mirror of
https://github.com/vulkano-rs/vulkano.git
synced 2024-11-22 06:45:23 +00:00
682 lines
26 KiB
Rust
682 lines
26 KiB
Rust
// This is a modification of the triangle example, that demonstrates the basics of occlusion
|
|
// queries. Occlusion queries allow you to query whether, and sometimes how many, pixels pass the
|
|
// depth test in a range of draw calls.
|
|
|
|
use std::{error::Error, sync::Arc};
|
|
use vulkano::{
|
|
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
|
|
command_buffer::{
|
|
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
|
|
RenderPassBeginInfo,
|
|
},
|
|
device::{
|
|
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Queue,
|
|
QueueCreateInfo, QueueFlags,
|
|
},
|
|
format::Format,
|
|
image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage},
|
|
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
|
|
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
|
|
pipeline::{
|
|
graphics::{
|
|
color_blend::{ColorBlendAttachmentState, ColorBlendState},
|
|
depth_stencil::{DepthState, DepthStencilState},
|
|
input_assembly::InputAssemblyState,
|
|
multisample::MultisampleState,
|
|
rasterization::RasterizationState,
|
|
vertex_input::{Vertex, VertexDefinition},
|
|
viewport::{Viewport, ViewportState},
|
|
GraphicsPipelineCreateInfo,
|
|
},
|
|
layout::PipelineDescriptorSetLayoutCreateInfo,
|
|
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
|
|
},
|
|
query::{QueryControlFlags, QueryPool, QueryPoolCreateInfo, QueryResultFlags, QueryType},
|
|
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
|
|
swapchain::{
|
|
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
|
|
},
|
|
sync::{self, GpuFuture},
|
|
Validated, VulkanError, VulkanLibrary,
|
|
};
|
|
use winit::{
|
|
application::ApplicationHandler,
|
|
event::WindowEvent,
|
|
event_loop::{ActiveEventLoop, EventLoop},
|
|
window::{Window, WindowId},
|
|
};
|
|
|
|
fn main() -> Result<(), impl Error> {
|
|
let event_loop = EventLoop::new().unwrap();
|
|
let mut app = App::new(&event_loop);
|
|
|
|
event_loop.run_app(&mut app)
|
|
}
|
|
|
|
struct App {
|
|
instance: Arc<Instance>,
|
|
device: Arc<Device>,
|
|
queue: Arc<Queue>,
|
|
memory_allocator: Arc<StandardMemoryAllocator>,
|
|
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
|
|
triangle1: Subbuffer<[MyVertex]>,
|
|
triangle2: Subbuffer<[MyVertex]>,
|
|
triangle3: Subbuffer<[MyVertex]>,
|
|
query_pool: Arc<QueryPool>,
|
|
query_results: [u32; 3],
|
|
rcx: Option<RenderContext>,
|
|
}
|
|
|
|
struct RenderContext {
|
|
window: Arc<Window>,
|
|
swapchain: Arc<Swapchain>,
|
|
render_pass: Arc<RenderPass>,
|
|
framebuffers: Vec<Arc<Framebuffer>>,
|
|
pipeline: Arc<GraphicsPipeline>,
|
|
viewport: Viewport,
|
|
recreate_swapchain: bool,
|
|
previous_frame_end: Option<Box<dyn GpuFuture>>,
|
|
}
|
|
|
|
impl App {
|
|
fn new(event_loop: &EventLoop<()>) -> Self {
|
|
let library = VulkanLibrary::new().unwrap();
|
|
let required_extensions = Surface::required_extensions(event_loop).unwrap();
|
|
let instance = Instance::new(
|
|
library,
|
|
InstanceCreateInfo {
|
|
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
|
enabled_extensions: required_extensions,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let device_extensions = DeviceExtensions {
