mirror of
https://github.com/vulkano-rs/vulkano.git
synced 2024-11-21 22:34:43 +00:00
Remove unrelated comments and apply rustfmt
This commit is contained in:
parent
3de4f20154
commit
4e14bd2cdf
@ -7,23 +7,19 @@
|
||||
// notice may not be copied, modified, or distributed except
|
||||
// according to those terms.
|
||||
|
||||
// Welcome to the triangle example!
|
||||
//
|
||||
// This is the only example that is entirely detailed. All the other examples avoid code
|
||||
// duplication by using helper functions.
|
||||
//
|
||||
// This example assumes that you are already more or less familiar with graphics programming and
|
||||
// that you want to learn Vulkan. This means that for example it won't go into details about what a
|
||||
// vertex or a shader is.
|
||||
//
|
||||
// This version of the triangle example is written using dynamic rendering instead of render pass
|
||||
// and framebuffer objects. If your device does not support Vulkan 1.3 or the
|
||||
// `khr_dynamic_rendering` extension, or if you want to see how to support older versions, see the
|
||||
// original triangle example.
|
||||
|
||||
use std::sync::Arc;
|
||||
use vulkano::acceleration_structure::{
|
||||
AccelerationStructureBuildSizesInfo, AccelerationStructureBuildType,
|
||||
};
|
||||
use vulkano::{
|
||||
acceleration_structure::{*},
|
||||
acceleration_structure::{
|
||||
AccelerationStructure, AccelerationStructureBuildGeometryInfo,
|
||||
AccelerationStructureBuildRangeInfo, AccelerationStructureCreateInfo,
|
||||
AccelerationStructureGeometries, AccelerationStructureGeometryInstancesData,
|
||||
AccelerationStructureGeometryInstancesDataType, AccelerationStructureGeometryTrianglesData,
|
||||
AccelerationStructureInstance, AccelerationStructureType, BuildAccelerationStructureFlags,
|
||||
BuildAccelerationStructureMode, GeometryFlags, GeometryInstanceFlags,
|
||||
},
|
||||
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
|
||||
command_buffer::{
|
||||
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
|
||||
@ -33,12 +29,14 @@ use vulkano::{
|
||||
allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet,
|
||||
},
|
||||
device::{
|
||||
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features,
|
||||
Queue, QueueCreateInfo, QueueFlags,
|
||||
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features, Queue,
|
||||
QueueCreateInfo, QueueFlags,
|
||||
},
|
||||
image::{view::ImageView, Image, ImageUsage},
|
||||
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
|
||||
memory::allocator::{AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter, StandardMemoryAllocator},
|
||||
memory::allocator::{
|
||||
AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter, StandardMemoryAllocator,
|
||||
},
|
||||
pipeline::{
|
||||
graphics::{
|
||||
color_blend::ColorBlendState,
|
||||
@ -51,7 +49,8 @@ use vulkano::{
|
||||
GraphicsPipelineCreateInfo,
|
||||
},
|
||||
layout::PipelineDescriptorSetLayoutCreateInfo,
|
||||
GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout, PipelineShaderStageCreateInfo,
|
||||
GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout,
|
||||
PipelineShaderStageCreateInfo,
|
||||
},
|
||||
render_pass::AttachmentStoreOp,
|
||||
swapchain::{
|
||||
@ -70,22 +69,10 @@ fn main() {
|
||||
let event_loop = EventLoop::new();
|
||||
|
||||
let library = VulkanLibrary::new().unwrap();
|
||||
|
||||
// The first step of any Vulkan program is to create an instance.
|
||||
//
|
||||
// When we create an instance, we have to pass a list of extensions that we want to enable.
|
||||
//
|
||||
// All the window-drawing functionalities are part of non-core extensions that we need to
|
||||
// enable manually. To do so, we ask `Surface` for the list of extensions required to draw to
|
||||
// a window.
|
||||
let required_extensions = Surface::required_extensions(&event_loop);
|
||||
|
||||
// Now creating the instance.
|
||||
let instance = Instance::new(
|
||||
library,
|
||||
InstanceCreateInfo {
|
||||
// Enable enumerating devices that use non-conformant Vulkan implementations.
|
||||
// (e.g. MoltenVK)
|
||||
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
||||
enabled_extensions: required_extensions,
|
||||
..Default::default()
|
||||
@ -93,205 +80,98 @@ fn main() {
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// The objective of this example is to draw a triangle on a window. To do so, we first need to
|
||||
// create the window. We use the `WindowBuilder` from the `winit` crate to do that here.
