Uplift ExistentialTraitRef, ExistentialProjection, ProjectionPredicate

This commit is contained in:
Michael Goulet 2024-05-11 12:46:11 -04:00
parent 204cde4564
commit 0d4dca2b82
12 changed files with 427 additions and 324 deletions

View File

@ -100,6 +100,14 @@ impl<I: rustc_type_ir::Interner> IntoDiagArg for rustc_type_ir::TraitRef<I> {
}
}
impl<I: rustc_type_ir::Interner> IntoDiagArg for rustc_type_ir::ExistentialTraitRef<I> {
fn into_diag_arg(self) -> DiagArgValue {
self.to_string().into_diag_arg()
}
}
into_diag_arg_for_number!(i8, u8, i16, u16, i32, u32, i64, u64, i128, u128, isize, usize);
impl IntoDiagArg for bool {

View File

@ -99,17 +99,17 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
type CanonicalVars = CanonicalVarInfos<'tcx>;
type Ty = Ty<'tcx>;
type Pat = Pattern<'tcx>;
type Tys = &'tcx List<Ty<'tcx>>;
type AliasTy = ty::AliasTy<'tcx>;
type ParamTy = ParamTy;
type BoundTy = ty::BoundTy;
type PlaceholderTy = ty::PlaceholderType;
type ErrorGuaranteed = ErrorGuaranteed;
type BoundExistentialPredicates = &'tcx List<PolyExistentialPredicate<'tcx>>;
type PolyFnSig = PolyFnSig<'tcx>;
type AllocId = crate::mir::interpret::AllocId;
type Pat = Pattern<'tcx>;
type Const = ty::Const<'tcx>;
type AliasConst = ty::UnevaluatedConst<'tcx>;
@ -121,8 +121,8 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
type Region = Region<'tcx>;
type EarlyParamRegion = ty::EarlyParamRegion;
type BoundRegion = ty::BoundRegion;
type LateParamRegion = ty::LateParamRegion;
type BoundRegion = ty::BoundRegion;
type InferRegion = ty::RegionVid;
type PlaceholderRegion = ty::PlaceholderRegion;
@ -146,6 +146,10 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
self.generics_of(def_id)
}
fn mk_args(self, args: &[Self::GenericArg]) -> Self::GenericArgs {
self.mk_args(args)
}
fn check_and_mk_args(
self,
def_id: DefId,
@ -153,6 +157,10 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
) -> ty::GenericArgsRef<'tcx> {
self.check_and_mk_args(def_id, args)
}
fn parent(self, def_id: Self::DefId) -> Self::DefId {
self.parent(def_id)
}
}
type InternedSet<'tcx, T> = ShardedHashMap<InternedInSet<'tcx, T>, ()>;