|
|
khr_swapchain: true,
|
|
..DeviceExtensions::empty()
|
|
};
|
|
let (physical_device, queue_family_index) = instance
|
|
.enumerate_physical_devices()
|
|
.unwrap()
|
|
.filter(|p| p.supported_extensions().contains(&device_extensions))
|
|
.filter_map(|p| {
|
|
p.queue_family_properties()
|
|
.iter()
|
|
.enumerate()
|
|
.position(|(i, q)| {
|
|
q.queue_flags.intersects(QueueFlags::GRAPHICS)
|
|
&& p.presentation_support(i as u32, event_loop).unwrap()
|
|
})
|
|
.map(|i| (p, i as u32))
|
|
})
|
|
.min_by_key(|(p, _)| match p.properties().device_type {
|
|
PhysicalDeviceType::DiscreteGpu => 0,
|
|
PhysicalDeviceType::IntegratedGpu => 1,
|
|
PhysicalDeviceType::VirtualGpu => 2,
|
|
PhysicalDeviceType::Cpu => 3,
|
|
PhysicalDeviceType::Other => 4,
|
|
_ => 5,
|
|
})
|
|
.unwrap();
|
|
|
|
println!(
|
|
"Using device: {} (type: {:?})",
|
|
physical_device.properties().device_name,
|
|
physical_device.properties().device_type,
|
|
);
|
|
|
|
let (device, mut queues) = Device::new(
|
|
physical_device,
|
|
DeviceCreateInfo {
|
|
enabled_extensions: device_extensions,
|
|
queue_create_infos: vec![QueueCreateInfo {
|
|
queue_family_index,
|
|
..Default::default()
|
|
}],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
let queue = queues.next().unwrap();
|
|
|
|
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
|
|
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
|
device.clone(),
|
|
Default::default(),
|
|
));
|
|
|
|
let vertices = [
|
|
// The first triangle (red) is the same one as in the triangle example.
|
|
MyVertex {
|
|
position: [-0.5, -0.25, 0.5],
|
|
color: [1.0, 0.0, 0.0],
|
|
},
|
|
MyVertex {
|
|
position: [0.0, 0.5, 0.5],
|
|
color: [1.0, 0.0, 0.0],
|
|
},
|
|
MyVertex {
|
|
position: [0.25, -0.1, 0.5],
|
|
color: [1.0, 0.0, 0.0],
|
|
},
|
|
// The second triangle (cyan) is the same shape and position as the first, but smaller,
|
|
// and moved behind a bit. It should be completely occluded by the first triangle. (You
|
|
// can lower its z value to put it in front.)
|
|
MyVertex {
|
|
position: [-0.25, -0.125, 0.6],
|
|
color: [0.0, 1.0, 1.0],
|
|
},
|
|
MyVertex {
|
|
position: [0.0, 0.25, 0.6],
|
|
color: [0.0, 1.0, 1.0],
|
|
},
|
|
MyVertex {
|
|
position: [0.125, -0.05, 0.6],
|
|
color: [0.0, 1.0, 1.0],
|
|
},
|
|
// The third triangle (green) is the same shape and size as the first, but moved to the
|
|
// left and behind the second. It is partially occluded by the first two.
|
|
MyVertex {
|
|
position: [-0.25, -0.25, 0.7],
|
|
color: [0.0, 1.0, 0.0],
|
|
},
|
|
MyVertex {
|
|
position: [0.25, 0.5, 0.7],
|
|
color: [0.0, 1.0, 0.0],
|
|
},
|
|
MyVertex {
|
|
position: [0.5, -0.1, 0.7],
|
|
color: [0.0, 1.0, 0.0],
|
|
},
|
|
];
|
|
let vertex_buffer = Buffer::from_iter(
|
|
memory_allocator.clone(),
|
|
BufferCreateInfo {
|
|
usage: BufferUsage::VERTEX_BUFFER,
|
|
..Default::default()
|
|
},
|
|
AllocationCreateInfo {
|
|
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
|
|
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
|
..Default::default()
|
|
},
|
|
vertices,
|
|
)
|
|
.unwrap();
|
|
|
|
// Create three buffer slices, one for each triangle.
