diff --git a/examples/src/bin/ray-query.rs b/examples/src/bin/ray-query.rs index 0986c056..a6d81268 100644 --- a/examples/src/bin/ray-query.rs +++ b/examples/src/bin/ray-query.rs @@ -7,23 +7,19 @@ // notice may not be copied, modified, or distributed except // according to those terms. -// Welcome to the triangle example! -// -// This is the only example that is entirely detailed. All the other examples avoid code -// duplication by using helper functions. -// -// This example assumes that you are already more or less familiar with graphics programming and -// that you want to learn Vulkan. This means that for example it won't go into details about what a -// vertex or a shader is. -// -// This version of the triangle example is written using dynamic rendering instead of render pass -// and framebuffer objects. If your device does not support Vulkan 1.3 or the -// `khr_dynamic_rendering` extension, or if you want to see how to support older versions, see the -// original triangle example. - use std::sync::Arc; +use vulkano::acceleration_structure::{ + AccelerationStructureBuildSizesInfo, AccelerationStructureBuildType, +}; use vulkano::{ - acceleration_structure::{*}, + acceleration_structure::{ + AccelerationStructure, AccelerationStructureBuildGeometryInfo, + AccelerationStructureBuildRangeInfo, AccelerationStructureCreateInfo, + AccelerationStructureGeometries, AccelerationStructureGeometryInstancesData, + AccelerationStructureGeometryInstancesDataType, AccelerationStructureGeometryTrianglesData, + AccelerationStructureInstance, AccelerationStructureType, BuildAccelerationStructureFlags, + BuildAccelerationStructureMode, GeometryFlags, GeometryInstanceFlags, + }, buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer}, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, @@ -33,12 +29,14 @@ use vulkano::{ allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet, }, device::{ - physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features, - Queue, QueueCreateInfo, QueueFlags, + physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features, Queue, + QueueCreateInfo, QueueFlags, }, image::{view::ImageView, Image, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, - memory::allocator::{AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter, StandardMemoryAllocator}, + memory::allocator::{ + AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter, StandardMemoryAllocator, + }, pipeline::{ graphics::{ color_blend::ColorBlendState, @@ -51,7 +49,8 @@ use vulkano::{ GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, - GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout, PipelineShaderStageCreateInfo, + GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout, + PipelineShaderStageCreateInfo, }, render_pass::AttachmentStoreOp, swapchain::{ @@ -70,239 +69,117 @@ fn main() { let event_loop = EventLoop::new(); let library = VulkanLibrary::new().unwrap(); - - // The first step of any Vulkan program is to create an instance. - // - // When we create an instance, we have to pass a list of extensions that we want to enable. - // - // All the window-drawing functionalities are part of non-core extensions that we need to - // enable manually. To do so, we ask `Surface` for the list of extensions required to draw to - // a window. let required_extensions = Surface::required_extensions(&event_loop); - - // Now creating the instance. let instance = Instance::new( library, InstanceCreateInfo { - // Enable enumerating devices that use non-conformant Vulkan implementations. - // (e.g. MoltenVK) flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) - .unwrap(); + .unwrap(); - // The objective of this example is to draw a triangle on a window. To do so, we first need to - // create the window. We use the `WindowBuilder` from the `winit` crate to do that here. - // - // Before we can render to a window, we must first create a `vulkano::swapchain::Surface` - // object from it, which represents the drawable surface of a window. For that we must wrap the - // `winit::window::Window` in an `Arc`. let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); - // Choose device extensions that we're going to use. In order to present images to a surface, - // we need a `Swapchain`, which is provided by the `khr_swapchain` extension. let mut device_extensions = DeviceExtensions { + khr_acceleration_structure: true, + khr_ray_query: true, khr_swapchain: