vulkano/examples/src/bin/multiview.rs

357 lines
12 KiB
Rust
Raw Normal View History

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
//! This example demonstrates using the `VK_KHR_multiview` extension to render to multiple
//! layers of the framebuffer in one render pass. This can significantly improve performance
//! in cases where multiple perspectives or cameras are very similar like in virtual reality
//! or other types of stereoscopic rendering where the left and right eye only differ
//! in a small position offset.
use std::fs::File;
use std::io::BufWriter;
use std::path::Path;
use std::sync::Arc;
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, TypedBufferAccess};
use vulkano::command_buffer::{AutoCommandBufferBuilder, CommandBufferUsage, SubpassContents};
use vulkano::device::physical::{PhysicalDevice, PhysicalDeviceType};
use vulkano::device::{Device, DeviceCreateInfo, DeviceExtensions, Features, QueueCreateInfo};
use vulkano::format::Format;
use vulkano::image::view::ImageView;
use vulkano::image::{
ImageAccess, ImageCreateFlags, ImageDimensions, ImageLayout, ImageUsage, SampleCount,
StorageImage,
};
use vulkano::instance::{Instance, InstanceCreateInfo, InstanceExtensions};
use vulkano::pipeline::graphics::input_assembly::InputAssemblyState;
use vulkano::pipeline::graphics::vertex_input::BuffersDefinition;
use vulkano::pipeline::graphics::viewport::{Viewport, ViewportState};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::render_pass::{
AttachmentDescription, AttachmentReference, Framebuffer, FramebufferCreateInfo, LoadOp,
RenderPass, RenderPassCreateInfo, StoreOp, Subpass, SubpassDescription,
};
use vulkano::sync::{self, GpuFuture};
fn main() {
let instance = Instance::new(InstanceCreateInfo {
enabled_extensions: InstanceExtensions {
khr_get_physical_device_properties2: true, // required to get multiview limits
..InstanceExtensions::none()
},
..Default::default()
})
.unwrap();
let device_extensions = DeviceExtensions {
..DeviceExtensions::none()
};
let features = Features {
// enabling the `multiview` feature will use the `VK_KHR_multiview` extension on
// Vulkan 1.0 and the device feature on Vulkan 1.1+
multiview: true,
..Features::none()
};
let (physical_device, queue_family) = PhysicalDevice::enumerate(&instance)
.filter(|&p| {
p.supported_extensions().is_superset_of(&device_extensions)
})
.filter(|&p| {
p.supported_features().is_superset_of(&features)
})
.filter(|&p| {
// This example renders to two layers of the framebuffer using the multiview
// extension so we check that at least two views are supported by the device.
// Not checking this on a device that doesn't support two views
// will lead to a runtime error when creating the `RenderPass`.
// The `max_multiview_view_count` function will return `None` when the
// `VK_KHR_get_physical_device_properties2` instance extension has not been enabled.
p.properties().max_multiview_view_count.unwrap_or(0) >= 2
})
.filter_map(|p| {
p.queue_families()
.find(|&q| q.supports_graphics())
.map(|q| (p, q))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
})
// A real application should probably fall back to rendering the framebuffer layers
// in multiple passes when multiview isn't supported.
.expect("No device supports two multiview views or the VK_KHR_get_physical_device_properties2 instance extension has not been loaded");
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: physical_device
.required_extensions()
.union(&device_extensions),
enabled_features: features,
queue_create_infos: vec![QueueCreateInfo::family(queue_family)],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let image = StorageImage::with_usage(
device.clone(),
ImageDimensions::Dim2d {
width: 512,
height: 512,
array_layers: 2,
},
Format::B8G8R8A8_SRGB,
ImageUsage {
transfer_source: true,
color_attachment: true,
..ImageUsage::none()
},
ImageCreateFlags::none(),
Some(queue_family),
)
.unwrap();
let image_view = ImageView::new_default(image.clone()).unwrap();
2021-11-24 14:19:57 +00:00
#[repr(C)]
#[derive(Default, Debug, Clone)]
struct Vertex {
position: [f32; 2],
}
vulkano::impl_vertex!(Vertex, position);
let vertex_buffer = CpuAccessibleBuffer::from_iter(
device.clone(),
BufferUsage::all(),
false,
[
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
]
.iter()
.cloned(),
)
.unwrap();
// Note the `#extension GL_EXT_multiview : enable` that enables the multiview extension
// for the shader and the use of `gl_ViewIndex` which contains a value based on which
// view the shader is being invoked for.