|
||||
//
|
||||
// Before we can render to a window, we must first create a `vulkano::swapchain::Surface`
|
||||
// object from it, which represents the drawable surface of a window. For that we must wrap the
|
||||
// `winit::window::Window` in an `Arc`.
|
||||
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
|
||||
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
|
||||
|
||||
// Choose device extensions that we're going to use. In order to present images to a surface,
|
||||
// we need a `Swapchain`, which is provided by the `khr_swapchain` extension.
|
||||
let mut device_extensions = DeviceExtensions {
|
||||
khr_acceleration_structure: true,
|
||||
khr_ray_query: true,
|
||||
khr_swapchain: true,
|
||||
..DeviceExtensions::empty()
|
||||
};
|
||||
|
||||
// We then choose which physical device to use. First, we enumerate all the available physical
|
||||
// devices, then apply filters to narrow them down to those that can support our needs.
|
||||
let features = Features {
|
||||
acceleration_structure: true,
|
||||
buffer_device_address: true,
|
||||
dynamic_rendering: true,
|
||||
ray_query: true,
|
||||
..Features::empty()
|
||||
};
|
||||
let (physical_device, queue_family_index) = instance
|
||||
.enumerate_physical_devices()
|
||||
.unwrap()
|
||||
.filter(|p| {
|
||||
// For this example, we require at least Vulkan 1.3, or a device that has the
|
||||
// `khr_dynamic_rendering` extension available.
|
||||
p.api_version() >= Version::V1_3 || p.supported_extensions().khr_dynamic_rendering
|
||||
})
|
||||
.filter(|p| {
|
||||
// Some devices may not support the extensions or features that your application, or
|
||||
// report properties and limits that are not sufficient for your application. These
|
||||
// should be filtered out here.
|
||||
p.supported_extensions().contains(&device_extensions)
|
||||
})
|
||||
.filter(|p| p.supported_extensions().contains(&device_extensions))
|
||||
.filter_map(|p| {
|
||||
// For each physical device, we try to find a suitable queue family that will execute
|
||||
// our draw commands.
|
||||
//
|
||||
// Devices can provide multiple queues to run commands in parallel (for example a draw
|
||||
// queue and a compute queue), similar to CPU threads. This is something you have to
|
||||
// have to manage manually in Vulkan. Queues of the same type belong to the same queue
|
||||
// family.
|
||||
//
|
||||
// Here, we look for a single queue family that is suitable for our purposes. In a
|
||||
// real-world application, you may want to use a separate dedicated transfer queue to
|
||||
// handle data transfers in parallel with graphics operations. You may also need a
|
||||
// separate queue for compute operations, if your application uses those.
|
||||
p.queue_family_properties()
|
||||
.iter()
|
||||
.enumerate()
|
||||
.position(|(i, q)| {
|
||||
// We select a queue family that supports graphics operations. When drawing to
|
||||
// a window surface, as we do in this example, we also need to check that
|
||||
// queues in this queue family are capable of presenting images to the surface.
|
||||
q.queue_flags.intersects(QueueFlags::GRAPHICS)
|
||||
&& p.surface_support(i as u32, &surface).unwrap_or(false)
|
||||
})
|
||||
// The code here searches for the first queue family that is suitable. If none is
|
||||
// found, `None` is returned to `filter_map`, which disqualifies this physical
|
||||
// device.
|
||||
.map(|i| (p, i as u32))
|
||||
})
|
||||
// All the physical devices that pass the filters above are suitable for the application.
|
||||
// However, not every device is equal, some are preferred over others. Now, we assign each
|
||||
// physical device a score, and pick the device with the lowest ("best") score.
|
||||
//
|
||||
// In this example, we simply select the best-scoring device to use in the application.
|
||||
// In a real-world setting, you may want to use the best-scoring device only as a "default"
|
||||
// or "recommended" device, and let the user choose the device themself.
|
||||
.min_by_key(|(p, _)| {
|
||||
// We assign a lower score to device types that are likely to be faster/better.
|
||||
match p.properties().device_type {
|
||||
.min_by_key(|(p, _)| match p.properties().device_type {
|
||||
PhysicalDeviceType::DiscreteGpu => 0,
|
||||
PhysicalDeviceType::IntegratedGpu => 1,
|
||||
PhysicalDeviceType::VirtualGpu => 2,
|
||||
PhysicalDeviceType::Cpu => 3,
|
||||
PhysicalDeviceType::Other => 4,
|
||||
_ => 5,
|
||||
}
|
||||
})
|
||||
.expect("no suitable physical device found");
|
||||
|
||||
// Some little debug infos.
