handling
Little known fact: rust supports union patterns. Exhaustiveness handles them soundly but reports nonsensical missing patterns. This PR fixes the reported patterns and documents what we're doing.
r? `@compiler-errors`
Rename `expose_addr` to `expose_provenance`
`expose_addr` is a bad name, an address is just a number and cannot be exposed. The operation is actually about the provenance of the pointer.
This PR thus changes the name of the method to `expose_provenance` without changing its return type. There is sufficient precedence for returning a useful value from an operation that does something else without the name indicating such, e.g. [`Option::insert`](https://doc.rust-lang.org/nightly/std/option/enum.Option.html#method.insert) and [`MaybeUninit::write`](https://doc.rust-lang.org/nightly/std/mem/union.MaybeUninit.html#method.write).
Returning the address is merely convenient, not a fundamental part of the operation. This is implied by the fact that integers do not have provenance since
```rust
let addr = ptr.addr();
ptr.expose_provenance();
let new = ptr::with_exposed_provenance(addr);
```
must behave exactly like
```rust
let addr = ptr.expose_provenance();
let new = ptr::with_exposed_provenance(addr);
```
as the result of `ptr.expose_provenance()` and `ptr.addr()` is the same integer. Therefore, this PR removes the `#[must_use]` annotation on the function and updates the documentation to reflect the important part.
~~An alternative name would be `expose_provenance`. I'm not at all opposed to that, but it makes a stronger implication than we might want that the provenance of the pointer returned by `ptr::with_exposed_provenance`[^1] is the same as that what was exposed, which is not yet specified as such IIUC. IMHO `expose` does not make that connection.~~
A previous version of this PR suggested `expose` as name, libs-api [decided on](https://github.com/rust-lang/rust/pull/122964#issuecomment-2033194319) `expose_provenance` to keep the symmetry with `with_exposed_provenance`.
CC `@RalfJung`
r? libs-api
[^1]: I'm using the new name for `from_exposed_addr` suggested by #122935 here.
Assert `FnDef` kind
Only found one bug, where we were using the variant def id rather than its ctor def id to make the `FnDef` for a `type_of`
r? fmease
rename ptr::from_exposed_addr -> ptr::with_exposed_provenance
As discussed on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/136281-t-opsem/topic/To.20expose.20or.20not.20to.20expose/near/427757066).
The old name, `from_exposed_addr`, makes little sense as it's not the address that is exposed, it's the provenance. (`ptr.expose_addr()` stays unchanged as we haven't found a better option yet. The intended interpretation is "expose the provenance and return the address".)
The new name nicely matches `ptr::without_provenance`.
Make inductive cycles always ambiguous
This makes inductive cycles always result in ambiguity rather than be treated like a stack-dependent error.
This has some interactions with specialization, and so breaks a few UI tests that I don't agree should've ever worked in the first place, and also breaks a handful of crates in a way that I don't believe is a problem.
On the bright side, it puts us in a better spot when it comes to eventually enabling coinduction everywhere.
## Results
This was cratered in https://github.com/rust-lang/rust/pull/116494#issuecomment-2008657494, which boils down to two regressions:
* `lu_packets` - This code should have never compiled in the first place. More below.
* **ALL** other regressions are due to `commit_verify@0.11.0-beta.1` (edit: and `commit_verify@0.10.x`) - This actually seems to be fixed in version `0.11.0-beta.5`, which is the *most* up to date version, but it's still prerelease on crates.io so I don't think cargo ends up picking `beta.5` when building dependent crates.
### `lu_packets`
Firstly, this crate uses specialization, so I think it's automatically worth breaking. However, I've minimized [the regression](https://crater-reports.s3.amazonaws.com/pr-116494-3/try%23d614ed876e31a5f3ad1d0fbf848fcdab3a29d1d8/gh/lcdr.lu_packets/log.txt) to:
```rust
// Upstream crate
pub trait Serialize {}
impl Serialize for &() {}
impl<S> Serialize for &[S] where for<'a> &'a S: Serialize {}
// ----------------------------------------------------------------------- //
// Downstream crate
#![feature(specialization)]
#![allow(incomplete_features, unused)]
use upstream::Serialize;
trait Replica {
fn serialize();
}
impl<T> Replica for T {
default fn serialize() {}
}
impl<T> Replica for Option<T>
where
for<'a> &'a T: Serialize,
{
fn serialize() {}
}
```
Specifically this fails when computing the specialization graph for the `downstream` crate.
The code ends up cycling on `&[?0]: Serialize` when we equate `&?0 = &[?1]` during impl matching, which ends up needing to prove `&[?1]: Serialize`, which since cycles are treated like ambiguity, ends up in a **fatal overflow**. For some reason this requires two crates, squashing them into one crate doesn't work.
Side-note: This code is subtly order dependent. When minimizing, I ended up having the code start failing on `nightly` very easily after removing and reordering impls. This seems to me all the more reason to remove this behavior altogether.
## Side-note: Item Bounds (edit: this was fixed independently in #121123)
Due to the changes in #120584 where we now consider an alias's item bounds *and* all the item bounds of the alias's nested self type aliases, I've had to add e6b64c6194 which is a hack to make sure we're not eagerly normalizing bounds that have nothing to do with the predicate we're trying to solve, and which result in.
This is fixed in a more principled way in #121123.
---
r? lcnr for an initial review
Add `Ord::cmp` for primitives as a `BinOp` in MIR
Update: most of this OP was written months ago. See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.