|
|
let triangle1 = vertex_buffer.clone().slice(0..3);
|
|
let triangle2 = vertex_buffer.clone().slice(3..6);
|
|
let triangle3 = vertex_buffer.slice(6..9);
|
|
|
|
// Create a query pool for occlusion queries, with 3 slots.
|
|
let query_pool = QueryPool::new(
|
|
device.clone(),
|
|
QueryPoolCreateInfo {
|
|
query_count: 3,
|
|
..QueryPoolCreateInfo::query_type(QueryType::Occlusion)
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
// Create a buffer on the CPU to hold the results of the three queries. Query results are
|
|
// always represented as either `u32` or `u64`. For occlusion queries, you always need one
|
|
// element per query. You can ask for the number of elements needed at runtime by calling
|
|
// `QueryType::result_len`. If you retrieve query results with `with_availability` enabled,
|
|
// then this array needs to be 6 elements long instead of 3.
|
|
let query_results = [0u32; 3];
|
|
|
|
App {
|
|
instance,
|
|
device,
|
|
queue,
|
|
memory_allocator,
|
|
command_buffer_allocator,
|
|
triangle1,
|
|
triangle2,
|
|
triangle3,
|
|
query_pool,
|
|
query_results,
|
|
rcx: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ApplicationHandler for App {
|
|
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
|
|
let window = Arc::new(
|
|
event_loop
|
|
.create_window(Window::default_attributes())
|
|
.unwrap(),
|
|
);
|
|
let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap();
|
|
let window_size = window.inner_size();
|
|
|
|
let (swapchain, images) = {
|
|
let surface_capabilities = self
|
|
.device
|
|
.physical_device()
|
|
.surface_capabilities(&surface, Default::default())
|
|
.unwrap();
|
|
let (image_format, _) = self
|
|
.device
|
|
.physical_device()
|
|
.surface_formats(&surface, Default::default())
|
|
.unwrap()[0];
|
|
|
|
Swapchain::new(
|
|
self.device.clone(),
|
|
surface,
|
|
SwapchainCreateInfo {
|
|
min_image_count: surface_capabilities.min_image_count.max(2),
|
|
image_format,
|
|
image_extent: window_size.into(),
|
|
image_usage: ImageUsage::COLOR_ATTACHMENT,
|
|
composite_alpha: surface_capabilities
|
|
.supported_composite_alpha
|
|
.into_iter()
|
|
.next()
|
|
.unwrap(),
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let render_pass = vulkano::single_pass_renderpass!(
|
|
self.device.clone(),
|
|
attachments: {
|
|
color: {
|
|
format: swapchain.image_format(),
|
|
samples: 1,
|
|
load_op: Clear,
|
|
store_op: Store,
|
|
},
|
|
depth_stencil: {
|
|
format: Format::D16_UNORM,
|
|
samples: 1,
|
|
load_op: Clear,
|
|
store_op: DontCare,
|
|
},
|
|
},
|
|
pass: {
|
|
color: [color],
|
|
depth_stencil: {depth_stencil},
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let framebuffers =
|
|
window_size_dependent_setup(&images, &render_pass, &self.memory_allocator);
|
|
|
|
mod vs {
|
|
vulkano_shaders::shader! {
|
|
ty: "vertex",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(location = 0) in vec3 position;
|
|
layout(location = 1) in vec3 color;
|
|
|
|
layout(location = 0) out vec3 v_color;
|
|
|
|
void main() {
|
|
v_color = color;
|
|
gl_Position = vec4(position, 1.0);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
mod fs {
|
|
vulkano_shaders::shader! {
|
|
ty: "fragment",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(location = 0) in vec3 v_color;
|
|
layout(location = 0) out vec4 f_color;
|
|
|
|
void main() {
|
|
f_color = vec4(v_color, 1.0);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
let pipeline = {
|
|
let vs = vs::load(self.device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let fs = fs::load(self.device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
|
|
let stages = [
|
|
PipelineShaderStageCreateInfo::new(vs),
|
|
PipelineShaderStageCreateInfo::new(fs),
|
|
];
|
|
let layout = PipelineLayout::new(
|
|
self.device.clone(),
|
|
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
|
.into_pipeline_layout_create_info(self.device.clone())
|
|
.unwrap(),
|
|
)
|
|
.unwrap();
|
|
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
|
|
|
|
GraphicsPipeline::new(
|
|
self.device.clone(),
|
|
None,
|
|
GraphicsPipelineCreateInfo {
|
|
stages: stages.into_iter().collect(),
|
|
vertex_input_state: Some(vertex_input_state),
|
|
input_assembly_state: Some(InputAssemblyState::default()),
|
|
viewport_state: Some(ViewportState::default()),
|
|
rasterization_state: Some(RasterizationState::default()),
|
|
multisample_state: Some(MultisampleState::default()),
|
|
// Enable depth testing, which is needed for occlusion queries to make sense at
|
|
// all. If you disable depth testing, every pixel is considered to pass the
|
|
// depth test, so every query will return a nonzero result.