|
||||
println!(
|
||||
"Using device: {} (type: {:?})",
|
||||
physical_device.properties().device_name,
|
||||
physical_device.properties().device_type,
|
||||
);
|
||||
|
||||
// If the selected device doesn't have Vulkan 1.3 available, then we need to enable the
|
||||
// `khr_dynamic_rendering` extension manually. This extension became a core part of Vulkan
|
||||
// in version 1.3 and later, so it's always available then and it does not need to be enabled.
|
||||
// We can be sure that this extension will be available on the selected physical device,
|
||||
// because we filtered out unsuitable devices in the device selection code above.
|
||||
if physical_device.api_version() < Version::V1_3 {
|
||||
device_extensions.khr_dynamic_rendering = true;
|
||||
}
|
||||
|
||||
// todo: device compatibility check
|
||||
device_extensions.khr_ray_query = true;
|
||||
device_extensions.khr_acceleration_structure = true;
|
||||
|
||||
// Now initializing the device. This is probably the most important object of Vulkan.
|
||||
//
|
||||
// An iterator of created queues is returned by the function alongside the device.
|
||||
let (device, mut queues) = Device::new(
|
||||
// Which physical device to connect to.
|
||||
physical_device,
|
||||
DeviceCreateInfo {
|
||||
// The list of queues that we are going to use. Here we only use one queue, from the
|
||||
// previously chosen queue family.
|
||||
queue_create_infos: vec![QueueCreateInfo {
|
||||
queue_family_index,
|
||||
..Default::default()
|
||||
}],
|
||||
|
||||
// A list of optional features and extensions that our program needs to work correctly.
|
||||
// Some parts of the Vulkan specs are optional and must be enabled manually at device
|
||||
// creation. In this example the only things we are going to need are the
|
||||
// `khr_swapchain` extension that allows us to draw to a window, and
|
||||
// `khr_dynamic_rendering` if we don't have Vulkan 1.3 available.
|
||||
enabled_extensions: device_extensions,
|
||||
|
||||
// In order to render with Vulkan 1.3's dynamic rendering, we need to enable it here.
|
||||
// Otherwise, we are only allowed to render with a render pass object, as in the
|
||||
// standard triangle example. The feature is required to be supported by the device if
|
||||
// it supports Vulkan 1.3 and higher, or if the `khr_dynamic_rendering` extension is
|
||||
// available, so we don't need to check for support.
|
||||
enabled_features: Features {
|
||||
ray_query: true,
|
||||
acceleration_structure: true,
|
||||
buffer_device_address: true,
|
||||
dynamic_rendering: true,
|
||||
..Features::empty()
|
||||
},
|
||||
|
||||
enabled_features: features,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// Since we can request multiple queues, the `queues` variable is in fact an iterator. We only
|
||||
// use one queue in this example, so we just retrieve the first and only element of the
|
||||
// iterator.
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
// Before we can draw on the surface, we have to create what is called a swapchain. Creating a
|
||||
// swapchain allocates the color buffers that will contain the image that will ultimately be
|
||||
// visible on the screen. These images are returned alongside the swapchain.
|
||||
let (mut swapchain, images) = {
|
||||
// Querying the capabilities of the surface. When we create the swapchain we can only pass
|
||||
// values that are allowed by the capabilities.
|
||||
let surface_capabilities = device
|
||||
.physical_device()
|
||||
.surface_capabilities(&surface, Default::default())
|
||||
.unwrap();
|
||||
|
||||
// Choosing the internal format that the images will have.
|
||||
let image_format = device
|
||||
.physical_device()
|
||||
.surface_formats(&surface, Default::default())
|
||||
.unwrap()[0]
|
||||
.0;
|
||||
|
||||
// Please take a look at the docs for the meaning of the parameters we didn't mention.
|
||||
Swapchain::new(
|
||||
device.clone(),
|
||||
surface,
|
||||
SwapchainCreateInfo {
|
||||
// Some drivers report an `min_image_count` of 1, but fullscreen mode requires at
|
||||
// least 2. Therefore we must ensure the count is at least 2, otherwise the program
|
||||
// would crash when entering fullscreen mode on those drivers.
|
||||
min_image_count: surface_capabilities.min_image_count.max(2),
|
||||
|
||||
image_format,
|
||||
|
||||
// The size of the window, only used to initially setup the swapchain.
