// This is a modification of the triangle example, that demonstrates the basics of occlusion // queries. Occlusion queries allow you to query whether, and sometimes how many, pixels pass the // depth test in a range of draw calls. use std::{error::Error, sync::Arc}; use vulkano::{ buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer}, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Queue, QueueCreateInfo, QueueFlags, }, format::Format, image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, depth_stencil::{DepthState, DepthStencilState}, input_assembly::InputAssemblyState, multisample::MultisampleState, rasterization::RasterizationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo, }, query::{QueryControlFlags, QueryPool, QueryPoolCreateInfo, QueryResultFlags, QueryType}, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, Validated, VulkanError, VulkanLibrary, }; use winit::{ application::ApplicationHandler, event::WindowEvent, event_loop::{ActiveEventLoop, EventLoop}, window::{Window, WindowId}, }; fn main() -> Result<(), impl Error> { let event_loop = EventLoop::new().unwrap(); let mut app = App::new(&event_loop); event_loop.run_app(&mut app) } struct App { instance: Arc, device: Arc, queue: Arc, memory_allocator: Arc, command_buffer_allocator: Arc, triangle1: Subbuffer<[MyVertex]>, triangle2: Subbuffer<[MyVertex]>, triangle3: Subbuffer<[MyVertex]>, query_pool: Arc, query_results: [u32; 3], rcx: Option, } struct RenderContext { window: Arc, swapchain: Arc, render_pass: Arc, framebuffers: Vec>, pipeline: Arc, viewport: Viewport, recreate_swapchain: bool, previous_frame_end: Option>, } impl App { fn new(event_loop: &EventLoop<()>) -> Self { let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.presentation_support(i as u32, event_loop).unwrap() }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); let vertices = [ // The first triangle (red) is the same one as in the triangle example. MyVertex { position: [-0.5, -0.25, 0.5], color: [1.0, 0.0, 0.0], }, MyVertex { position: [0.0, 0.5, 0.5], color: [1.0, 0.0, 0.0], }, MyVertex { position: [0.25, -0.1, 0.5], color: [1.0, 0.0, 0.0], }, // The second triangle (cyan) is the same shape and position as the first, but smaller, // and moved behind a bit. It should be completely occluded by the first triangle. (You // can lower its z value to put it in front.) MyVertex { position: [-0.25, -0.125, 0.6], color: [0.0, 1.0, 1.0], }, MyVertex { position: [0.0, 0.25, 0.6], color: [0.0, 1.0, 1.0], }, MyVertex { position: [0.125, -0.05, 0.6], color: [0.0, 1.0, 1.0], }, // The third triangle (green) is the same shape and size as the first, but moved to the // left and behind the second. It is partially occluded by the first two. MyVertex { position: [-0.25, -0.25, 0.7], color: [0.0, 1.0, 0.0], }, MyVertex { position: [0.25, 0.5, 0.7], color: [0.0, 1.0, 0.0], }, MyVertex { position: [0.5, -0.1, 0.7], color: [0.0, 1.0, 0.0], }, ]; let vertex_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, vertices, ) .unwrap(); // Create three buffer slices, one for each triangle. let triangle1 = vertex_buffer.clone().slice(0..3); let triangle2 = vertex_buffer.clone().slice(3..6); let triangle3 = vertex_buffer.slice(6..9); // Create a query pool for occlusion queries, with 3 slots. let query_pool = QueryPool::new( device.clone(), QueryPoolCreateInfo { query_count: 3, ..QueryPoolCreateInfo::query_type(QueryType::Occlusion) }, ) .unwrap(); // Create a buffer on the CPU to hold the results of the three queries. Query results are // always represented as either `u32` or `u64`. For occlusion queries, you always need one // element per query. You can ask for the number of elements needed at runtime by calling // `QueryType::result_len`. If you retrieve query results with `with_availability` enabled, // then this array needs to be 6 elements long instead of 3. let query_results = [0u32; 3]; App { instance, device, queue, memory_allocator, command_buffer_allocator, triangle1, triangle2, triangle3, query_pool, query_results, rcx: None, } } } impl ApplicationHandler for App { fn resumed(&mut self, event_loop: &ActiveEventLoop) { let window = Arc::new( event_loop .create_window(Window::default_attributes()) .unwrap(), ); let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap(); let window_size = window.inner_size(); let (swapchain, images) = { let surface_capabilities = self .device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let (image_format, _) = self .device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0]; Swapchain::new( self.device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window_size.into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let render_pass = vulkano::single_pass_renderpass!