true, ..DeviceExtensions::empty() }; - - // We then choose which physical device to use. First, we enumerate all the available physical - // devices, then apply filters to narrow them down to those that can support our needs. + let features = Features { + acceleration_structure: true, + buffer_device_address: true, + dynamic_rendering: true, + ray_query: true, + ..Features::empty() + }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| { - // For this example, we require at least Vulkan 1.3, or a device that has the - // `khr_dynamic_rendering` extension available. p.api_version() >= Version::V1_3 || p.supported_extensions().khr_dynamic_rendering }) - .filter(|p| { - // Some devices may not support the extensions or features that your application, or - // report properties and limits that are not sufficient for your application. These - // should be filtered out here. - p.supported_extensions().contains(&device_extensions) - }) + .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { - // For each physical device, we try to find a suitable queue family that will execute - // our draw commands. - // - // Devices can provide multiple queues to run commands in parallel (for example a draw - // queue and a compute queue), similar to CPU threads. This is something you have to - // have to manage manually in Vulkan. Queues of the same type belong to the same queue - // family. - // - // Here, we look for a single queue family that is suitable for our purposes. In a - // real-world application, you may want to use a separate dedicated transfer queue to - // handle data transfers in parallel with graphics operations. You may also need a - // separate queue for compute operations, if your application uses those. p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { - // We select a queue family that supports graphics operations. When drawing to - // a window surface, as we do in this example, we also need to check that - // queues in this queue family are capable of presenting images to the surface. q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) - // The code here searches for the first queue family that is suitable. If none is - // found, `None` is returned to `filter_map`, which disqualifies this physical - // device. .map(|i| (p, i as u32)) }) - // All the physical devices that pass the filters above are suitable for the application. - // However, not every device is equal, some are preferred over others. Now, we assign each - // physical device a score, and pick the device with the lowest ("best") score. - // - // In this example, we simply select the best-scoring device to use in the application. - // In a real-world setting, you may want to use the best-scoring device only as a "default" - // or "recommended" device, and let the user choose the device themself. - .min_by_key(|(p, _)| { - // We assign a lower score to device types that are likely to be faster/better. - match p.properties().device_type { - PhysicalDeviceType::DiscreteGpu => 0, - PhysicalDeviceType::IntegratedGpu => 1, - PhysicalDeviceType::VirtualGpu => 2, - PhysicalDeviceType::Cpu => 3, - PhysicalDeviceType::Other => 4, - _ => 5, - } + .min_by_key(|(p, _)| match p.properties().device_type { + PhysicalDeviceType::DiscreteGpu => 0, + PhysicalDeviceType::IntegratedGpu => 1, + PhysicalDeviceType::VirtualGpu => 2, + PhysicalDeviceType::Cpu => 3, + PhysicalDeviceType::Other => 4, + _ => 5, }) .expect("no suitable physical device found"); - // Some little debug infos. println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); - // If the selected device doesn't have Vulkan 1.3 available, then we need to enable the - // `khr_dynamic_rendering` extension manually. This extension became a core part of Vulkan - // in version 1.3 and later, so it's always available then and it does not need to be enabled. - // We can be sure that this extension will be available on the selected physical device, - // because we filtered out unsuitable devices in the device selection code above. if physical_device.api_version() < Version::V1_3 { device_extensions.khr_dynamic_rendering = true; } - // todo: device compatibility check - device_extensions.khr_ray_query = true; - device_extensions.khr_acceleration_structure = true; - - // Now initializing the device. This is probably the most important object of Vulkan. - // - // An iterator of created queues is returned by the function alongside the device. let (device, mut