|
||||
//
|
||||
// NOTE:
|
||||
// On some drivers the swapchain extent is specified by
|
||||
// `surface_capabilities.current_extent` and the swapchain size must use this
|
||||
// extent. This extent is always the same as the window size.
|
||||
//
|
||||
// However, other drivers don't specify a value, i.e.
|
||||
// `surface_capabilities.current_extent` is `None`. These drivers will allow
|
||||
// anything, but the only sensible value is the window size.
|
||||
//
|
||||
// Both of these cases need the swapchain to use the window size, so we just
|
||||
// use that.
|
||||
image_extent: window.inner_size().into(),
|
||||
|
||||
image_usage: ImageUsage::COLOR_ATTACHMENT,
|
||||
|
||||
// The alpha mode indicates how the alpha value of the final image will behave. For
|
||||
// example, you can choose whether the window will be opaque or transparent.
|
||||
composite_alpha: surface_capabilities
|
||||
.supported_composite_alpha
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap(),
|
||||
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
@ -300,9 +180,6 @@ fn main() {
|
||||
|
||||
let memory_allocator = StandardMemoryAllocator::new_default(device.clone());
|
||||
|
||||
// We now create a buffer that will store the shape of our triangle. We use `#[repr(C)]` here
|
||||
// to force rustc to use a defined layout for our data, as the default representation has *no
|
||||
// guarantees*.
|
||||
#[derive(BufferContents, Vertex)]
|
||||
#[repr(C)]
|
||||
struct Vertex {
|
||||
@ -346,20 +223,6 @@ fn main() {
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// The next step is to create the shaders.
|
||||
//
|
||||
// The raw shader creation API provided by the vulkano library is unsafe for various reasons,
|
||||
// so The `shader!` macro provides a way to generate a Rust module from GLSL source - in the
|
||||
// example below, the source is provided as a string input directly to the shader, but a path
|
||||
// to a source file can be provided as well. Note that the user must specify the type of shader
|
||||
// (e.g. "vertex", "fragment", etc.) using the `ty` option of the macro.
|
||||
//
|
||||
// The items generated by the `shader!` macro include a `load` function which loads the shader
|
||||
// using an input logical device. The module also includes type definitions for layout
|
||||
// structures defined in the shader source, for example uniforms and push constants.
|
||||
//
|
||||
// A more detailed overview of what the `shader!` macro generates can be found in the
|
||||
// vulkano-shaders crate docs. You can view them at https://docs.rs/vulkano-shaders/
|
||||
mod vs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "vertex",
|
||||
@ -420,20 +283,7 @@ fn main() {
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
|
||||
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
|
||||
// manually.
|
||||
|
||||
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes how
|
||||
// a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains
|
||||
// many settings for customization, all baked into a single object. For drawing, we create
|
||||
// a **graphics** pipeline, but there are also other types of pipeline.
|
||||
let pipeline = {
|
||||
// First, we load the shaders that the pipeline will use:
|
||||
// the vertex shader and the fragment shader.
|
||||
//
|
||||
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
|
||||
// one.
|
||||
let vs = vs::load(device.clone())
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
@ -442,73 +292,35 @@ fn main() {
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
.unwrap();
|
||||
|
||||
// Automatically generate a vertex input state from the vertex shader's input interface,
|
||||
// that takes a single vertex buffer containing `Vertex` structs.
|
||||
let vertex_input_state = Vertex::per_vertex()
|
||||
.definition(&vs.info().input_interface)
|
||||
.unwrap();
|
||||
|
||||
// Make a list of the shader stages that the pipeline will have.
|
||||
let stages = [
|
||||
PipelineShaderStageCreateInfo::new(vs),
|
||||
PipelineShaderStageCreateInfo::new(fs),
|
||||
];
|
||||
|
||||
// We must now create a **pipeline layout** object, which describes the locations and types of
|
||||
// descriptor sets and push constants used by the shaders in the pipeline.
|
||||
//
|
||||
// Multiple pipelines can share a common layout object, which is more efficient.
|
||||
// The shaders in a pipeline must use a subset of the resources described in its pipeline
|
||||
// layout, but the pipeline layout is allowed to contain resources that are not present in the
|
||||
// shaders; they can be used by shaders in other pipelines that share the same layout.
|
||||
// Thus, it is a good idea to design shaders so that many pipelines have common resource
|
||||
// locations, which allows them to share pipeline layouts.