|
|
depth_stencil_state: Some(DepthStencilState {
|
|
depth: Some(DepthState::simple()),
|
|
..Default::default()
|
|
}),
|
|
color_blend_state: Some(ColorBlendState::with_attachment_states(
|
|
subpass.num_color_attachments(),
|
|
ColorBlendAttachmentState::default(),
|
|
)),
|
|
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
|
|
subpass: Some(subpass.into()),
|
|
..GraphicsPipelineCreateInfo::layout(layout)
|
|
},
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let viewport = Viewport {
|
|
offset: [0.0, 0.0],
|
|
extent: window_size.into(),
|
|
depth_range: 0.0..=1.0,
|
|
};
|
|
|
|
let previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
|
|
|
self.rcx = Some(RenderContext {
|
|
window,
|
|
swapchain,
|
|
render_pass,
|
|
framebuffers,
|
|
pipeline,
|
|
viewport,
|
|
recreate_swapchain: false,
|
|
previous_frame_end,
|
|
});
|
|
}
|
|
|
|
fn window_event(
|
|
&mut self,
|
|
event_loop: &ActiveEventLoop,
|
|
_window_id: WindowId,
|
|
event: WindowEvent,
|
|
) {
|
|
let rcx = self.rcx.as_mut().unwrap();
|
|
|
|
match event {
|
|
WindowEvent::CloseRequested => {
|
|
event_loop.exit();
|
|
}
|
|
WindowEvent::Resized(_) => {
|
|
rcx.recreate_swapchain = true;
|
|
}
|
|
WindowEvent::RedrawRequested => {
|
|
let window_size = rcx.window.inner_size();
|
|
|
|
if window_size.width == 0 || window_size.height == 0 {
|
|
return;
|
|
}
|
|
|
|
rcx.previous_frame_end.as_mut().unwrap().cleanup_finished();
|
|
|
|
if rcx.recreate_swapchain {
|
|
let (new_swapchain, new_images) = rcx
|
|
.swapchain
|
|
.recreate(SwapchainCreateInfo {
|
|
image_extent: window_size.into(),
|
|
..rcx.swapchain.create_info()
|
|
})
|
|
.expect("failed to recreate swapchain");
|
|
|
|
rcx.swapchain = new_swapchain;
|
|
rcx.framebuffers = window_size_dependent_setup(
|
|
&new_images,
|
|
&rcx.render_pass,
|
|
&self.memory_allocator,
|
|
);
|
|
rcx.viewport.extent = window_size.into();
|
|
rcx.recreate_swapchain = false;
|
|
}
|
|
|
|
let (image_index, suboptimal, acquire_future) = match acquire_next_image(
|
|
rcx.swapchain.clone(),
|
|
None,
|
|
)
|
|
.map_err(Validated::unwrap)
|
|
{
|
|
Ok(r) => r,
|
|
Err(VulkanError::OutOfDate) => {
|
|
rcx.recreate_swapchain = true;
|
|
return;
|
|
}
|
|
Err(e) => panic!("failed to acquire next image: {e}"),
|
|
};
|
|
|
|
if suboptimal {
|
|
rcx.recreate_swapchain = true;
|
|
}
|
|
|
|
let mut builder = AutoCommandBufferBuilder::primary(
|
|
self.command_buffer_allocator.clone(),
|
|
self.queue.queue_family_index(),
|
|
CommandBufferUsage::OneTimeSubmit,
|
|
)
|
|
.unwrap();
|
|
|
|
// Beginning or resetting a query is unsafe for now.