---
There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches. Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:
1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.
Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic. Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical. Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)? But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)? And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers. Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Suboptimal.20inlining.20in.20std.20function.20.60binary_search.60/near/404250586) -- we'll need at least a rustc intrinsic to be able to call it.
As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR. The best way to see that is with 8811efa88b (diff-d134c32d028fbe2bf835fef2df9aca9d13332dd82284ff21ee7ebf717bfa4765R113) -- I added a new pre-codegen MIR test for a simple 3-tuple struct, and this PR change it from 36 locals and 26 basic blocks down to 24 locals and 8 basic blocks. Even better, as soon as the construct-`Some`-then-match-it-in-same-BB noise is cleaned up, this'll expose the `Cmp == 0` branches clearly in MIR, so that an InstCombine (#105808) can simplify that to just a `BinOp::Eq` and thus fix some of our generated code perf issues. (Tracking that through today's `if a < b { Less } else if a == b { Equal } else { Greater }` would be *much* harder.)
---
r? `@ghost`
But first I should check that perf is ok with this
~~...and my true nemesis, tidy.~~
Adds support for both CFI and KCFI for attaching concrete and abstract
types to functions. KCFI does this through generation of `ReifyShim` on
any function pointer that could go in a vtable, and checking the
`ReifyReason` when emitting the instance. CFI does this by attaching
both the concrete and abstract type to every instance.
TypeID codegen tests are switched to be anchored on the left rather than
the right in order to allow emission of additional type attachments.
Fixes#115953
KCFI needs to be able to tell which kind of `ReifyShim` it is examining
in order to decide whether to use a concrete type (`FnPtr` case) or an
abstract case (`Vtable` case). You can *almost* tell this from context,
but there is one case where you can't - if a trait has a method which is
*not* `#[track_caller]`, with an impl that *is* `#[track_caller]`, both
the vtable and a function pointer created from that method will be
`ReifyShim(def_id)`.
Currently, the reason is optional to ensure no additional unique
`ReifyShim`s are added without KCFI on. However, the case in which an
extra `ReifyShim` is created is sufficiently rare that this may be worth
revisiting to reduce complexity.
Update `ParamEnv` docs
There is now a wealth of information in the dev guide about `ParamEnv` so we should explicitly link to it from the doc comments. I also added a caution against using `ParamEnv` and removed the comment about it being "suitable for type checking" as you should practically never use `ParamEnv::empty` for type checking
r? `@compiler-errors`
Use the `Align` type when parsing alignment attributes
Use the `Align` type in `rustc_attr::parse_alignment`, removing the need to call `Align::from_bytes(...).unwrap()` later in the compilation process.
The original proposal allows reference patterns
with "compatible" mutability, however it's not clear
what that means so for now we require an exact match.
I don't know the type system code well, so if something
seems to not make sense it's probably because I made a
mistake
Replace regions in const canonical vars' types with `'static` in next-solver canonicalizer
We shouldn't ever have non-static regions in consts on stable (or really any regions at all, lol).
The test I committed is less minimal than, e.g., https://github.com/rust-lang/rust/issues/123155?notification_referrer_id=NT_kwDOADgQyrMxMDAzNDU4MDI0OTozNjc0MzE0#issuecomment-2025472029 -- however, I believe that it actually portrays the underlying issue here a bit better than that one.
In the linked issue, we end up emitting a normalizes-to predicate for a const placeholder because we don't actually unify `false` and `""`. In the test I committed, we emit a normalizes-to predicate as a part of actually solving a negative coherence goal.
Fixes#123155Fixes#118783
r? lcnr
Simplify trim-paths feature by merging all debuginfo options together
This PR simplifies the trim-paths feature by merging all debuginfo options together, as described in https://github.com/rust-lang/rust/issues/111540#issuecomment-1994010274.
And also do some correctness fixes found during the review.
cc `@weihanglo`
r? `@michaelwoerister`
Match ergonomics 2024: implement mutable by-reference bindings
Implements the mutable by-reference bindings portion of match ergonomics 2024 (#123076), with the `mut ref`/`mut ref mut` syntax, under feature gate `mut_ref`.
r? `@Nadrieril`
`@rustbot` label A-patterns A-edition-2024
Eliminate `UbChecks` for non-standard libraries
The purpose of this PR is to allow other passes to treat `UbChecks` as constants in MIR for optimization after #122629.
r? RalfJung
Codegen const panic messages as function calls
This skips emitting extra arguments at every callsite (of which there
can be many). For a librustc_driver build with overflow checks enabled,
this cuts 0.7MB from the resulting shared library (see [perf]).
A sample improvement from nightly:
```
leaq str.0(%rip), %rdi
leaq .Lalloc_d6aeb8e2aa19de39a7f0e861c998af13(%rip), %rdx
movl $25, %esi
callq *_ZN4core9panicking5panic17h17cabb89c5bcc999E@GOTPCREL(%rip)
```
to this PR:
```
leaq .Lalloc_d6aeb8e2aa19de39a7f0e861c998af13(%rip), %rdi
callq *_RNvNtNtCsduqIKoij8JB_4core9panicking11panic_const23panic_const_div_by_zero@GOTPCREL(%rip)
```
[perf]: https://perf.rust-lang.org/compare.html?start=a7e4de13c1785819f4d61da41f6704ed69d5f203&end=64fbb4f0b2d621ff46d559d1e9f5ad89a8d7789b&stat=instructions:u