vulkano/examples/gl-interop/main.rs

854 lines
32 KiB
Rust
Raw Normal View History

fn main() -> Result<(), winit::error::EventLoopError> {
#[cfg(target_os = "linux")]
{
linux::main()
}
#[cfg(not(target_os = "linux"))]
{
Ok(println!("Not Implemented"))
}
}
// TODO: Can this be demonstrated for other platforms as well?
#[cfg(target_os = "linux")]
mod linux {
use glium::glutin::{self, platform::unix::HeadlessContextExt};
use std::{
sync::{Arc, Barrier},
time::Instant,
};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder,
CommandBufferUsage, RenderPassBeginInfo, SemaphoreSubmitInfo, SubmitInfo,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Queue,
QueueCreateInfo, QueueFlags,
},
format::Format,
image::{
sampler::{Filter, Sampler, SamplerAddressMode, SamplerCreateInfo},
sys::RawImage,
view::ImageView,
Image, ImageCreateFlags, ImageCreateInfo, ImageType, ImageUsage,
},
instance::{
debug::{
DebugUtilsMessenger, DebugUtilsMessengerCallback, DebugUtilsMessengerCreateInfo,
},
Instance, InstanceCreateFlags, InstanceCreateInfo, InstanceExtensions,
},
memory::{
allocator::{
AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter, StandardMemoryAllocator,
},
DedicatedAllocation, DeviceMemory, ExternalMemoryHandleType, ExternalMemoryHandleTypes,
MemoryAllocateInfo, ResourceMemory,
},
pipeline::{
graphics::{
color_blend::{AttachmentBlend, ColorBlendAttachmentState, ColorBlendState},
input_assembly::{InputAssemblyState, PrimitiveTopology},
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{
self,
semaphore::{
ExternalSemaphoreHandleType, ExternalSemaphoreHandleTypes, Semaphore,
SemaphoreCreateInfo,
},
GpuFuture,
},
Validated, VulkanError, VulkanLibrary,
};
use winit::{
application::ApplicationHandler,
error::EventLoopError,
event::WindowEvent,
event_loop::{ActiveEventLoop, EventLoop},
window::{Window, WindowId},
};
pub fn main() -> Result<(), EventLoopError> {
let event_loop = EventLoop::new().unwrap();
let mut app = App::new(&event_loop);
event_loop.run_app(&mut app)
}
struct App {
instance: Arc<Instance>,
device: Arc<Device>,
queue: Arc<Queue>,
descriptor_set_allocator: Arc<StandardDescriptorSetAllocator>,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
vertex_buffer: Subbuffer<[MyVertex]>,
image_view: Arc<ImageView>,
sampler: Arc<Sampler>,
barrier: Arc<Barrier>,
barrier_2: Arc<Barrier>,
acquire_sem: Arc<Semaphore>,
release_sem: Arc<Semaphore>,
rcx: Option<RenderContext>,
}
struct RenderContext {
window: Arc<Window>,
swapchain: Arc<Swapchain>,
render_pass: Arc<RenderPass>,
framebuffers: Vec<Arc<Framebuffer>>,
pipeline: Arc<GraphicsPipeline>,
viewport: Viewport,
descriptor_set: Arc<DescriptorSet>,
recreate_swapchain: bool,
previous_frame_end: Option<Box<dyn GpuFuture>>,
}
impl App {
fn new(event_loop: &EventLoop<()>) -> Self {
let event_loop_gl = winit_glium::event_loop::EventLoop::new();
// For some reason, this must be created before the vulkan window
let hrb = glutin::ContextBuilder::new()
.with_gl_debug_flag(true)
.with_gl(glutin::GlRequest::Latest)
.build_surfaceless(&event_loop_gl)
.unwrap();
let hrb_vk = glutin::ContextBuilder::new()
.with_gl_debug_flag(true)
.with_gl(glutin::GlRequest::Latest)
.build_surfaceless(&event_loop_gl)
.unwrap();
// Used for checking device and driver UUIDs.