|
|
unsafe {
|
|
builder
|
|
// A query must be reset before each use, including the first use. This
|
|
// must be done outside a render pass.
|
|
.reset_query_pool(self.query_pool.clone(), 0..3)
|
|
.unwrap()
|
|
.set_viewport(0, [rcx.viewport.clone()].into_iter().collect())
|
|
.unwrap()
|
|
.bind_pipeline_graphics(rcx.pipeline.clone())
|
|
.unwrap()
|
|
.begin_render_pass(
|
|
RenderPassBeginInfo {
|
|
clear_values: vec![
|
|
Some([0.0, 0.0, 1.0, 1.0].into()),
|
|
Some(1.0.into()),
|
|
],
|
|
..RenderPassBeginInfo::framebuffer(
|
|
rcx.framebuffers[image_index as usize].clone(),
|
|
)
|
|
},
|
|
Default::default(),
|
|
)
|
|
.unwrap()
|
|
// Begin query 0, then draw the red triangle. Enabling the
|
|
// `QueryControlFlags::PRECISE` flag would give exact numeric results. This
|
|
// needs the `occlusion_query_precise` feature to be enabled on the device.
|
|
.begin_query(
|
|
self.query_pool.clone(),
|
|
0,
|
|
QueryControlFlags::empty(),
|
|
// QueryControlFlags::PRECISE,
|
|
)
|
|
.unwrap()
|
|
.bind_vertex_buffers(0, self.triangle1.clone())
|
|
.unwrap()
|
|
.draw(self.triangle1.len() as u32, 1, 0, 0)
|
|
.unwrap()
|
|
// End query 0.
|
|
.end_query(self.query_pool.clone(), 0)
|
|
.unwrap()
|
|
// Begin query 1 for the cyan triangle.
|
|
.begin_query(self.query_pool.clone(), 1, QueryControlFlags::empty())
|
|
.unwrap()
|
|
.bind_vertex_buffers(0, self.triangle2.clone())
|
|
.unwrap()
|
|
.draw(self.triangle2.len() as u32, 1, 0, 0)
|
|
.unwrap()
|
|
.end_query(self.query_pool.clone(), 1)
|
|
.unwrap()
|
|
// Finally, query 2 for the green triangle.
|
|
.begin_query(self.query_pool.clone(), 2, QueryControlFlags::empty())
|
|
.unwrap()
|
|
.bind_vertex_buffers(0, self.triangle3.clone())
|
|
.unwrap()
|
|
.draw(self.triangle3.len() as u32, 1, 0, 0)
|
|
.unwrap()
|
|
.end_query(self.query_pool.clone(), 2)
|
|
.unwrap()
|
|
.end_render_pass(Default::default())
|
|
.unwrap();
|
|
}
|
|
|
|
let command_buffer = builder.build().unwrap();
|
|
|
|
let future = rcx
|
|
.previous_frame_end
|
|
.take()
|
|
.unwrap()
|
|
.join(acquire_future)
|
|
.then_execute(self.queue.clone(), command_buffer)
|
|
.unwrap()
|
|
.then_swapchain_present(
|
|
self.queue.clone(),
|
|
SwapchainPresentInfo::swapchain_image_index(
|
|
rcx.swapchain.clone(),
|
|
image_index,
|
|
),
|
|
)
|
|
.then_signal_fence_and_flush();
|
|
|
|
match future.map_err(Validated::unwrap) {
|
|
Ok(future) => {
|
|
rcx.previous_frame_end = Some(future.boxed());
|
|
}
|
|
Err(VulkanError::OutOfDate) => {
|
|
rcx.recreate_swapchain = true;
|
|
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
|
}
|
|
Err(e) => {
|
|
println!("failed to flush future: {e}");
|
|
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
|
}
|
|
}
|
|
|
|
// Retrieve the query results. This copies the results to a variable on the CPU.