queues) = Device::new( - // Which physical device to connect to. physical_device, DeviceCreateInfo { - // The list of queues that we are going to use. Here we only use one queue, from the - // previously chosen queue family. queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], - - // A list of optional features and extensions that our program needs to work correctly. - // Some parts of the Vulkan specs are optional and must be enabled manually at device - // creation. In this example the only things we are going to need are the - // `khr_swapchain` extension that allows us to draw to a window, and - // `khr_dynamic_rendering` if we don't have Vulkan 1.3 available. enabled_extensions: device_extensions, - - // In order to render with Vulkan 1.3's dynamic rendering, we need to enable it here. - // Otherwise, we are only allowed to render with a render pass object, as in the - // standard triangle example. The feature is required to be supported by the device if - // it supports Vulkan 1.3 and higher, or if the `khr_dynamic_rendering` extension is - // available, so we don't need to check for support. - enabled_features: Features { - ray_query: true, - acceleration_structure: true, - buffer_device_address: true, - dynamic_rendering: true, - ..Features::empty() - }, - + enabled_features: features, ..Default::default() }, ) - .unwrap(); - - // Since we can request multiple queues, the `queues` variable is in fact an iterator. We only - // use one queue in this example, so we just retrieve the first and only element of the - // iterator. + .unwrap(); let queue = queues.next().unwrap(); - // Before we can draw on the surface, we have to create what is called a swapchain. Creating a - // swapchain allocates the color buffers that will contain the image that will ultimately be - // visible on the screen. These images are returned alongside the swapchain. let (mut swapchain, images) = { - // Querying the capabilities of the surface. When we create the swapchain we can only pass - // values that are allowed by the capabilities. let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); - - // Choosing the internal format that the images will have. let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; - // Please take a look at the docs for the meaning of the parameters we didn't mention. Swapchain::new( device.clone(), surface, SwapchainCreateInfo { - // Some drivers report an `min_image_count` of 1, but fullscreen mode requires at - // least 2. Therefore we must ensure the count is at least 2, otherwise the program - // would crash when entering fullscreen mode on those drivers. min_image_count: surface_capabilities.min_image_count.max(2), - image_format, - - // The size of the window, only used to initially setup the swapchain. - // - // NOTE: - // On some drivers the swapchain extent is specified by - // `surface_capabilities.current_extent` and the swapchain size must use this - // extent. This extent is always the same as the window size. - // - // However, other drivers don't specify a value, i.e. - // `surface_capabilities.current_extent` is `None`. These drivers will allow - // anything, but the only sensible value is the window size. - // - // Both of these cases need the swapchain to use the window size, so we just - // use that. image_extent: window.inner_size().into(), - image_usage: ImageUsage::COLOR_ATTACHMENT, - - // The alpha mode indicates how the alpha value of the final image will behave. For - // example, you can choose whether the window will be opaque or transparent. composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), - ..Default::default() }, ) - .unwrap() + .unwrap() }; let memory_allocator = StandardMemoryAllocator::new_default(device.clone()); - // We now create a buffer that will store the shape of our triangle. We use `#[repr(C)]` here - // to force rustc to use a defined layout for our data, as the default representation has *no - // guarantees*. #[derive(BufferContents, Vertex)] #[repr(C)] struct Vertex { @@ -344,22 +221,8 @@ fn main() { }, quad, ) - .unwrap(); + .unwrap(); - // The next step is to create the shaders. - // - // The raw shader creation API provided by the vulkano library is unsafe for various reasons, - // so The `shader!` macro provides a way to generate a Rust module from GLSL source - in the - // example below, the source is provided as a string input directly to the shader, but a path - // to a source file can be provided as well. Note that the user must specify the type of shader - // (e.g. "vertex", "fragment", etc.) using the `ty` option of the macro. - // - // The items generated by the `shader!