View File

@ -1,21 +1,25 @@
use rustc_data_structures::captures::Captures;
use rustc_data_structures::intern::Interned;
use rustc_errors::{DiagArgValue, IntoDiagArg};
use rustc_hir::def_id::DefId;
use rustc_macros::{HashStable, Lift, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_type_ir::ClauseKind as IrClauseKind;
use rustc_type_ir::PredicateKind as IrPredicateKind;
use rustc_type_ir::TraitPredicate as IrTraitPredicate;
use rustc_type_ir::TraitRef as IrTraitRef;
use rustc_type_ir::ProjectionPredicate as IrProjectionPredicate;
use rustc_type_ir::ExistentialTraitRef as IrExistentialTraitRef;
use rustc_type_ir::ExistentialProjection as IrExistentialProjection;
use std::cmp::Ordering;
use crate::ty::visit::TypeVisitableExt;
use crate::ty::{
self, AliasTy, Binder, DebruijnIndex, DebugWithInfcx, EarlyBinder, GenericArgsRef,
self, AliasTy, Binder, DebruijnIndex, DebugWithInfcx, EarlyBinder,
PredicatePolarity, Term, Ty, TyCtxt, TypeFlags, WithCachedTypeInfo,
};
pub type TraitRef<'tcx> = IrTraitRef<TyCtxt<'tcx>>;
pub type ProjectionPredicate<'tcx> = IrProjectionPredicate<TyCtxt<'tcx>>;
pub type ExistentialTraitRef<'tcx> = IrExistentialTraitRef<TyCtxt<'tcx>>;
pub type ExistentialProjection<'tcx> = IrExistentialProjection<TyCtxt<'tcx>>;
pub type TraitPredicate<'tcx> = IrTraitPredicate<TyCtxt<'tcx>>;
pub type ClauseKind<'tcx> = IrClauseKind<TyCtxt<'tcx>>;
pub type PredicateKind<'tcx> = IrPredicateKind<TyCtxt<'tcx>>;
@ -342,52 +346,6 @@ impl<'tcx> PolyTraitRef<'tcx> {
}
}
/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
/// ```ignore (illustrative)
/// exists T. T: Trait<'a, 'b, X, Y>
/// ```
/// The generic parameters don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct ExistentialTraitRef<'tcx> {
pub def_id: DefId,
pub args: GenericArgsRef<'tcx>,
}
impl<'tcx> ExistentialTraitRef<'tcx> {
pub fn erase_self_ty(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> ty::ExistentialTraitRef<'tcx> {
// Assert there is a Self.
trait_ref.args.type_at(0);
ty::ExistentialTraitRef {
def_id: trait_ref.def_id,
args: tcx.mk_args(&trait_ref.args[1..]),
}
}
/// Object types don't have a self type specified. Therefore, when
/// we convert the principal trait-ref into a normal trait-ref,
/// you must give *some* self type. A common choice is `mk_err()`
/// or some placeholder type.
pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx> {
// otherwise the escaping vars would be captured by the binder
// debug_assert!(!self_ty.has_escaping_bound_vars());
ty::TraitRef::new(tcx, self.def_id, [self_ty.into()].into_iter().chain(self.args.iter()))
}
}
impl<'tcx> IntoDiagArg for ExistentialTraitRef<'tcx> {
fn into_diag_arg(self) -> DiagArgValue {
self.to_string().into_diag_arg()
}
}
pub type PolyExistentialTraitRef<'tcx> = ty::Binder<'tcx, ExistentialTraitRef<'tcx>>;
impl<'tcx> PolyExistentialTraitRef<'tcx> {
@ -404,62 +362,8 @@ impl<'tcx> PolyExistentialTraitRef<'tcx> {
}
}
/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct ExistentialProjection<'tcx> {
pub def_id: DefId,
pub args: GenericArgsRef<'tcx>,
pub term: Term<'tcx>,
}
pub type PolyExistentialProjection<'tcx> = ty::Binder<'tcx, ExistentialProjection<'tcx>>;
impl<'tcx> ExistentialProjection<'tcx> {
/// Extracts the underlying existential trait reference from this projection.
/// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
/// then this function would return an `exists T. T: Iterator` existential trait
/// reference.
pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::ExistentialTraitRef<'tcx> {
let def_id = tcx.parent(self.def_id);
let args_count = tcx.generics_of(def_id).count() - 1;
let args = tcx.mk_args(&self.args[..args_count]);
ty::ExistentialTraitRef { def_id, args }
}
pub fn with_self_ty(
&self,
tcx: TyCtxt<'tcx>,
self_ty: Ty<'tcx>,
) -> ty::ProjectionPredicate<'tcx> {
// otherwise the escaping regions would be captured by the binders
debug_assert!(!self_ty.has_escaping_bound_vars());
ty::ProjectionPredicate {
projection_ty: AliasTy::new(
tcx,
self.def_id,
[self_ty.into()].into_iter().chain(self.args),
),
term: self.term,
}
}
pub fn erase_self_ty(
tcx: TyCtxt<'tcx>,
projection_predicate: ty::ProjectionPredicate<'tcx>,
) -> Self {
// Assert there is a Self.
projection_predicate.projection_ty.args.type_at(0);
Self {
def_id: projection_predicate.projection_ty.def_id,
args: tcx.mk_args(&projection_predicate.projection_ty.args[1..]),
term: projection_predicate.term,
}
}
}
impl<'tcx> PolyExistentialProjection<'tcx> {
pub fn with_self_ty(
&self,
@ -628,43 +532,6 @@ pub struct CoercePredicate<'tcx> {
}
pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>;
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T: TraitRef<..., Item = Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T: TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct ProjectionPredicate<'tcx> {
pub projection_ty: AliasTy<'tcx>,
pub term: Term<'tcx>,
}
impl<'tcx> ProjectionPredicate<'tcx> {
pub fn self_ty(self) -> Ty<'tcx> {
self.projection_ty.self_ty()
}
pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ProjectionPredicate<'tcx> {
Self { projection_ty: self.projection_ty.with_self_ty(tcx, self_ty), ..self }
}
pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
self.projection_ty.trait_def_id(tcx)
}
pub fn def_id(self) -> DefId {
self.projection_ty.def_id
}
}
pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;
impl<'tcx> PolyProjectionPredicate<'tcx> {