// In this example `gl_ViewIndex` is used toggle a hardcoded offset for vertex positions
// but in a VR application you could easily use it as an index to a uniform array
// that contains the transformation matrices for the left and right eye.
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
#extension GL_EXT_multiview : enable
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0) + gl_ViewIndex * vec4(0.25, 0.25, 0.0, 0.0);
}
"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
"
}
}
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
let render_pass_description = RenderPassCreateInfo {
attachments: vec![AttachmentDescription {
format: Some(image.format()),
samples: SampleCount::Sample1,
load_op: LoadOp::Clear,
store_op: StoreOp::Store,
stencil_load_op: LoadOp::Clear,
stencil_store_op: StoreOp::Store,
initial_layout: ImageLayout::ColorAttachmentOptimal,
final_layout: ImageLayout::ColorAttachmentOptimal,
..Default::default()
}],
subpasses: vec![SubpassDescription {
// the view mask indicates which layers of the framebuffer should be rendered for each
// subpass
view_mask: 0b11,
color_attachments: vec![Some(AttachmentReference {
attachment: 0,
layout: ImageLayout::ColorAttachmentOptimal,
..Default::default()
})],
..Default::default()
}],
// the correlated view masks indicate sets of views that may be more efficient to render
// concurrently
correlated_view_masks: vec![0b11],
..Default::default()
};
let render_pass = RenderPass::new(device.clone(), render_pass_description).unwrap();
let framebuffer = Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![image_view],
..Default::default()
},
)
.unwrap();
let pipeline = GraphicsPipeline::start()
.vertex_input_state(BuffersDefinition::new().vertex::<Vertex>())
.vertex_shader(vs.entry_point("main").unwrap(), ())
.input_assembly_state(InputAssemblyState::new())
.viewport_state(ViewportState::viewport_fixed_scissor_irrelevant([
Viewport {
origin: [0.0, 0.0],
dimensions: [
image.dimensions().width() as f32,
image.dimensions().height() as f32,
],
depth_range: 0.0..1.0,
},
]))
.fragment_shader(fs.entry_point("main").unwrap(), ())
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap();
let clear_values = vec![[0.0, 0.0, 1.0, 1.0].into()];
let create_buffer = || {
CpuAccessibleBuffer::from_iter(
device.clone(),
BufferUsage::all(),
false,
(0..image.dimensions().width() * image.dimensions().height() * 4).map(|_| 0u8),
)
.unwrap()
};
let buffer1 = create_buffer();
let buffer2 = create_buffer();
let mut builder = AutoCommandBufferBuilder::primary(
device.clone(),
queue_family,
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
// drawing commands are broadcast to each view in the view mask of the active renderpass
// which means only a single draw call is needed to draw to multiple layers of the framebuffer
builder
.begin_render_pass(framebuffer.clone(), SubpassContents::Inline, clear_values)
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.bind_vertex_buffers(0, vertex_buffer.clone())
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
// copy the image layers to different buffers to save them as individual images to disk
builder
.copy_image_to_buffer_dimensions(
image.clone(),
buffer1.clone(),
[0, 0, 0],
image.dimensions().width_height_depth(),
0,
1,
0,
)
.unwrap()
.copy_image_to_buffer_dimensions(
image.clone(),
buffer2.clone(),
[0, 0, 0],
image.dimensions().width_height_depth(),
1,
1,
0,
)
.unwrap();
let command_buffer = builder.build().unwrap();
let future = sync::now(device.clone())
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_signal_fence_and_flush()
.unwrap();
future.wait(None).unwrap();
// write each layer to its own file
write_image_buffer_to_file(
buffer1,
"multiview1.png",
image.dimensions().width(),
image.dimensions().height(),
);
write_image_buffer_to_file(
buffer2,
"multiview2.png",
image.dimensions().width(),
image.dimensions().height(),
);
}
fn write_image_buffer_to_file(
buffer: Arc<CpuAccessibleBuffer<[u8]>>,
path: &str,
width: u32,
height: u32,
) {
let buffer_content = buffer.read().unwrap();
let path = Path::new(path);
let file = File::create(path).unwrap();
let ref mut w = BufWriter::new(file);
let mut encoder = png::Encoder::new(w, width, height);
2021-09-04 04:21:15 +00:00
encoder.set_color(png::ColorType::Rgba);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&buffer_content).unwrap();
}