` macro include a `load` function which loads the shader - // using an input logical device. The module also includes type definitions for layout - // structures defined in the shader source, for example uniforms and push constants. - // - // A more detailed overview of what the `shader!` macro generates can be found in the - // vulkano-shaders crate docs. You can view them at https://docs.rs/vulkano-shaders/ mod vs { vulkano_shaders::shader! { ty: "vertex", @@ -420,20 +283,7 @@ fn main() { } } - // At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL - // implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this - // manually. - - // Before we draw, we have to create what is called a **pipeline**. A pipeline describes how - // a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains - // many settings for customization, all baked into a single object. For drawing, we create - // a **graphics** pipeline, but there are also other types of pipeline. let pipeline = { - // First, we load the shaders that the pipeline will use: - // the vertex shader and the fragment shader. - // - // A Vulkan shader can in theory contain multiple entry points, so we have to specify which - // one. let vs = vs::load(device.clone()) .unwrap() .entry_point("main") @@ -442,73 +292,35 @@ fn main() { .unwrap() .entry_point("main") .unwrap(); - - // Automatically generate a vertex input state from the vertex shader's input interface, - // that takes a single vertex buffer containing `Vertex` structs. let vertex_input_state = Vertex::per_vertex() .definition(&vs.info().input_interface) .unwrap(); - - // Make a list of the shader stages that the pipeline will have. let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(fs), ]; - - // We must now create a **pipeline layout** object, which describes the locations and types of - // descriptor sets and push constants used by the shaders in the pipeline. - // - // Multiple pipelines can share a common layout object, which is more efficient. - // The shaders in a pipeline must use a subset of the resources described in its pipeline - // layout, but the pipeline layout is allowed to contain resources that are not present in the - // shaders; they can be used by shaders in other pipelines that share the same layout. - // Thus, it is a good idea to design shaders so that many pipelines have common resource - // locations, which allows them to share pipeline layouts. let layout = PipelineLayout::new( device.clone(), - // Since we only have one pipeline in this example, and thus one pipeline layout, - // we automatically generate the creation info for it from the resources used in the - // shaders. In a real application, you would specify this information manually so that you - // can re-use one layout in multiple pipelines. PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) - .unwrap(); + .unwrap(); - // We describe the formats of attachment images where the colors, depth and/or stencil - // information will be written. The pipeline will only be usable with this particular - // configuration of the attachment images. let subpass = PipelineRenderingCreateInfo { - // We specify a single color attachment that will be rendered to. When we begin - // rendering, we will specify a swapchain image to be used as this attachment, so here - // we set its format to be the same format as the swapchain. color_attachment_formats: vec![Some(swapchain.image_format())], ..Default::default() }; - - // Finally, create the pipeline. GraphicsPipeline::new( device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), - // How vertex data is read from the vertex buffers into the vertex shader. vertex_input_state: Some(vertex_input_state), - // How vertices are arranged into primitive shapes. - // The default primitive shape is a triangle. input_assembly_state: Some(InputAssemblyState::default()), - // How primitives are transformed and clipped to fit the framebuffer. - // We use a resizable viewport, set to draw over the entire window. viewport_state: Some(ViewportState::viewport_dynamic_scissor_irrelevant()), - // How polygons are culled and converted into a raster of pixels. - // The default value does not perform any culling. rasterization_state: Some(RasterizationState::default()), - // How