View File

@ -3087,14 +3087,6 @@ define_print! {
ty::PredicateKind::AliasRelate(t1, t2, dir) => p!(print(t1), write(" {} ", dir), print(t2)),
}
}
}
define_print_and_forward_display! {
(self, cx):
&'tcx ty::List<Ty<'tcx>> {
p!("{{", comma_sep(self.iter()), "}}")
}
ty::ExistentialTraitRef<'tcx> {
// Use a type that can't appear in defaults of type parameters.
@ -3108,6 +3100,20 @@ define_print_and_forward_display! {
p!(write("{} = ", name), print(self.term))
}
ty::ProjectionPredicate<'tcx> {
p!(print(self.projection_ty), " == ");
cx.reset_type_limit();
p!(print(self.term))
}
}
define_print_and_forward_display! {
(self, cx):
&'tcx ty::List<Ty<'tcx>> {
p!("{{", comma_sep(self.iter()), "}}")
}
ty::ExistentialPredicate<'tcx> {
match *self {
ty::ExistentialPredicate::Trait(x) => p!(print(x)),
@ -3186,12 +3192,6 @@ define_print_and_forward_display! {
p!(print(self.b))
}
ty::ProjectionPredicate<'tcx> {
p!(print(self.projection_ty), " == ");
cx.reset_type_limit();
p!(print(self.term))
}
ty::NormalizesTo<'tcx> {
p!(print(self.alias), " normalizes-to ");
cx.reset_type_limit();

View File

@ -55,12 +55,6 @@ impl fmt::Debug for ty::UpvarId {
}
}
impl<'tcx> fmt::Debug for ty::ExistentialTraitRef<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
with_no_trimmed_paths!(fmt::Display::fmt(self, f))
}
}
impl<'tcx> fmt::Debug for ty::adjustment::Adjustment<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?} -> {}", self.kind, self.target)
@ -158,12 +152,6 @@ impl fmt::Debug for ty::ParamConst {
}
}
impl<'tcx> fmt::Debug for ty::ProjectionPredicate<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ProjectionPredicate({:?}, {:?})", self.projection_ty, self.term)
}
}
impl<'tcx> fmt::Debug for ty::NormalizesTo<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "NormalizesTo({:?}, {:?})", self.alias, self.term)

View File

@ -1142,6 +1142,36 @@ pub struct AliasTy<'tcx> {
_use_alias_ty_new_instead: (),
}
impl<'tcx> rustc_type_ir::inherent::AliasTy<TyCtxt<'tcx>> for AliasTy<'tcx> {
fn new(
interner: TyCtxt<'tcx>,
trait_def_id: DefId,
args: impl IntoIterator<Item: Into<ty::GenericArg<'tcx>>>,
) -> Self {
AliasTy::new(interner, trait_def_id, args)
}
fn def_id(self) -> DefId {
self.def_id
}
fn args(self) -> ty::GenericArgsRef<'tcx> {
self.args
}
fn trait_def_id(self, interner: TyCtxt<'tcx>) -> DefId {
self.trait_def_id(interner)
}
fn self_ty(self) -> Ty<'tcx> {
self.self_ty()
}
fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
self.with_self_ty(tcx, self_ty)
}
}
impl<'tcx> AliasTy<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,