|
||||
let layout = PipelineLayout::new(
|
||||
device.clone(),
|
||||
// Since we only have one pipeline in this example, and thus one pipeline layout,
|
||||
// we automatically generate the creation info for it from the resources used in the
|
||||
// shaders. In a real application, you would specify this information manually so that you
|
||||
// can re-use one layout in multiple pipelines.
|
||||
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
||||
.into_pipeline_layout_create_info(device.clone())
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// We describe the formats of attachment images where the colors, depth and/or stencil
|
||||
// information will be written. The pipeline will only be usable with this particular
|
||||
// configuration of the attachment images.
|
||||
let subpass = PipelineRenderingCreateInfo {
|
||||
// We specify a single color attachment that will be rendered to. When we begin
|
||||
// rendering, we will specify a swapchain image to be used as this attachment, so here
|
||||
// we set its format to be the same format as the swapchain.
|
||||
color_attachment_formats: vec![Some(swapchain.image_format())],
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
// Finally, create the pipeline.
|
||||
GraphicsPipeline::new(
|
||||
device.clone(),
|
||||
None,
|
||||
GraphicsPipelineCreateInfo {
|
||||
stages: stages.into_iter().collect(),
|
||||
// How vertex data is read from the vertex buffers into the vertex shader.
|
||||
vertex_input_state: Some(vertex_input_state),
|
||||
// How vertices are arranged into primitive shapes.
|
||||
// The default primitive shape is a triangle.
|
||||
input_assembly_state: Some(InputAssemblyState::default()),
|
||||
// How primitives are transformed and clipped to fit the framebuffer.
|
||||
// We use a resizable viewport, set to draw over the entire window.
|
||||
viewport_state: Some(ViewportState::viewport_dynamic_scissor_irrelevant()),
|
||||
// How polygons are culled and converted into a raster of pixels.
|
||||
// The default value does not perform any culling.
|
||||
rasterization_state: Some(RasterizationState::default()),
|
||||
// How multiple fragment shader samples are converted to a single pixel value.
|
||||
// The default value does not perform any multisampling.
|
||||
multisample_state: Some(MultisampleState::default()),
|
||||
// How pixel values are combined with the values already present in the framebuffer.
|
||||
// The default value overwrites the old value with the new one, without any blending.
|
||||
color_blend_state: Some(ColorBlendState::new(
|
||||
subpass.color_attachment_formats.len() as u32,
|
||||
)),
|
||||
@ -519,33 +331,17 @@ fn main() {
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
|
||||
// Otherwise we would have to recreate the whole pipeline.
|
||||
let mut viewport = Viewport {
|
||||
offset: [0.0, 0.0],
|
||||
extent: [0.0, 0.0],
|
||||
depth_range: 0.0..=1.0,
|
||||
};
|
||||
|
||||
// When creating the swapchain, we only created plain images. To use them as an attachment for
|
||||
// rendering, we must wrap then in an image view.
|
||||
//
|
||||
// Since we need to draw to multiple images, we are going to create a different image view for
|
||||
// each image.
|
||||
let mut attachment_image_views = window_size_dependent_setup(&images, &mut viewport);
|
||||
|
||||
// Before we can start creating and recording command buffers, we need a way of allocating
|
||||
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
|
||||
// underneath and provides a safe interface for them.
|
||||
let command_buffer_allocator =
|
||||
StandardCommandBufferAllocator::new(device.clone(), Default::default());
|
||||
|
||||
// Keep the bottom-level acceleration structure alive
|
||||
// because it is referenced by the top-level acceleration structure.
|
||||
let (
|
||||
top_level_acceleration_structure,
|
||||
bottom_level_acceleration_structure,
|
||||
) = {
|
||||
let (top_level_acceleration_structure, bottom_level_acceleration_structure) = {
|
||||
#[derive(BufferContents, Vertex)]
|
||||
#[repr(C)]
|
||||
struct Vertex {
|
||||
@ -605,34 +401,18 @@ fn main() {
|
||||
let descriptor_set = PersistentDescriptorSet::new(
|
||||
&descriptor_set_allocator,
|
||||
pipeline.layout().set_layouts().get(0).unwrap().clone(),
|
||||
[WriteDescriptorSet::acceleration_structure(0, top_level_acceleration_structure)],
|
||||
[WriteDescriptorSet::acceleration_structure(
|
||||
0,
|
||||
top_level_acceleration_structure,
|
||||
)],
|
||||
[],
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// Initialization is finally finished!