let display = glium::HeadlessRenderer::with_debug(
hrb_vk,
glium::debug::DebugCallbackBehavior::PrintAll,
)
.unwrap();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: InstanceExtensions {
khr_get_physical_device_properties2: true,
khr_external_memory_capabilities: true,
khr_external_semaphore_capabilities: true,
khr_external_fence_capabilities: true,
ext_debug_utils: true,
..required_extensions
},
..Default::default()
},
)
.unwrap();
let _debug_callback = unsafe {
DebugUtilsMessenger::new(
instance.clone(),
DebugUtilsMessengerCreateInfo::user_callback(DebugUtilsMessengerCallback::new(
|message_severity, message_type, callback_data| {
println!(
"{} {:?} {:?}: {}",
callback_data.message_id_name.unwrap_or("unknown"),
message_type,
message_severity,
callback_data.message,
);
},
)),
)
}
.unwrap();
let device_extensions = DeviceExtensions {
khr_external_semaphore: true,
khr_external_semaphore_fd: true,
khr_external_memory: true,
khr_external_memory_fd: true,
khr_external_fence: true,
khr_external_fence_fd: true,
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.presentation_support(i as u32, event_loop).unwrap()
})
.map(|i| (p, i as u32))
})
.filter(|(p, _)| {
p.properties().driver_uuid.unwrap() == display.driver_uuid().unwrap()
})
.filter(|(p, _)| {
display
.device_uuids()
.unwrap()
.contains(&p.properties().device_uuid.unwrap())
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
device.clone(),
Default::default(),
));
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
let vertices = [
MyVertex {
position: [-0.5, -0.5],
},
MyVertex {
position: [-0.5, 0.5],
},
MyVertex {
position: [0.5, -0.5],
},
MyVertex {
position: [0.5, 0.5],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
let raw_image = RawImage::new(
device.clone(),
ImageCreateInfo {
flags: ImageCreateFlags::MUTABLE_FORMAT,
image_type: ImageType::Dim2d,
format: Format::R16G16B16A16_UNORM,
extent: [200, 200, 1],
usage: ImageUsage::TRANSFER_SRC
| ImageUsage::TRANSFER_DST
| ImageUsage::SAMPLED,
external_memory_handle_types: ExternalMemoryHandleTypes::OPAQUE_FD,
..Default::default()
},
)
.unwrap();
let image_requirements = raw_image.memory_requirements()[0];
let image_memory = DeviceMemory::allocate(
device.clone(),
MemoryAllocateInfo {
allocation_size: image_requirements.layout.size(),
memory_type_index: memory_allocator
.find_memory_type_index(
image_requirements.memory_type_bits,
MemoryTypeFilter::PREFER_DEVICE,
)
.unwrap(),
dedicated_allocation: Some(DedicatedAllocation::Image(&raw_image)),
export_handle_types: ExternalMemoryHandleTypes::OPAQUE_FD,
..Default::default()
},
)
.unwrap();
let allocation_size = image_memory.allocation_size();
let image_fd = image_memory
.export_fd(ExternalMemoryHandleType::OpaqueFd)
.unwrap();
// SAFETY: we just created this raw image and hasn't bound any memory to it.