View File

@ -1,5 +1,6 @@
use std::fmt::Debug;
use std::hash::Hash;
use std::ops::Deref;
use crate::fold::TypeSuperFoldable;
use crate::visit::{Flags, TypeSuperVisitable};
@ -50,7 +51,12 @@ pub trait GenericsOf<I: Interner<GenericsOf = Self>> {
}
pub trait GenericArgs<I: Interner<GenericArgs = Self>>:
Copy + DebugWithInfcx<I> + Hash + Eq + IntoIterator<Item = I::GenericArg>
Copy
+ DebugWithInfcx<I>
+ Hash
+ Eq
+ IntoIterator<Item = I::GenericArg>
+ Deref<Target: Deref<Target = [I::GenericArg]>>
{
fn type_at(self, i: usize) -> I::Ty;
@ -83,3 +89,23 @@ pub trait BoundVars<I: Interner> {
fn has_no_bound_vars(&self) -> bool;
}
// TODO: Uplift `AliasTy`
pub trait AliasTy<I: Interner>: Copy + DebugWithInfcx<I> + Hash + Eq + Sized {
fn new(
interner: I,
trait_def_id: I::DefId,
args: impl IntoIterator<Item: Into<I::GenericArg>>,
) -> Self;
fn def_id(self) -> I::DefId;
fn args(self) -> I::GenericArgs;
fn trait_def_id(self, interner: I) -> I::DefId;
fn self_ty(self) -> I::Ty;
fn with_self_ty(self, tcx: I, self_ty: I::Ty) -> Self;
}

View File

@ -5,9 +5,20 @@ use std::hash::Hash;
use crate::inherent::*;
use crate::ir_print::IrPrint;
use crate::visit::{Flags, TypeSuperVisitable, TypeVisitable};
use crate::{CanonicalVarInfo, DebugWithInfcx, TraitPredicate, TraitRef};
use crate::{
CanonicalVarInfo, DebugWithInfcx, ExistentialProjection, ExistentialTraitRef,
ProjectionPredicate, TraitPredicate, TraitRef,
};
pub trait Interner: Sized + Copy + IrPrint<TraitRef<Self>> + IrPrint<TraitPredicate<Self>> {
pub trait Interner:
Sized
+ Copy
+ IrPrint<TraitRef<Self>>
+ IrPrint<TraitPredicate<Self>>
+ IrPrint<ExistentialTraitRef<Self>>
+ IrPrint<ExistentialProjection<Self>>
+ IrPrint<ProjectionPredicate<Self>>
{
type DefId: Copy + Debug + Hash + Eq;
type DefiningOpaqueTypes: Copy + Debug + Hash + Default + Eq + TypeVisitable<Self>;
type AdtDef: Copy + Debug + Hash + Eq;
@ -25,7 +36,7 @@ pub trait Interner: Sized + Copy + IrPrint<TraitRef<Self>> + IrPrint<TraitPredic
// Kinds of tys
type Ty: Ty<Self>;
type Tys: Copy + Debug + Hash + Eq + IntoIterator<Item = Self::Ty>;
type AliasTy: Copy + DebugWithInfcx<Self> + Hash + Eq;
type AliasTy: AliasTy<Self>;
type ParamTy: Copy + Debug + Hash + Eq;
type BoundTy: Copy + Debug + Hash + Eq;
type PlaceholderTy: PlaceholderLike;
@ -71,11 +82,15 @@ pub trait Interner: Sized + Copy + IrPrint<TraitRef<Self>> + IrPrint<TraitPredic
type GenericsOf: GenericsOf<Self>;
fn generics_of(self, def_id: Self::DefId) -> Self::GenericsOf;
fn mk_args(self, args: &[Self::GenericArg]) -> Self::GenericArgs;
fn check_and_mk_args(
self,
def_id: Self::DefId,
args: impl IntoIterator<Item: Into<Self::GenericArg>>,
) -> Self::GenericArgs;
fn parent(self, def_id: Self::DefId) -> Self::DefId;
}
/// Imagine you have a function `F: FnOnce(&[T]) -> R`, plus an iterator `iter`