|
||||
|
||||
// In some situations, the swapchain will become invalid by itself. This includes for example
|
||||
// when the window is resized (as the images of the swapchain will no longer match the
|
||||
// window's) or, on Android, when the application went to the background and goes back to the
|
||||
// foreground.
|
||||
//
|
||||
// In this situation, acquiring a swapchain image or presenting it will return an error.
|
||||
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
|
||||
// To continue rendering, we need to recreate the swapchain by creating a new swapchain. Here,
|
||||
// we remember that we need to do this for the next loop iteration.
|
||||
let mut recreate_swapchain = false;
|
||||
|
||||
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
|
||||
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
|
||||
// they are in use by the GPU.
|
||||
//
|
||||
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
|
||||
// that, we store the submission of the previous frame here.
|
||||
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
|
||||
|
||||
event_loop.run(move |event, _, control_flow| {
|
||||
match event {
|
||||
event_loop.run(move |event, _, control_flow| match event {
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::CloseRequested,
|
||||
..
|
||||
@ -646,23 +426,14 @@ fn main() {
|
||||
recreate_swapchain = true;
|
||||
}
|
||||
Event::RedrawEventsCleared => {
|
||||
// Do not draw the frame when the screen size is zero. On Windows, this can
|
||||
// occur when minimizing the application.
|
||||
let image_extent: [u32; 2] = window.inner_size().into();
|
||||
|
||||
if image_extent.contains(&0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// It is important to call this function from time to time, otherwise resources
|
||||
// will keep accumulating and you will eventually reach an out of memory error.
|
||||
// Calling this function polls various fences in order to determine what the GPU
|
||||
// has already processed, and frees the resources that are no longer needed.
|
||||
previous_frame_end.as_mut().unwrap().cleanup_finished();
|
||||
|
||||
// Whenever the window resizes we need to recreate everything dependent on the
|
||||
// window size. In this example that includes the swapchain, the framebuffers and
|
||||
// the dynamic state viewport.
|
||||
if recreate_swapchain {
|
||||
let (new_swapchain, new_images) = swapchain
|
||||
.recreate(SwapchainCreateInfo {
|
||||
@ -672,22 +443,10 @@ fn main() {
|
||||
.expect("failed to recreate swapchain");
|
||||
|
||||
swapchain = new_swapchain;
|
||||
|
||||
// Now that we have new swapchain images, we must create new image views from
|
||||
// them as well.
|
||||
attachment_image_views =
|
||||
window_size_dependent_setup(&new_images, &mut viewport);
|
||||
|
||||
attachment_image_views = window_size_dependent_setup(&new_images, &mut viewport);
|
||||
recreate_swapchain = false;
|
||||
}
|
||||
|
||||
// Before we can draw on the output, we have to *acquire* an image from the
|
||||
// swapchain. If no image is available (which happens if you submit draw commands
|
||||
// too quickly), then the function will block. This operation returns the index of
|
||||
// the image that we are allowed to draw upon.
|
||||
//
|
||||
// This function can block if no image is available. The parameter is an optional
|
||||
// timeout after which the function call will return an error.
|
||||
let (image_index, suboptimal, acquire_future) =
|
||||
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
|
||||
Ok(r) => r,
|
||||
@ -698,53 +457,27 @@ fn main() {
|
||||
Err(e) => panic!("failed to acquire next image: {e}"),
|
||||
};
|
||||
|
||||
// `acquire_next_image` can be successful, but suboptimal. This means that the
|
||||
// swapchain image will still work, but it may not display correctly. With some
|
||||
// drivers this can be when the window resizes, but it may not cause the swapchain
|
||||
// to become out of date.
|
||||
if suboptimal {
|
||||
recreate_swapchain = true;
|
||||
}
|
||||
|
||||
// In order to draw, we have to build a *command buffer*. The command buffer object
|
||||
// holds the list of commands that are going to be executed.
|
||||
//
|
||||
// Building a command buffer is an expensive operation (usually a few hundred
|
||||
// microseconds), but it is known to be a hot path in the driver and is expected to
|
||||
// be optimized.
|
||||
//
|
||||
// Note that we have to pass a queue family when we create the command buffer. The
|
||||
// command buffer will only be executable on that given queue family.
|
||||
let mut builder = AutoCommandBufferBuilder::primary(
|
||||
&command_buffer_allocator,
|
||||
queue.queue_family_index(),
|
||||
CommandBufferUsage::OneTimeSubmit,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
builder
|
||||
// Before we can draw, we have to *enter a render pass*. We specify which
|
||||
// attachments we are going to use for rendering here, which needs to match
|
||||
// what was previously specified when creating the pipeline.