multiple fragment shader samples are converted to a single pixel value. - // The default value does not perform any multisampling. multisample_state: Some(MultisampleState::default()), - // How pixel values are combined with the values already present in the framebuffer. - // The default value overwrites the old value with the new one, without any blending. color_blend_state: Some(ColorBlendState::new( subpass.color_attachment_formats.len() as u32, )), @@ -516,36 +328,20 @@ fn main() { ..GraphicsPipelineCreateInfo::layout(layout) }, ) - .unwrap() + .unwrap() }; - // Dynamic viewports allow us to recreate just the viewport when the window is resized. - // Otherwise we would have to recreate the whole pipeline. let mut viewport = Viewport { offset: [0.0, 0.0], extent: [0.0, 0.0], depth_range: 0.0..=1.0, }; - // When creating the swapchain, we only created plain images. To use them as an attachment for - // rendering, we must wrap then in an image view. - // - // Since we need to draw to multiple images, we are going to create a different image view for - // each image. let mut attachment_image_views = window_size_dependent_setup(&images, &mut viewport); - - // Before we can start creating and recording command buffers, we need a way of allocating - // them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools - // underneath and provides a safe interface for them. let command_buffer_allocator = StandardCommandBufferAllocator::new(device.clone(), Default::default()); - // Keep the bottom-level acceleration structure alive - // because it is referenced by the top-level acceleration structure. - let ( - top_level_acceleration_structure, - bottom_level_acceleration_structure, - ) = { + let (top_level_acceleration_structure, bottom_level_acceleration_structure) = { #[derive(BufferContents, Vertex)] #[repr(C)] struct Vertex { @@ -579,7 +375,7 @@ fn main() { }, vertices, ) - .unwrap(); + .unwrap(); let bottom_level_acceleration_structure = create_bottom_level_acceleration_structure( &memory_allocator, @@ -605,205 +401,129 @@ fn main() { let descriptor_set = PersistentDescriptorSet::new( &descriptor_set_allocator, pipeline.layout().set_layouts().get(0).unwrap().clone(), - [WriteDescriptorSet::acceleration_structure(0, top_level_acceleration_structure)], + [WriteDescriptorSet::acceleration_structure( + 0, + top_level_acceleration_structure, + )], [], ) - .unwrap(); + .unwrap(); - // Initialization is finally finished! - - // In some situations, the swapchain will become invalid by itself. This includes for example - // when the window is resized (as the images of the swapchain will no longer match the - // window's) or, on Android, when the application went to the background and goes back to the - // foreground. - // - // In this situation, acquiring a swapchain image or presenting it will return an error. - // Rendering to an image of that swapchain will not produce any error, but may or may not work. - // To continue rendering, we need to recreate the swapchain by creating a new swapchain. Here, - // we remember that we need to do this for the next loop iteration. let mut recreate_swapchain = false; - - // In the loop below we are going to submit commands to the GPU. Submitting a command produces - // an object that implements the `GpuFuture` trait, which holds the resources for as long as - // they are in use by the GPU. - // - // Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid - // that, we store the submission of the previous frame here. let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); - event_loop.run(move |event, _, control_flow| { - match event { - Event::WindowEvent { - event: WindowEvent::CloseRequested, - .. - } => { - *control_flow = ControlFlow::Exit; + event_loop.run(move |event, _, control_flow| match event { + Event::WindowEvent { + event: WindowEvent::CloseRequested, + .. + } => { + *control_flow = ControlFlow::Exit; + } + Event::WindowEvent { + event: WindowEvent::Resized(_), + .. + } => { + recreate_swapchain = true; + } + Event::RedrawEventsCleared => { + let image_extent: [u32; 2] = window.inner_size().into(); + + if image_extent.contains(&0) { + return; } - Event::WindowEvent { - event: WindowEvent::Resized(_), - .. - } => { - recreate_swapchain = true; - } - Event::RedrawEventsCleared => { - // Do not draw the frame when the screen size is zero. On Windows, this can - // occur when minimizing the application. - let