let image = Arc::new(
unsafe { raw_image.bind_memory([ResourceMemory::new_dedicated(image_memory)]) }
.map_err(|(err, _, _)| err)
.unwrap(),
);
let image_view = ImageView::new_default(image).unwrap();
let sampler = Sampler::new(
device.clone(),
SamplerCreateInfo {
mag_filter: Filter::Linear,
min_filter: Filter::Linear,
address_mode: [SamplerAddressMode::Repeat; 3],
..Default::default()
},
)
.unwrap();
let barrier = Arc::new(Barrier::new(2));
let barrier_2 = Arc::new(Barrier::new(2));
let acquire_sem = Arc::new(
Semaphore::new(
device.clone(),
SemaphoreCreateInfo {
export_handle_types: ExternalSemaphoreHandleTypes::OPAQUE_FD,
..Default::default()
},
)
.unwrap(),
);
let release_sem = Arc::new(
Semaphore::new(
device.clone(),
SemaphoreCreateInfo {
export_handle_types: ExternalSemaphoreHandleTypes::OPAQUE_FD,
..Default::default()
},
)
.unwrap(),
);
let acquire_fd =
unsafe { acquire_sem.export_fd(ExternalSemaphoreHandleType::OpaqueFd) }.unwrap();
let release_fd =
unsafe { release_sem.export_fd(ExternalSemaphoreHandleType::OpaqueFd) }.unwrap();
let barrier_clone = barrier.clone();
let barrier_2_clone = barrier_2.clone();
build_display(hrb, move |gl_display| {
let gl_tex = unsafe {
glium::texture::Texture2d::new_from_fd(
gl_display.as_ref(),
glium::texture::UncompressedFloatFormat::U16U16U16U16,
glium::texture::MipmapsOption::NoMipmap,
glium::texture::Dimensions::Texture2d {
width: 200,
height: 200,
},
glium::texture::ImportParameters {
dedicated_memory: true,
size: allocation_size,
offset: 0,
tiling: glium::texture::ExternalTilingMode::Optimal,
},
image_fd,
)
}
.unwrap();
let gl_acquire_sem = unsafe {
glium::semaphore::Semaphore::new_from_fd(gl_display.as_ref(), acquire_fd)
}
.unwrap();
let gl_release_sem = unsafe {
glium::semaphore::Semaphore::new_from_fd(gl_display.as_ref(), release_fd)
}
.unwrap();
let rotation_start = Instant::now();
loop {
barrier_clone.wait();
gl_acquire_sem.wait_textures(Some(&[(
&gl_tex,
glium::semaphore::TextureLayout::General,
)]));
gl_display.get_context().flush();
let elapsed = rotation_start.elapsed();
let rotation = elapsed.as_nanos() as f64 / 2_000_000_000.0;
use glium::Surface;
{
let mut fb = gl_tex.as_surface();
fb.clear_color(
0.0,
(((rotation as f32).sin() + 1.) / 2.).powf(2.2),
0.0,
1.0,
);
}
gl_release_sem.signal_textures(Some(&[(
&gl_tex,
glium::semaphore::TextureLayout::General,
)]));
barrier_2_clone.wait();
gl_display.get_context().finish();
gl_display.get_context().assert_no_error(Some("err"));
}
});
App {
instance,
device,
queue,
descriptor_set_allocator,
command_buffer_allocator,
vertex_buffer,
sampler,
image_view,
barrier,
barrier_2,
acquire_sem,
release_sem,
rcx: None,
}
}
}
impl ApplicationHandler for App {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
let window = Arc::new(
event_loop
.create_window(Window::default_attributes())
.unwrap(),
);
let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap();
let window_size = window.inner_size();
let (swapchain, images) = {
let surface_capabilities = self
.device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let (image_format, _) = self
.device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0];
Swapchain::new(
self.device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window_size.into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let render_pass = vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
let framebuffers = window_size_dependent_setup(&images, &render_pass);
let pipeline = {
let vs = vs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
self.device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(self.device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
self.device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState {
topology: PrimitiveTopology::TriangleStrip,
..Default::default()
}),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState {
blend: Some(AttachmentBlend::alpha()),
..Default::default()
},
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let viewport = Viewport {
