vulkano/examples/src/bin/image-self-copy-blit/main.rs

581 lines
20 KiB
Rust
Raw Normal View History

// Copyright (c) 2021 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
use std::{io::Cursor, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, BlitImageInfo,
BufferImageCopy, ClearColorImageInfo, CommandBufferUsage, CopyBufferToImageInfo,
CopyImageInfo, ImageBlit, ImageCopy, PrimaryCommandBufferAbstract, RenderPassBeginInfo,
SubpassContents,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
format::Format,
image::{
view::ImageView, ImageAccess, ImageDimensions, ImageLayout, ImageUsage, StorageImage,
SwapchainImage,
},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryUsage, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::ColorBlendState,
input_assembly::{InputAssemblyState, PrimitiveTopology},
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
sampler::{Filter, Sampler, SamplerAddressMode, SamplerCreateInfo},
swapchain::{
acquire_next_image, AcquireError, Surface, Swapchain, SwapchainCreateInfo,
SwapchainPresentInfo,
},
sync::{self, FlushError, GpuFuture},
VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
fn main() {
// The start of this example is exactly the same as `triangle`. You should read the `triangle`
// example if you haven't done so yet.
let event_loop = EventLoop::new();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop);
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = Some(
device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0,
);
Swapchain::new(
device.clone(),
2023-05-12 18:26:49 +00:00
surface,
SwapchainCreateInfo {
// Some drivers report `min_image_count=1` but fullscreen mode requires at least 2.
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
2022-10-26 14:25:01 +00:00
let memory_allocator = StandardMemoryAllocator::new_default(device.clone());
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct Vertex {
Refactor Vertex trait to allow user-defined formats (#2106) * Refactor Vertex trait to not rely on ShaderInterfaceEntryType::to_format and instead rely on Format provided by VertexMember trait. * Add test for impl_vertex macro, remove tuple implementations as they do not implement Pod, minor cleanups to impl_vertex macro. * #[derive(Vertex)] proc-macro implementation with support for format and name attributes. Tests are implemented for both attributes and inferral matching impl_vertex macro * Rename num_elements into num_locations to make purpose clear, add helper function to calculate num_components and check them properly in BufferDefinition's VertexDefinition implementation. * Rename num_locations back to num_elements to make distinction to locations clear. Updated VertexDefinition implementation for BuffersDefinition to support double precision formats exceeding a single location. * Add additional validation for vertex attributes with formats exceeding their location. * Collect unnecessary, using iterator in loop to avoid unnecessary allocations. * Use field type directly and avoid any form of unsafe blocks. * Match shader scalar type directly in GraphicsPipelineBuilder * Rename impl_vertex test to fit macro name * Add VertexMember implementatinos for nalgebra and cgmath (incl matrices). * Add missing copyright headers to new files in proc macro crate * Document derive vertex with field-attribute options on the Vertex trait * Add example for vertex derive approach. * Do not publish internal macros crate as it is re-exported by vulkano itself * Deprecate impl_vertex and VertexMember and update documentation for Vertex accordingly * Make format field-level attribute mandatory for derive vertex * Update all examples to derive Vertex trait instead of impl_vertex macro * Fix doctests by adding missing imports and re-exporting crate self as vulkano to workaround limitations of distinguishing doctests in proc-macros
2022-12-28 10:23:36 +00:00
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.5],
},
Vertex {
position: [-0.5, 0.5],
},
Vertex {
position: [0.5, -0.5],
},
Vertex {
position: [0.5, 0.5],
},
];
let vertex_buffer = Buffer::from_iter(
2022-10-26 14:25:01 +00:00
&memory_allocator,
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
usage: MemoryUsage::Upload,
..Default::default()
},
vertices,
)
.unwrap();
let render_pass = vulkano::single_pass_renderpass!(device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
let descriptor_set_allocator = StandardDescriptorSetAllocator::new(device.clone());
let command_buffer_allocator =
StandardCommandBufferAllocator::new(device.clone(), Default::default());
let mut uploads = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
let texture = {
let png_bytes = include_bytes!("image_img.png").to_vec();
let cursor = Cursor::new(png_bytes);
let decoder = png::Decoder::new(cursor);
let mut reader = decoder.read_info().unwrap();
let info = reader.info();
let img_size = [info.width, info.height];
let dimensions = ImageDimensions::Dim2d {
width: info.width * 2,
height: info.height * 2,
array_layers: 1,
};
let mut image_data = Vec::new();
image_data.resize((info.width * info.height * 4) as usize, 0);
reader.next_frame(&mut image_data).unwrap();
let image = StorageImage::new(
2022-10-26 14:25:01 +00:00
&memory_allocator,
dimensions,
Format::R8G8B8A8_UNORM,
[queue.queue_family_index()],
)
.unwrap();
let buffer = Buffer::from_iter(
2022-10-26 14:25:01 +00:00
&memory_allocator,
BufferCreateInfo {
usage: BufferUsage::TRANSFER_SRC,
..Default::default()
},
AllocationCreateInfo {
usage: MemoryUsage::Upload,
..Default::default()
},
image_data,
)
.unwrap();
// Here, we perform image copying and blitting on the same image.
uploads
// Clear the image buffer.