image_extent: [u32; 2] = window.inner_size().into(); - if image_extent.contains(&0) { - return; - } + previous_frame_end.as_mut().unwrap().cleanup_finished(); - // It is important to call this function from time to time, otherwise resources - // will keep accumulating and you will eventually reach an out of memory error. - // Calling this function polls various fences in order to determine what the GPU - // has already processed, and frees the resources that are no longer needed. - previous_frame_end.as_mut().unwrap().cleanup_finished(); - - // Whenever the window resizes we need to recreate everything dependent on the - // window size. In this example that includes the swapchain, the framebuffers and - // the dynamic state viewport. - if recreate_swapchain { - let (new_swapchain, new_images) = swapchain - .recreate(SwapchainCreateInfo { - image_extent, - ..swapchain.create_info() - }) - .expect("failed to recreate swapchain"); - - swapchain = new_swapchain; - - // Now that we have new swapchain images, we must create new image views from - // them as well. - attachment_image_views = - window_size_dependent_setup(&new_images, &mut viewport); - - recreate_swapchain = false; - } - - // Before we can draw on the output, we have to *acquire* an image from the - // swapchain. If no image is available (which happens if you submit draw commands - // too quickly), then the function will block. This operation returns the index of - // the image that we are allowed to draw upon. - // - // This function can block if no image is available. The parameter is an optional - // timeout after which the function call will return an error. - let (image_index, suboptimal, acquire_future) = - match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) { - Ok(r) => r, - Err(VulkanError::OutOfDate) => { - recreate_swapchain = true; - return; - } - Err(e) => panic!("failed to acquire next image: {e}"), - }; - - // `acquire_next_image` can be successful, but suboptimal. This means that the - // swapchain image will still work, but it may not display correctly. With some - // drivers this can be when the window resizes, but it may not cause the swapchain - // to become out of date. - if suboptimal { - recreate_swapchain = true; - } - - // In order to draw, we have to build a *command buffer*. The command buffer object - // holds the list of commands that are going to be executed. - // - // Building a command buffer is an expensive operation (usually a few hundred - // microseconds), but it is known to be a hot path in the driver and is expected to - // be optimized. - // - // Note that we have to pass a queue family when we create the command buffer. The - // command buffer will only be executable on that given queue family. - let mut builder = AutoCommandBufferBuilder::primary( - &command_buffer_allocator, - queue.queue_family_index(), - CommandBufferUsage::OneTimeSubmit, - ) - .unwrap(); - - builder - // Before we can draw, we have to *enter a render pass*. We specify which - // attachments we are going to use for rendering here, which needs to match - // what was previously specified when creating the pipeline. - .begin_rendering(RenderingInfo { - // As before, we specify one color attachment, but now we specify the image - // view to use as well as how it should be used. - color_attachments: vec![Some(RenderingAttachmentInfo { - // `Store` means that we ask the GPU to store the rendered output in - // the attachment image. We could also ask it to discard the result. - store_op: AttachmentStoreOp::Store, - ..RenderingAttachmentInfo::image_view( - // We specify image view corresponding to the currently acquired - // swapchain image, to use for this attachment. - attachment_image_views[image_index as usize].clone(), - ) - })], - ..Default::default() + if recreate_swapchain { + let (new_swapchain, new_images) = swapchain + .recreate(SwapchainCreateInfo { + image_extent, + ..swapchain.create_info() }) - .unwrap() - // We are now inside the first subpass of the render pass. - // - // TODO: Document state setting and how it affects subsequent draw commands. - .set_viewport(0, [viewport.clone()].into_iter().collect()) - .unwrap() - .bind_pipeline_graphics(pipeline.clone()) - .unwrap() - .bind_vertex_buffers(0, quad_buffer.clone()) - .unwrap() - .bind_descriptor_sets( - PipelineBindPoint::Graphics, - pipeline.layout().clone(), - 0, - descriptor_set.clone(), - ) - .unwrap() - // We add a draw