|
||||
.begin_rendering(RenderingInfo {
|
||||
// As before, we specify one color attachment, but now we specify the image
|
||||
// view to use as well as how it should be used.
|
||||
color_attachments: vec![Some(RenderingAttachmentInfo {
|
||||
// `Store` means that we ask the GPU to store the rendered output in
|
||||
// the attachment image. We could also ask it to discard the result.
|
||||
store_op: AttachmentStoreOp::Store,
|
||||
..RenderingAttachmentInfo::image_view(
|
||||
// We specify image view corresponding to the currently acquired
|
||||
// swapchain image, to use for this attachment.
|
||||
attachment_image_views[image_index as usize].clone(),
|
||||
)
|
||||
})],
|
||||
..Default::default()
|
||||
})
|
||||
.unwrap()
|
||||
// We are now inside the first subpass of the render pass.
|
||||
//
|
||||
// TODO: Document state setting and how it affects subsequent draw commands.
|
||||
.set_viewport(0, [viewport.clone()].into_iter().collect())
|
||||
.unwrap()
|
||||
.bind_pipeline_graphics(pipeline.clone())
|
||||
@ -758,14 +491,10 @@ fn main() {
|
||||
descriptor_set.clone(),
|
||||
)
|
||||
.unwrap()
|
||||
// We add a draw command.
|
||||
.draw(quad_buffer.len() as u32, 1, 0, 0)
|
||||
.unwrap()
|
||||
// We leave the render pass.
|
||||
.end_rendering()
|
||||
.unwrap();
|
||||
|
||||
// Finish building the command buffer by calling `build`.
|
||||
let command_buffer = builder.build().unwrap();
|
||||
|
||||
let future = previous_frame_end
|
||||
@ -774,14 +503,6 @@ fn main() {
|
||||
.join(acquire_future)
|
||||
.then_execute(queue.clone(), command_buffer)
|
||||
.unwrap()
|
||||
// The color output is now expected to contain our triangle. But in order to
|
||||
// show it on the screen, we have to *present* the image by calling
|
||||
// `then_swapchain_present`.
|
||||
//
|
||||
// This function does not actually present the image immediately. Instead it
|
||||
// submits a present command at the end of the queue. This means that it will
|
||||
// only be presented once the GPU has finished executing the command buffer
|
||||
// that draws the triangle.
|
||||
.then_swapchain_present(
|
||||
queue.clone(),
|
||||
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
|
||||
@ -803,7 +524,6 @@ fn main() {
|
||||
}
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@ -829,15 +549,17 @@ fn create_top_level_acceleration_structure(
|
||||
) -> Arc<AccelerationStructure> {
|
||||
let instances = bottom_level_acceleration_structures
|
||||
.iter()
|
||||
.map(|&bottom_level_acceleration_structure|
|
||||
AccelerationStructureInstance {
|
||||
.map(
|
||||
|&bottom_level_acceleration_structure| AccelerationStructureInstance {
|
||||
instance_shader_binding_table_record_offset_and_flags: Packed24_8::new(
|
||||
0,
|
||||
GeometryInstanceFlags::TRIANGLE_FACING_CULL_DISABLE.into(),
|
||||
),
|
||||
acceleration_structure_reference: bottom_level_acceleration_structure.device_address().get(),
|
||||
acceleration_structure_reference: bottom_level_acceleration_structure
|
||||
.device_address()
|
||||
.get(),
|
||||
..Default::default()
|
||||
}
|
||||
},
|
||||
)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
@ -857,10 +579,11 @@ fn create_top_level_acceleration_structure(
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let geometries = AccelerationStructureGeometries::Instances(AccelerationStructureGeometryInstancesData {
|
||||
let geometries =
|
||||
AccelerationStructureGeometries::Instances(AccelerationStructureGeometryInstancesData {
|
||||
flags: GeometryFlags::OPAQUE,
|
||||
..AccelerationStructureGeometryInstancesData::new(
|
||||
AccelerationStructureGeometryInstancesDataType::Values(Some(values))
|
||||
AccelerationStructureGeometryInstancesDataType::Values(Some(values)),
|
||||
)
|
||||
});
|
||||
|
||||
@ -870,14 +593,12 @@ fn create_top_level_acceleration_structure(