View File

@ -1,6 +1,9 @@
use std::fmt;
use crate::{Interner, TraitPredicate, TraitRef};
use crate::{
ExistentialProjection, ExistentialTraitRef, Interner, ProjectionPredicate, TraitPredicate,
TraitRef,
};
pub trait IrPrint<T> {
fn print(t: &T, fmt: &mut fmt::Formatter<'_>) -> fmt::Result;
@ -31,6 +34,12 @@ macro_rules! define_debug_via_print {
}
}
define_display_via_print!(TraitRef, TraitPredicate,);
define_display_via_print!(
TraitRef,
TraitPredicate,
ExistentialTraitRef,
ExistentialProjection,
ProjectionPredicate
);
define_debug_via_print!(TraitRef,);
define_debug_via_print!(TraitRef, ExistentialTraitRef, ExistentialProjection);

View File

@ -39,7 +39,7 @@ mod infcx;
mod interner;
mod predicate_kind;
mod region_kind;
mod trait_ref;
mod predicate;
pub use canonical::*;
#[cfg(feature = "nightly")]
@ -51,7 +51,7 @@ pub use infcx::InferCtxtLike;
pub use interner::*;
pub use predicate_kind::*;
pub use region_kind::*;
pub use trait_ref::*;
pub use predicate::*;
pub use ty_info::*;
pub use ty_kind::*;
pub use AliasKind::*;