.clear_color_image(ClearColorImageInfo::image(image.clone()))
.unwrap()
// Put our image in the top left corner.
.copy_buffer_to_image(CopyBufferToImageInfo {
regions: [BufferImageCopy {
image_subresource: image.subresource_layers(),
image_extent: [img_size[0], img_size[1], 1],
..Default::default()
}]
.into(),
..CopyBufferToImageInfo::buffer_image(buffer, image.clone())
})
.unwrap()
// Copy from the top left corner to the bottom right corner.
.copy_image(CopyImageInfo {
// Copying within the same image requires the General layout if the source and
// destination subresources overlap.
src_image_layout: ImageLayout::General,
dst_image_layout: ImageLayout::General,
regions: [ImageCopy {
src_subresource: image.subresource_layers(),
src_offset: [0, 0, 0],
dst_subresource: image.subresource_layers(),
dst_offset: [img_size[0], img_size[1], 0],
extent: [img_size[0], img_size[1], 1],
..Default::default()
}]
.into(),
..CopyImageInfo::images(image.clone(), image.clone())
})
.unwrap()
// Blit from the bottom right corner to the top right corner (flipped).
.blit_image(BlitImageInfo {
// Same as above applies for blitting.
src_image_layout: ImageLayout::General,
dst_image_layout: ImageLayout::General,
regions: [ImageBlit {
src_subresource: image.subresource_layers(),
src_offsets: [
[img_size[0], img_size[1], 0],
[img_size[0] * 2, img_size[1] * 2, 1],
],
dst_subresource: image.subresource_layers(),
// Swapping the two corners results in flipped image.
dst_offsets: [
[img_size[0] * 2 - 1, img_size[1] - 1, 0],
[img_size[0], 0, 1],
],
..Default::default()
}]
.into(),
filter: Filter::Nearest,
..BlitImageInfo::images(image.clone(), image.clone())
})
.unwrap();
ImageView::new_default(image).unwrap()
};
let sampler = Sampler::new(
device.clone(),
SamplerCreateInfo {
mag_filter: Filter::Linear,
min_filter: Filter::Linear,
address_mode: [SamplerAddressMode::Repeat; 3],
..Default::default()
},
)
.unwrap();
let pipeline = {
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = Vertex::per_vertex()
.definition(&vs.info().input_interface)
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(
InputAssemblyState::new().topology(PrimitiveTopology::TriangleStrip),
),
viewport_state: Some(ViewportState::viewport_dynamic_scissor_irrelevant()),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(
ColorBlendState::new(subpass.num_color_attachments()).blend_alpha(),
),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let layout = pipeline.layout().set_layouts().get(0).unwrap();
let set = PersistentDescriptorSet::new(
&descriptor_set_allocator,
layout.clone(),
[WriteDescriptorSet::image_view_sampler(0, texture, sampler)],
[],
)
.unwrap();
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(
uploads
.build()
.unwrap()
.execute(queue.clone())
.unwrap()
.boxed(),
);
event_loop.run(move |event, _, control_flow| match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::RedrawEventsCleared => {
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
swapchain = new_swapchain;
framebuffers =
window_size_dependent_setup(&new_images, render_pass.clone(), &mut viewport);
recreate_swapchain = false;
}
2022-09-24 06:45:06 +00:00
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
2022-09-24 06:45:06 +00:00
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
SubpassContents::Inline,
)
.unwrap()
.set_viewport(0, [viewport.clone()].into_iter().collect())
.bind_pipeline_graphics(pipeline.clone())
.bind_descriptor_sets(
PipelineBindPoint::Graphics,
pipeline.layout().clone(),
0,
set.clone(),
)
.bind_vertex_buffers(0, vertex_buffer.clone())
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
2022-09-24 06:45:06 +00:00
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
});
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let dimensions = images[0].dimensions().width_height();
viewport.extent = [dimensions[0] as f32, dimensions[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
tex_coords = position + vec2(0.5);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 0) uniform sampler2D tex;
void main() {
f_color = texture(tex, tex_coords);
}
",
}
}