|
||||
..AccelerationStructureBuildGeometryInfo::new(geometries)
|
||||
};
|
||||
|
||||
let build_range_infos = [
|
||||
AccelerationStructureBuildRangeInfo {
|
||||
let build_range_infos = [AccelerationStructureBuildRangeInfo {
|
||||
primitive_count: bottom_level_acceleration_structures.len() as _,
|
||||
primitive_offset: 0,
|
||||
first_vertex: 0,
|
||||
transform_offset: 0,
|
||||
}
|
||||
];
|
||||
}];
|
||||
|
||||
build_acceleration_structure(
|
||||
memory_allocator,
|
||||
@ -906,8 +627,7 @@ fn create_bottom_level_acceleration_structure<T: BufferContents + Vertex>(
|
||||
|
||||
for &vertex_buffer in vertex_buffers {
|
||||
let primitive_count = vertex_buffer.len() as u32 / 3;
|
||||
triangles.push(
|
||||
AccelerationStructureGeometryTrianglesData {
|
||||
triangles.push(AccelerationStructureGeometryTrianglesData {
|
||||
flags: GeometryFlags::OPAQUE,
|
||||
vertex_data: Some(vertex_buffer.clone().into_bytes()),
|
||||
vertex_stride: description.stride,
|
||||
@ -915,19 +635,16 @@ fn create_bottom_level_acceleration_structure<T: BufferContents + Vertex>(
|
||||
index_data: None,
|
||||
transform_data: None,
|
||||
..AccelerationStructureGeometryTrianglesData::new(
|
||||
description.members.get("position").unwrap().format
|
||||
description.members.get("position").unwrap().format,
|
||||
)
|
||||
}
|
||||
);
|
||||
});
|
||||
max_primitive_counts.push(primitive_count);
|
||||
build_range_infos.push(
|
||||
AccelerationStructureBuildRangeInfo {
|
||||
build_range_infos.push(AccelerationStructureBuildRangeInfo {
|
||||
primitive_count,
|
||||
primitive_offset: 0,
|
||||
first_vertex: 0,
|
||||
transform_offset: 0,
|
||||
}
|
||||
)
|
||||
})
|
||||
}
|
||||
|
||||
let geometries = AccelerationStructureGeometries::Triangles(triangles);
|
||||
@ -974,7 +691,8 @@ fn create_acceleration_structure(
|
||||
ty,
|
||||
..AccelerationStructureCreateInfo::new(buffer)
|
||||
},
|
||||
).unwrap()
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
@ -1004,7 +722,7 @@ fn build_acceleration_structure(
|
||||
ty: AccelerationStructureType,
|
||||
mut build_info: AccelerationStructureBuildGeometryInfo,
|
||||
max_primitive_counts: &[u32],
|
||||
build_range_infos: impl IntoIterator<Item=AccelerationStructureBuildRangeInfo>,
|
||||
build_range_infos: impl IntoIterator<Item = AccelerationStructureBuildRangeInfo>,
|
||||
) -> Arc<AccelerationStructure> {
|
||||
let device = memory_allocator.device();
|
||||
|
||||
@ -1012,21 +730,17 @@ fn build_acceleration_structure(
|
||||
acceleration_structure_size,
|
||||
build_scratch_size,
|
||||
..
|
||||
} = device.acceleration_structure_build_sizes(
|
||||
} = device
|
||||
.acceleration_structure_build_sizes(
|
||||
AccelerationStructureBuildType::Device,
|
||||
&build_info,
|
||||
max_primitive_counts,
|
||||
).unwrap();
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let acceleration_structure = create_acceleration_structure(
|
||||
memory_allocator,
|
||||
ty,
|
||||
acceleration_structure_size,
|
||||
);
|
||||
let scratch_buffer = create_scratch_buffer(
|
||||
memory_allocator,
|
||||
build_scratch_size,
|
||||
);
|
||||
let acceleration_structure =
|
||||
create_acceleration_structure(memory_allocator, ty, acceleration_structure_size);
|
||||
let scratch_buffer = create_scratch_buffer(memory_allocator, build_scratch_size);
|
||||
|
||||
build_info.dst_acceleration_structure = Some(acceleration_structure.clone());
|
||||
build_info.scratch_data = Some(scratch_buffer);
|
||||
@ -1039,10 +753,8 @@ fn build_acceleration_structure(
|
||||
.unwrap();
|
||||
|
||||
unsafe {
|
||||
builder.build_acceleration_structure(
|
||||
build_info,
|
||||
build_range_infos.into_iter().collect(),
|
||||
)
|
||||
builder
|
||||
.build_acceleration_structure(build_info, build_range_infos.into_iter().collect())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user