( self.device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, depth_stencil: { format: Format::D16_UNORM, samples: 1, load_op: Clear, store_op: DontCare, }, }, pass: { color: [color], depth_stencil: {depth_stencil}, }, ) .unwrap(); let framebuffers = window_size_dependent_setup(&images, &render_pass, &self.memory_allocator); mod vs { vulkano_shaders::shader! { ty: "vertex", src: r" #version 450 layout(location = 0) in vec3 position; layout(location = 1) in vec3 color; layout(location = 0) out vec3 v_color; void main() { v_color = color; gl_Position = vec4(position, 1.0); } ", } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: r" #version 450 layout(location = 0) in vec3 v_color; layout(location = 0) out vec4 f_color; void main() { f_color = vec4(v_color, 1.0); } ", } } let pipeline = { let vs = vs::load(self.device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(self.device.clone()) .unwrap() .entry_point("main") .unwrap(); let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( self.device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(self.device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass.clone(), 0).unwrap(); GraphicsPipeline::new( self.device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState::default()), viewport_state: Some(ViewportState::default()), rasterization_state: Some(RasterizationState::default()), multisample_state: Some(MultisampleState::default()), // Enable depth testing, which is needed for occlusion queries to make sense at // all. If you disable depth testing, every pixel is considered to pass the // depth test, so every query will return a nonzero result. depth_stencil_state: Some(DepthStencilState { depth: Some(DepthState::simple()), ..Default::default() }), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), dynamic_state: [DynamicState::Viewport].into_iter().collect(), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; let viewport = Viewport { offset: [0.0, 0.0], extent: window_size.into(), depth_range: 0.0..=1.0, }; let previous_frame_end = Some(sync::now(self.device.clone()).boxed()); self.rcx = Some(RenderContext { window, swapchain, render_pass, framebuffers, pipeline, viewport, recreate_swapchain: false, previous_frame_end, }); } fn window_event( &mut self, event_loop: &ActiveEventLoop, _window_id: WindowId, event: WindowEvent, ) { let rcx = self.rcx.as_mut().unwrap(); match event { WindowEvent::CloseRequested => { event_loop.exit(); } WindowEvent::Resized(_) => { rcx.recreate_swapchain = true; } WindowEvent::RedrawRequested => { let window_size = rcx.window.inner_size(); if window_size.width == 0 || window_size.height == 0 { return; } rcx.previous_frame_end.as_mut().unwrap().cleanup_finished(); if rcx.recreate_swapchain { let (new_swapchain, new_images) = rcx .swapchain .recreate(SwapchainCreateInfo { image_extent: window_size.into(), ..rcx.swapchain.create_info() }) .expect("failed to recreate swapchain"); rcx.swapchain = new_swapchain; rcx.framebuffers = window_size_dependent_setup( &new_images, &rcx.render_pass, &self.memory_allocator, ); rcx.viewport.extent = window_size.into(); rcx.recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image( rcx.swapchain.clone(), None, ) .map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { rcx.recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { rcx.recreate_swapchain = true; } let mut builder = AutoCommandBufferBuilder::primary( self.command_buffer_allocator.clone(), self.queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); // Beginning or resetting a query is unsafe for now. unsafe { builder // A query must be reset before each use, including the first use. This // must be done outside a render pass. .reset_query_pool(self.query_pool.clone(), 0..3) .unwrap() .set_viewport(0, [rcx.viewport.clone()].into_iter().collect()) .unwrap() .bind_pipeline_graphics(rcx.pipeline.clone()) .unwrap() .begin_render_pass( RenderPassBeginInfo { clear_values: vec![ Some([0.0, 0.0, 1.0, 1.0].into()), Some(1.0.into()), ], ..RenderPassBeginInfo::framebuffer( rcx.framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() // Begin