|
|
// You can also use the `copy_query_pool_results` function on a command buffer to
|
|
// write results to a Vulkano buffer. This could then be used to influence draw
|
|
// operations further down the line, either in the same frame or a future frame.
|
|
#[rustfmt::skip]
|
|
self.query_pool.get_results(
|
|
0..3,
|
|
&mut self.query_results,
|
|
// Block the function call until the results are available.
|
|
// NOTE: If not all the queries have actually been executed, then this will
|
|
// wait forever for something that never happens!
|
|
QueryResultFlags::WAIT
|
|
|
|
// Enable this flag to give partial results if available, instead of waiting
|
|
// for the full results.
|
|
// | QueryResultFlags::PARTIAL
|
|
|
|
// Blocking and waiting will ensure the results are always available after the
|
|
// function returns.
|
|
//
|
|
// If you disable waiting, then this flag can be enabled to include the
|
|
// availability of each query's results. You need one extra element per query
|
|
// in your `query_results` buffer for this. This element will be filled with a
|
|
// zero/nonzero value indicating availability.
|
|
// | QueryResultFlags::WITH_AVAILABILITY
|
|
)
|
|
.unwrap();
|
|
|
|
// If the `precise` bit was not enabled, then you're only guaranteed to get a
|
|
// boolean result here: zero if all pixels were occluded, nonzero if only some were
|
|
// occluded. Enabling `precise` will give the exact number of pixels.
|
|
|
|
// Query 0 (red triangle) will always succeed, because the depth buffer starts
|
|
// empty and will never occlude anything.
|
|
assert_ne!(self.query_results[0], 0);
|
|
|
|
// Query 1 (cyan triangle) will fail, because it's drawn completely behind the
|
|
// first.
|
|
assert_eq!(self.query_results[1], 0);
|
|
|
|
// Query 2 (green triangle) will succeed, because it's only partially occluded.
|
|
assert_ne!(self.query_results[2], 0);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
|
|
let rcx = self.rcx.as_mut().unwrap();
|
|
rcx.window.request_redraw();
|
|
}
|
|
}
|
|
|
|
#[derive(BufferContents, Vertex)]
|
|
#[repr(C)]
|
|
struct MyVertex {
|
|
#[format(R32G32B32_SFLOAT)]
|
|
position: [f32; 3],
|
|
#[format(R32G32B32_SFLOAT)]
|
|
color: [f32; 3],
|
|
}
|
|
|
|
fn window_size_dependent_setup(
|
|
images: &[Arc<Image>],
|
|
render_pass: &Arc<RenderPass>,
|
|
memory_allocator: &Arc<StandardMemoryAllocator>,
|
|
) -> Vec<Arc<Framebuffer>> {
|
|
let depth_attachment = ImageView::new_default(
|
|
Image::new(
|
|
memory_allocator.clone(),
|
|
ImageCreateInfo {
|
|
image_type: ImageType::Dim2d,
|
|
format: Format::D16_UNORM,
|
|
extent: images[0].extent(),
|
|
usage: ImageUsage::DEPTH_STENCIL_ATTACHMENT | ImageUsage::TRANSIENT_ATTACHMENT,
|
|
..Default::default()
|
|
},
|
|
AllocationCreateInfo::default(),
|
|
)
|
|
.unwrap(),
|
|
)
|
|
.unwrap();
|
|
|
|
images
|
|
.iter()
|
|
.map(|image| {
|
|
let view = ImageView::new_default(image.clone()).unwrap();
|
|
|
|
Framebuffer::new(
|
|
render_pass.clone(),
|
|
FramebufferCreateInfo {
|
|
attachments: vec![view, depth_attachment.clone()],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap()
|
|
})
|
|
.collect::<Vec<_>>()
|
|
}
|