View File

@ -0,0 +1,298 @@
use std::fmt;
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
use crate::inherent::*;
use crate::visit::TypeVisitableExt as _;
use crate::Interner;
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where-clause:
/// ```ignore (illustrative)
/// T: Foo<U>
/// ```
/// This would be represented by a trait-reference where the `DefId` is the
/// `DefId` for the trait `Foo` and the args define `T` as parameter 0,
/// and `U` as parameter 1.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the generic parameters.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct TraitRef<I: Interner> {
pub def_id: I::DefId,
pub args: I::GenericArgs,
/// This field exists to prevent the creation of `TraitRef` without
/// calling [`TraitRef::new`].
_use_trait_ref_new_instead: (),
}
impl<I: Interner> TraitRef<I> {
pub fn new(
interner: I,
trait_def_id: I::DefId,
args: impl IntoIterator<Item: Into<I::GenericArg>>,
) -> Self {
let args = interner.check_and_mk_args(trait_def_id, args);
Self { def_id: trait_def_id, args, _use_trait_ref_new_instead: () }
}
pub fn from_method(interner: I, trait_id: I::DefId, args: I::GenericArgs) -> TraitRef<I> {
let generics = interner.generics_of(trait_id);
TraitRef::new(interner, trait_id, args.into_iter().take(generics.count()))
}
/// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
/// are the parameters defined on trait.
pub fn identity(interner: I, def_id: I::DefId) -> TraitRef<I> {
TraitRef::new(interner, def_id, I::GenericArgs::identity_for_item(interner, def_id))
}
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
TraitRef::new(
interner,
self.def_id,
[self_ty.into()].into_iter().chain(self.args.into_iter().skip(1)),
)
}
#[inline]
pub fn self_ty(&self) -> I::Ty {
self.args.type_at(0)
}
}
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct TraitPredicate<I: Interner> {
pub trait_ref: TraitRef<I>,
/// If polarity is Positive: we are proving that the trait is implemented.
///
/// If polarity is Negative: we are proving that a negative impl of this trait
/// exists. (Note that coherence also checks whether negative impls of supertraits
/// exist via a series of predicates.)
///
/// If polarity is Reserved: that's a bug.
pub polarity: PredicatePolarity,
}
impl<I: Interner> TraitPredicate<I> {
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
Self { trait_ref: self.trait_ref.with_self_ty(interner, self_ty), polarity: self.polarity }
}
pub fn def_id(self) -> I::DefId {
self.trait_ref.def_id
}
pub fn self_ty(self) -> I::Ty {
self.trait_ref.self_ty()
}
}
impl<I: Interner> fmt::Debug for TraitPredicate<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// FIXME(effects) printing?
write!(f, "TraitPredicate({:?}, polarity:{:?})", self.trait_ref, self.polarity)
}
}
/// Polarity for a trait predicate. May either be negative or positive.
/// Distinguished from [`ImplPolarity`] since we never compute goals with
/// "reservation" level.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub enum PredicatePolarity {
/// `Type: Trait`
Positive,
/// `Type: !Trait`
Negative,
}
impl PredicatePolarity {
/// Flips polarity by turning `Positive` into `Negative` and `Negative` into `Positive`.
pub fn flip(&self) -> PredicatePolarity {
match self {
PredicatePolarity::Positive => PredicatePolarity::Negative,
PredicatePolarity::Negative => PredicatePolarity::Positive,
}
}
}
impl fmt::Display for PredicatePolarity {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Positive => f.write_str("positive"),
Self::Negative => f.write_str("negative"),
}
}
}
/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
/// ```ignore (illustrative)
/// exists T. T: Trait<'a, 'b, X, Y>
/// ```
/// The generic parameters don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct ExistentialTraitRef<I: Interner> {
pub def_id: I::DefId,
pub args: I::GenericArgs,
}
impl<I: Interner> ExistentialTraitRef<I> {
pub fn erase_self_ty(interner: I, trait_ref: TraitRef<I>) -> ExistentialTraitRef<I> {
// Assert there is a Self.
trait_ref.args.type_at(0);
ExistentialTraitRef {
def_id: trait_ref.def_id,
args: interner.mk_args(&trait_ref.args[1..]),
}
}
/// Object types don't have a self type specified. Therefore, when
/// we convert the principal trait-ref into a normal trait-ref,
/// you must give *some* self type. A common choice is `mk_err()`
/// or some placeholder type.
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> TraitRef<I> {
// otherwise the escaping vars would be captured by the binder
// debug_assert!(!self_ty.has_escaping_bound_vars());
TraitRef::new(interner, self.def_id, [self_ty.into()].into_iter().chain(self.args.into_iter()))
}
}
/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct ExistentialProjection<I: Interner> {
pub def_id: I::DefId,
pub args: I::GenericArgs,
pub term: I::Term,
}
impl<I: Interner> ExistentialProjection<I> {
/// Extracts the underlying existential trait reference from this projection.
/// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
/// then this function would return an `exists T. T: Iterator` existential trait
/// reference.
pub fn trait_ref(&self, tcx: I) -> ExistentialTraitRef<I> {
let def_id = tcx.parent(self.def_id);
let args_count = tcx.generics_of(def_id).count() - 1;
let args = tcx.mk_args(&self.args[..args_count]);
ExistentialTraitRef { def_id, args }
}
pub fn with_self_ty(&self, tcx: I, self_ty: I::Ty) -> ProjectionPredicate<I> {
// otherwise the escaping regions would be captured by the binders
debug_assert!(!self_ty.has_escaping_bound_vars());
ProjectionPredicate {
projection_ty: I::AliasTy::new(
tcx,
self.def_id,
[self_ty.into()].into_iter().chain(self.args),
),
term: self.term,
}
}
pub fn erase_self_ty(tcx: I, projection_predicate: ProjectionPredicate<I>) -> Self {
// Assert there is a Self.
projection_predicate.projection_ty.args().type_at(0);
Self {
def_id: projection_predicate.projection_ty.def_id(),
args: tcx.mk_args(&projection_predicate.projection_ty.args()[1..]),
term: projection_predicate.term,
}
}
}
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T: TraitRef<..., Item = Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T: TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct ProjectionPredicate<I: Interner> {
pub projection_ty: I::AliasTy,
pub term: I::Term,
}
impl<I: Interner> ProjectionPredicate<I> {
pub fn self_ty(self) -> I::Ty {
self.projection_ty.self_ty()
}
pub fn with_self_ty(self, tcx: I, self_ty: I::Ty) -> ProjectionPredicate<I> {
Self { projection_ty: self.projection_ty.with_self_ty(tcx, self_ty), ..self }
}
pub fn trait_def_id(self, tcx: I) -> I::DefId {
self.projection_ty.trait_def_id(tcx)
}
pub fn def_id(self) -> I::DefId {
self.projection_ty.def_id()
}
}
impl<I: Interner> fmt::Debug for ProjectionPredicate<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ProjectionPredicate({:?}, {:?})", self.projection_ty, self.term)
}
}