query 0, then draw the red triangle. Enabling the // `QueryControlFlags::PRECISE` flag would give exact numeric results. This // needs the `occlusion_query_precise` feature to be enabled on the device. .begin_query( self.query_pool.clone(), 0, QueryControlFlags::empty(), // QueryControlFlags::PRECISE, ) .unwrap() .bind_vertex_buffers(0, self.triangle1.clone()) .unwrap() .draw(self.triangle1.len() as u32, 1, 0, 0) .unwrap() // End query 0. .end_query(self.query_pool.clone(), 0) .unwrap() // Begin query 1 for the cyan triangle. .begin_query(self.query_pool.clone(), 1, QueryControlFlags::empty()) .unwrap() .bind_vertex_buffers(0, self.triangle2.clone()) .unwrap() .draw(self.triangle2.len() as u32, 1, 0, 0) .unwrap() .end_query(self.query_pool.clone(), 1) .unwrap() // Finally, query 2 for the green triangle. .begin_query(self.query_pool.clone(), 2, QueryControlFlags::empty()) .unwrap() .bind_vertex_buffers(0, self.triangle3.clone()) .unwrap() .draw(self.triangle3.len() as u32, 1, 0, 0) .unwrap() .end_query(self.query_pool.clone(), 2) .unwrap() .end_render_pass(Default::default()) .unwrap(); } let command_buffer = builder.build().unwrap(); let future = rcx .previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(self.queue.clone(), command_buffer) .unwrap() .then_swapchain_present( self.queue.clone(), SwapchainPresentInfo::swapchain_image_index( rcx.swapchain.clone(), image_index, ), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { rcx.previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { rcx.recreate_swapchain = true; rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed()); } } // Retrieve the query results. This copies the results to a variable on the CPU. // You can also use the `copy_query_pool_results` function on a command buffer to // write results to a Vulkano buffer. This could then be used to influence draw // operations further down the line, either in the same frame or a future frame. #[rustfmt::skip] self.query_pool.get_results( 0..3, &mut self.query_results, // Block the function call until the results are available. // NOTE: If not all the queries have actually been executed, then this will // wait forever for something that never happens! QueryResultFlags::WAIT // Enable this flag to give partial results if available, instead of waiting // for the full results. // | QueryResultFlags::PARTIAL // Blocking and waiting will ensure the results are always available after the // function returns. // // If you disable waiting, then this flag can be enabled to include the // availability of each query's results. You need one extra element per query // in your `query_results` buffer for this. This element will be filled with a // zero/nonzero value indicating availability. // | QueryResultFlags::WITH_AVAILABILITY ) .unwrap(); // If the `precise` bit was not enabled, then you're only guaranteed to get a // boolean result here: zero if all pixels were occluded, nonzero if only some were // occluded. Enabling `precise` will give the exact number of pixels. // Query 0 (red triangle) will always succeed, because the depth buffer starts // empty and will never occlude anything. assert_ne!(self.query_results[0], 0); // Query 1 (cyan triangle) will fail, because it's drawn completely behind the // first. assert_eq!(self.query_results[1], 0); // Query 2 (green triangle) will succeed, because it's only partially occluded. assert_ne!(self.query_results[2], 0); } _ => {} } } fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) { let rcx = self.rcx.as_mut().unwrap(); rcx.window.request_redraw(); } } #[derive(BufferContents, Vertex)] #[repr(C)] struct MyVertex { #[format(R32G32B32_SFLOAT)] position: [f32; 3], #[format(R32G32B32_SFLOAT)] color: [f32; 3], } fn window_size_dependent_setup( images: &[Arc], render_pass: &Arc, memory_allocator: &Arc, ) -> Vec> { let depth_attachment = ImageView::new_default( Image::new( memory_allocator.clone(), ImageCreateInfo { image_type: ImageType::Dim2d, format: Format::D16_UNORM, extent: images[0].extent(), usage: ImageUsage::DEPTH_STENCIL_ATTACHMENT | ImageUsage::TRANSIENT_ATTACHMENT, ..Default::default() }, AllocationCreateInfo::default(), ) .unwrap(), ) .unwrap(); images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view, depth_attachment.clone()], ..Default::default() }, ) .unwrap() }) .collect::>() }