vulkano/examples/multiview/main.rs

437 lines
15 KiB
Rust
Raw Normal View History

// This example demonstrates using the `VK_KHR_multiview` extension to render to multiple layers of
// the framebuffer in one render pass. This can significantly improve performance in cases where
// multiple perspectives or cameras are very similar like in virtual reality or other types of
// stereoscopic rendering where the left and right eye only differ in a small position offset.
use std::{fs::File, io::BufWriter, path::Path, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
command_buffer::{
allocator::StandardCommandBufferAllocator, BufferImageCopy, CommandBufferBeginInfo,
CommandBufferLevel, CommandBufferUsage, CopyImageToBufferInfo, RecordingCommandBuffer,
RenderPassBeginInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features,
QueueCreateInfo, QueueFlags,
},
format::Format,
image::{
view::ImageView, Image, ImageCreateInfo, ImageLayout, ImageSubresourceLayers, ImageType,
ImageUsage, SampleCount,
},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo, InstanceExtensions},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{
AttachmentDescription, AttachmentLoadOp, AttachmentReference, AttachmentStoreOp,
Framebuffer, FramebufferCreateInfo, RenderPass, RenderPassCreateInfo, Subpass,
SubpassDescription,
},
sync::{self, GpuFuture},
VulkanLibrary,
};
fn main() {
let library = VulkanLibrary::new().unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: InstanceExtensions {
// Required to get multiview limits.
khr_get_physical_device_properties2: true,
..InstanceExtensions::empty()
},
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
..DeviceExtensions::empty()
};
let features = Features {
// enabling the `multiview` feature will use the `VK_KHR_multiview` extension on Vulkan 1.0
// and the device feature on Vulkan 1.1+.
multiview: true,
..Features::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter(|p| p.supported_features().contains(&features))
.filter(|p| {
// This example renders to two layers of the framebuffer using the multiview extension
// so we check that at least two views are supported by the device. Not checking this
// on a device that doesn't support two views will lead to a runtime error when
// creating the `RenderPass`. The `max_multiview_view_count` function will return
// `None` when the `VK_KHR_get_physical_device_properties2` instance extension has not
// been enabled.
p.properties().max_multiview_view_count.unwrap_or(0) >= 2
})
.filter_map(|p| {
p.queue_family_properties()
.iter()
.position(|q| q.queue_flags.intersects(QueueFlags::GRAPHICS))
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
// A real application should probably fall back to rendering the framebuffer layers in
// multiple passes when multiview isn't supported.
.expect(
"no device supports two multiview views or the \
`VK_KHR_get_physical_device_properties2` instance extension has not been loaded",
);
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
enabled_extensions: device_extensions,
enabled_features: features,
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
2022-10-26 14:25:01 +00:00
let image = Image::new(
memory_allocator.clone(),
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::B8G8R8A8_SRGB,
extent: [512, 512, 1],
array_layers: 2,
usage: ImageUsage::TRANSFER_SRC | ImageUsage::COLOR_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap();
let image_view = ImageView::new_default(image.clone()).unwrap();
#[derive(BufferContents, Vertex)]
2021-11-24 14:19:57 +00:00
#[repr(C)]
struct Vertex {
Refactor Vertex trait to allow user-defined formats (#2106) * Refactor Vertex trait to not rely on ShaderInterfaceEntryType::to_format and instead rely on Format provided by VertexMember trait. * Add test for impl_vertex macro, remove tuple implementations as they do not implement Pod, minor cleanups to impl_vertex macro. * #[derive(Vertex)] proc-macro implementation with support for format and name attributes. Tests are implemented for both attributes and inferral matching impl_vertex macro * Rename num_elements into num_locations to make purpose clear, add helper function to calculate num_components and check them properly in BufferDefinition's VertexDefinition implementation. * Rename num_locations back to num_elements to make distinction to locations clear. Updated VertexDefinition implementation for BuffersDefinition to support double precision formats exceeding a single location. * Add additional validation for vertex attributes with formats exceeding their location. * Collect unnecessary, using iterator in loop to avoid unnecessary allocations. * Use field type directly and avoid any form of unsafe blocks. * Match shader scalar type directly in GraphicsPipelineBuilder * Rename impl_vertex test to fit macro name * Add VertexMember implementatinos for nalgebra and cgmath (incl matrices). * Add missing copyright headers to new files in proc macro crate * Document derive vertex with field-attribute options on the Vertex trait * Add example for vertex derive approach. * Do not publish internal macros crate as it is re-exported by vulkano itself * Deprecate impl_vertex and VertexMember and update documentation for Vertex accordingly * Make format field-level attribute mandatory for derive vertex * Update all examples to derive Vertex trait instead of impl_vertex macro * Fix doctests by adding missing imports and re-exporting crate self as vulkano to workaround limitations of distinguishing doctests in proc-macros
2022-12-28 10:23:36 +00:00
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
// Note the `#extension GL_EXT_multiview : enable` that enables the multiview extension for the
// shader and the use of `gl_ViewIndex` which contains a value based on which view the shader
// is being invoked for. In this example `gl_ViewIndex` is used to toggle a hardcoded offset
// for vertex positions but in a VR application you could easily use it as an index to a
// uniform array that contains the transformation matrices for the left and right eye.