View File

@ -1,146 +0,0 @@
use std::fmt;
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
use crate::inherent::*;
use crate::Interner;
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where-clause:
/// ```ignore (illustrative)
/// T: Foo<U>
/// ```
/// This would be represented by a trait-reference where the `DefId` is the
/// `DefId` for the trait `Foo` and the args define `T` as parameter 0,
/// and `U` as parameter 1.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the generic parameters.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct TraitRef<I: Interner> {
pub def_id: I::DefId,
pub args: I::GenericArgs,
/// This field exists to prevent the creation of `TraitRef` without
/// calling [`TraitRef::new`].
_use_trait_ref_new_instead: (),
}
impl<I: Interner> TraitRef<I> {
pub fn new(
interner: I,
trait_def_id: I::DefId,
args: impl IntoIterator<Item: Into<I::GenericArg>>,
) -> Self {
let args = interner.check_and_mk_args(trait_def_id, args);
Self { def_id: trait_def_id, args, _use_trait_ref_new_instead: () }
}
pub fn from_method(interner: I, trait_id: I::DefId, args: I::GenericArgs) -> TraitRef<I> {
let generics = interner.generics_of(trait_id);
TraitRef::new(interner, trait_id, args.into_iter().take(generics.count()))
}
/// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
/// are the parameters defined on trait.
pub fn identity(interner: I, def_id: I::DefId) -> TraitRef<I> {
TraitRef::new(interner, def_id, I::GenericArgs::identity_for_item(interner, def_id))
}
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
TraitRef::new(
interner,
self.def_id,
[self_ty.into()].into_iter().chain(self.args.into_iter().skip(1)),
)
}
#[inline]
pub fn self_ty(&self) -> I::Ty {
self.args.type_at(0)
}
}
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct TraitPredicate<I: Interner> {
pub trait_ref: TraitRef<I>,
/// If polarity is Positive: we are proving that the trait is implemented.
///
/// If polarity is Negative: we are proving that a negative impl of this trait
/// exists. (Note that coherence also checks whether negative impls of supertraits
/// exist via a series of predicates.)
///
/// If polarity is Reserved: that's a bug.
pub polarity: PredicatePolarity,
}
impl<I: Interner> TraitPredicate<I> {
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
Self { trait_ref: self.trait_ref.with_self_ty(interner, self_ty), polarity: self.polarity }
}
pub fn def_id(self) -> I::DefId {
self.trait_ref.def_id
}
pub fn self_ty(self) -> I::Ty {
self.trait_ref.self_ty()
}
}
impl<I: Interner> fmt::Debug for TraitPredicate<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// FIXME(effects) printing?
write!(f, "TraitPredicate({:?}, polarity:{:?})", self.trait_ref, self.polarity)
}
}
/// Polarity for a trait predicate. May either be negative or positive.
/// Distinguished from [`ImplPolarity`] since we never compute goals with
/// "reservation" level.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub enum PredicatePolarity {
/// `Type: Trait`
Positive,
/// `Type: !Trait`
Negative,
}
impl PredicatePolarity {
/// Flips polarity by turning `Positive` into `Negative` and `Negative` into `Positive`.
pub fn flip(&self) -> PredicatePolarity {
match self {
PredicatePolarity::Positive => PredicatePolarity::Negative,
PredicatePolarity::Negative => PredicatePolarity::Positive,
}
}
}
impl fmt::Display for PredicatePolarity {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Positive => f.write_str("positive"),
Self::Negative => f.write_str("negative"),
}
}
}