command. - .draw(quad_buffer.len() as u32, 1, 0, 0) - .unwrap() - // We leave the render pass. - .end_rendering() - .unwrap(); + .expect("failed to recreate swapchain"); - // Finish building the command buffer by calling `build`. - let command_buffer = builder.build().unwrap(); + swapchain = new_swapchain; + attachment_image_views = window_size_dependent_setup(&new_images, &mut viewport); + recreate_swapchain = false; + } - let future = previous_frame_end - .take() - .unwrap() - .join(acquire_future) - .then_execute(queue.clone(), command_buffer) - .unwrap() - // The color output is now expected to contain our triangle. But in order to - // show it on the screen, we have to *present* the image by calling - // `then_swapchain_present`. - // - // This function does not actually present the image immediately. Instead it - // submits a present command at the end of the queue. This means that it will - // only be presented once the GPU has finished executing the command buffer - // that draws the triangle. - .then_swapchain_present( - queue.clone(), - SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), - ) - .then_signal_fence_and_flush(); - - match future.map_err(Validated::unwrap) { - Ok(future) => { - previous_frame_end = Some(future.boxed()); - } + let (image_index, suboptimal, acquire_future) = + match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) { + Ok(r) => r, Err(VulkanError::OutOfDate) => { recreate_swapchain = true; - previous_frame_end = Some(sync::now(device.clone()).boxed()); - } - Err(e) => { - println!("failed to flush future: {e}"); - previous_frame_end = Some(sync::now(device.clone()).boxed()); + return; } + Err(e) => panic!("failed to acquire next image: {e}"), + }; + + if suboptimal { + recreate_swapchain = true; + } + + let mut builder = AutoCommandBufferBuilder::primary( + &command_buffer_allocator, + queue.queue_family_index(), + CommandBufferUsage::OneTimeSubmit, + ) + .unwrap(); + builder + .begin_rendering(RenderingInfo { + color_attachments: vec![Some(RenderingAttachmentInfo { + store_op: AttachmentStoreOp::Store, + ..RenderingAttachmentInfo::image_view( + attachment_image_views[image_index as usize].clone(), + ) + })], + ..Default::default() + }) + .unwrap() + .set_viewport(0, [viewport.clone()].into_iter().collect()) + .unwrap() + .bind_pipeline_graphics(pipeline.clone()) + .unwrap() + .bind_vertex_buffers(0, quad_buffer.clone()) + .unwrap() + .bind_descriptor_sets( + PipelineBindPoint::Graphics, + pipeline.layout().clone(), + 0, + descriptor_set.clone(), + ) + .unwrap() + .draw(quad_buffer.len() as u32, 1, 0, 0) + .unwrap() + .end_rendering() + .unwrap(); + let command_buffer = builder.build().unwrap(); + + let future = previous_frame_end + .take() + .unwrap() + .join(acquire_future) + .then_execute(queue.clone(), command_buffer) + .unwrap() + .then_swapchain_present( + queue.clone(), + SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), + ) + .then_signal_fence_and_flush(); + + match future.map_err(Validated::unwrap) { + Ok(future) => { + previous_frame_end = Some(future.boxed()); + } + Err(VulkanError::OutOfDate) => { + recreate_swapchain = true; + previous_frame_end = Some(sync::now(device.clone()).boxed()); + } + Err(e) => { + println!("failed to flush future: {e}"); + previous_frame_end = Some(sync::now(device.clone()).boxed()); } } - _ => (), } + _ => (), }); } @@ -829,15 +549,17 @@ fn create_top_level_acceleration_structure( ) -> Arc { let instances = bottom_level_acceleration_structures .iter() - .map(|&bottom_level_acceleration_structure| - AccelerationStructureInstance { + .map( + |&bottom_level_acceleration_structure| AccelerationStructureInstance { instance_shader_binding_table_record_offset_and_flags: Packed24_8::new( 0, GeometryInstanceFlags::TRIANGLE_FACING_CULL_DISABLE.into(), ), - acceleration_structure_reference: bottom_level_acceleration_structure.device_address().get(), + acceleration_structure_reference: bottom_level_acceleration_structure + .device_address() + .get(), ..Default::default() - } + }, ) .collect::>(); @@ -855,14 +577,15 @@ fn create_top_level_acceleration_structure( }, instances, ) - .unwrap(); + .unwrap(); - let geometries = AccelerationStructureGeometries::Instances(AccelerationStructureGeometryInstancesData { - flags: GeometryFlags::OPAQUE, - ..AccelerationStructureGeometryInstancesData::new( - AccelerationStructureGeometryInstancesDataType::Values(Some(values)) - ) - }); + let geometries = + AccelerationStructureGeometries::Instances(AccelerationStructureGeometryInstancesData { + flags: GeometryFlags::OPAQUE, + ..AccelerationStructureGeometryInstancesData::new( + AccelerationStructureGeometryInstancesDataType::Values(Some(values)), + ) + }); let build_info = AccelerationStructureBuildGeometryInfo { flags: BuildAccelerationStructureFlags::PREFER_FAST_TRACE, @@ -870,14 +593,12 @@ fn create_top_level_acceleration_structure( ..AccelerationStructureBuildGeometryInfo::new(geometries) }; - let build_range_infos = [ - AccelerationStructureBuildRangeInfo { - primitive_count: bottom_level_acceleration_structures.len() as _, - primitive_offset: 0, - first_vertex: 0, - transform_offset: 0, - } - ]; + let build_range_infos = [AccelerationStructureBuildRangeInfo { + primitive_count: bottom_level_acceleration_structures.len() as _, + primitive_offset: 0, + first_vertex: 0, + transform_offset: 0, + }]; build_acceleration_structure( memory_allocator, @@ -906,28 +627,24 @@ fn create_bottom_level_acceleration_structure( for &vertex_buffer in vertex_buffers { let primitive_count = vertex_buffer.len() as u32 / 3; - triangles.push( - AccelerationStructureGeometryTrianglesData { - flags: GeometryFlags::OPAQUE, - vertex_data: Some(vertex_buffer.clone().into_bytes()), - vertex_stride: description.stride, - max_vertex: vertex_buffer.len() as _, - index_data: None, - transform_data: None, - ..AccelerationStructureGeometryTrianglesData::new( - description.members.get("position").unwrap().format - ) - } - ); + triangles.push(AccelerationStructureGeometryTrianglesData { + flags: GeometryFlags::OPAQUE, + vertex_data: Some(vertex_buffer.clone().into_bytes()), + vertex_stride: description.stride, + max_vertex: vertex_buffer.len() as _, + index_data: None, + transform_data: None, + ..AccelerationStructureGeometryTrianglesData::new( + description.members.get("position").unwrap().format, + ) + }); max_primitive_counts.push(primitive_count); - build_range_infos.push( - AccelerationStructureBuildRangeInfo { - primitive_count, - primitive_offset: 0, - first_vertex: 0, - transform_offset: 0, - } - ) + build_range_infos.push(AccelerationStructureBuildRangeInfo { + primitive_count, + primitive_offset: 0, + first_vertex: 0, + transform_offset: 0, + }) } let geometries = AccelerationStructureGeometries::Triangles(triangles); @@ -965,7 +682,7 @@ fn create_acceleration_structure( }, size, ) - .unwrap(); + .unwrap(); unsafe { AccelerationStructure::new( @@ -974,7 +691,8 @@ fn create_acceleration_structure( ty, ..AccelerationStructureCreateInfo::new(buffer) }, - ).unwrap() + ) + .unwrap() } } @@ -994,7 +712,7 @@ fn create_scratch_buffer( }, size, ) - .unwrap() + .unwrap() } fn build_acceleration_structure( @@ -1004,7 +722,7 @@ fn build_acceleration_structure( ty: AccelerationStructureType, mut build_info: AccelerationStructureBuildGeometryInfo, max_primitive_counts: &[u32], - build_range_infos: impl IntoIterator, + build_range_infos: impl IntoIterator, ) -> Arc { let device = memory_allocator.device(); @@ -1012,21 +730,17 @@ fn build_acceleration_structure( acceleration_structure_size, build_scratch_size, .. - } = device.acceleration_structure_build_sizes( - AccelerationStructureBuildType::Device, - &build_info, - max_primitive_counts, - ).unwrap(); + } = device + .acceleration_structure_build_sizes( + AccelerationStructureBuildType::Device, + &build_info, + max_primitive_counts, + ) + .unwrap(); - let acceleration_structure = create_acceleration_structure( - memory_allocator, - ty, - acceleration_structure_size, - ); - let scratch_buffer = create_scratch_buffer( - memory_allocator, - build_scratch_size, - ); + let acceleration_structure = + create_acceleration_structure(memory_allocator, ty, acceleration_structure_size); + let scratch_buffer = create_scratch_buffer(memory_allocator, build_scratch_size); build_info.dst_acceleration_structure = Some(acceleration_structure.clone()); build_info.scratch_data = Some(scratch_buffer); @@ -1036,13 +750,11 @@ fn build_acceleration_structure( queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) - .unwrap(); + .unwrap(); unsafe { - builder.build_acceleration_structure( - build_info, - build_range_infos.into_iter().collect(), - ) + builder + .build_acceleration_structure(build_info, build_range_infos.into_iter().collect()) .unwrap(); } @@ -1056,4 +768,4 @@ fn build_acceleration_structure( .unwrap(); acceleration_structure -} \ No newline at end of file +}