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
#extension GL_EXT_multiview : enable
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0) + gl_ViewIndex * vec4(0.25, 0.25, 0.0, 0.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}
let render_pass_description = RenderPassCreateInfo {
attachments: vec![AttachmentDescription {
format: image.format(),
samples: SampleCount::Sample1,
load_op: AttachmentLoadOp::Clear,
store_op: AttachmentStoreOp::Store,
initial_layout: ImageLayout::ColorAttachmentOptimal,
final_layout: ImageLayout::ColorAttachmentOptimal,
..Default::default()
}],
subpasses: vec![SubpassDescription {
// The view mask indicates which layers of the framebuffer should be rendered for each
// subpass.
view_mask: 0b11,
color_attachments: vec![Some(AttachmentReference {
attachment: 0,
layout: ImageLayout::ColorAttachmentOptimal,
..Default::default()
})],
..Default::default()
}],
// The correlated view masks indicate sets of views that may be more efficient to render
// concurrently.
correlated_view_masks: vec![0b11],
..Default::default()
};
let render_pass = RenderPass::new(device.clone(), render_pass_description).unwrap();
let framebuffer = Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![image_view],
..Default::default()
},
)
.unwrap();
let pipeline = {
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = Vertex::per_vertex()
.definition(&vs.info().input_interface)
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass, 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState::default()),
viewport_state: Some(ViewportState {
viewports: [Viewport {
offset: [0.0, 0.0],
extent: [image.extent()[0] as f32, image.extent()[1] as f32],
depth_range: 0.0..=1.0,
}]
.into_iter()
.collect(),
..Default::default()
}),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
let create_buffer = || {
Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::TRANSFER_DST,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_HOST
| MemoryTypeFilter::HOST_RANDOM_ACCESS,
..Default::default()
},
(0..image.extent()[0] * image.extent()[1] * 4).map(|_| 0u8),
)
.unwrap()
};
let buffer1 = create_buffer();
let buffer2 = create_buffer();
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator,
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(framebuffer)
},
Default::default(),
)
.unwrap()
.bind_pipeline_graphics(pipeline)
.unwrap()
.bind_vertex_buffers(0, vertex_buffer.clone())
.unwrap();
unsafe {
// Drawing commands are broadcast to each view in the view mask of the active renderpass
// which means only a single draw call is needed to draw to multiple layers of the
// framebuffer.
builder.draw(vertex_buffer.len() as u32, 1, 0, 0).unwrap();
}
builder.end_render_pass(Default::default()).unwrap();
// Copy the image layers to different buffers to save them as individual images to disk.
builder
.copy_image_to_buffer(CopyImageToBufferInfo {
regions: [BufferImageCopy {
image_subresource: ImageSubresourceLayers {
array_layers: 0..1,
..image.subresource_layers()
},
image_extent: image.extent(),
..Default::default()
}]
.into(),
..CopyImageToBufferInfo::image_buffer(image.clone(), buffer1.clone())
})
.unwrap()
.copy_image_to_buffer(CopyImageToBufferInfo {
regions: [BufferImageCopy {
image_subresource: ImageSubresourceLayers {
array_layers: 1..2,
..image.subresource_layers()
},
image_extent: image.extent(),
..Default::default()
}]
.into(),
..CopyImageToBufferInfo::image_buffer(image.clone(), buffer2.clone())
})
.unwrap();
let command_buffer = builder.end().unwrap();
2022-10-26 14:25:01 +00:00
let future = sync::now(device)
.then_execute(queue, command_buffer)
.unwrap()
.then_signal_fence_and_flush()
.unwrap();
future.wait(None).unwrap();
// Write each layer to its own file.
write_image_buffer_to_file(
buffer1,
"multiview1.png",
image.extent()[0],
image.extent()[1],
);
write_image_buffer_to_file(
buffer2,
"multiview2.png",
image.extent()[0],
image.extent()[1],
);
}
fn write_image_buffer_to_file(buffer: Subbuffer<[u8]>, path: &str, width: u32, height: u32) {
let buffer_content = buffer.read().unwrap();
let path = Path::new(env!("CARGO_MANIFEST_DIR")).join(path);
let file = File::create(&path).unwrap();
let w = &mut BufWriter::new(file);
let mut encoder = png::Encoder::new(w, width, height);
2021-09-04 04:21:15 +00:00
encoder.set_color(png::ColorType::Rgba);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&buffer_content).unwrap();
if let Ok(path) = path.canonicalize() {
println!("Saved to {}", path.display());
}
}