offset: [0.0, 0.0],
extent: window_size.into(),
depth_range: 0.0..=1.0,
};
let layout = &pipeline.layout().set_layouts()[0];
let descriptor_set = DescriptorSet::new(
self.descriptor_set_allocator.clone(),
layout.clone(),
[
WriteDescriptorSet::sampler(0, self.sampler.clone()),
WriteDescriptorSet::image_view(1, self.image_view.clone()),
],
[],
)
.unwrap();
let previous_frame_end = Some(sync::now(self.device.clone()).boxed());
self.rcx = Some(RenderContext {
window,
swapchain,
render_pass,
framebuffers,
pipeline,
viewport,
descriptor_set,
recreate_swapchain: false,
previous_frame_end,
});
}
fn window_event(
&mut self,
event_loop: &ActiveEventLoop,
_window_id: WindowId,
event: WindowEvent,
) {
let rcx = self.rcx.as_mut().unwrap();
match event {
WindowEvent::CloseRequested => {
event_loop.exit();
}
WindowEvent::Resized(_) => {
rcx.recreate_swapchain = true;
}
WindowEvent::RedrawRequested => {
self.queue
.with(|mut q| unsafe {
q.submit(
&[SubmitInfo {
signal_semaphores: vec![SemaphoreSubmitInfo::new(
self.acquire_sem.clone(),
)],
..Default::default()
}],
None,
)
})
.unwrap();
self.barrier.wait();
self.barrier_2.wait();
self.queue
.with(|mut q| unsafe {
q.submit(
&[SubmitInfo {
wait_semaphores: vec![SemaphoreSubmitInfo::new(
self.release_sem.clone(),
)],
..Default::default()
}],
None,
)
})
.unwrap();
let window_size = rcx.window.inner_size();
if window_size.width == 0 || window_size.height == 0 {
return;
}
rcx.previous_frame_end.as_mut().unwrap().cleanup_finished();
if rcx.recreate_swapchain {
let (new_swapchain, new_images) = rcx
.swapchain
.recreate(SwapchainCreateInfo {
image_extent: window_size.into(),
..rcx.swapchain.create_info()
})
.expect("failed to recreate swapchain");
rcx.swapchain = new_swapchain;
rcx.framebuffers =
window_size_dependent_setup(&new_images, &rcx.render_pass);
rcx.viewport.extent = window_size.into();
rcx.recreate_swapchain = false;
}
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(rcx.swapchain.clone(), None)
.map_err(Validated::unwrap)
{
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
rcx.recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
rcx.recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
self.command_buffer_allocator.clone(),
self.queue.queue_family_index(),
2024-10-18 18:00:21 +00:00
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
2022-09-24 06:45:06 +00:00
..RenderPassBeginInfo::framebuffer(
rcx.framebuffers[image_index as usize].clone(),
2022-09-24 06:45:06 +00:00
)
},
Default::default(),
)
.unwrap()
.set_viewport(0, [rcx.viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(rcx.pipeline.clone())
.unwrap()
.bind_descriptor_sets(
PipelineBindPoint::Graphics,
rcx.pipeline.layout().clone(),
0,
rcx.descriptor_set.clone(),
)
.unwrap()
.bind_vertex_buffers(0, self.vertex_buffer.clone())
.unwrap();
unsafe { builder.draw(self.vertex_buffer.len() as u32, 1, 0, 0) }.unwrap();
builder.end_render_pass(Default::default()).unwrap();
let command_buffer = builder.build().unwrap();
let future = rcx
.previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
self.queue.clone(),
2022-09-24 06:45:06 +00:00
SwapchainPresentInfo::swapchain_image_index(
rcx.swapchain.clone(),
2022-09-24 06:45:06 +00:00
image_index,
),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
future.wait(None).unwrap();
rcx.previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
rcx.recreate_swapchain = true;
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
}
};
}
_ => {}
}
}
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
let rcx = self.rcx.as_mut().unwrap();
rcx.window.request_redraw();
}
}
#[derive(BufferContents, Vertex)]
#[repr(C)]
Refactor Vertex trait to allow user-defined formats (#2106) * Refactor Vertex trait to not rely on ShaderInterfaceEntryType::to_format and instead rely on Format provided by VertexMember trait. * Add test for impl_vertex macro, remove tuple implementations as they do not implement Pod, minor cleanups to impl_vertex macro. * #[derive(Vertex)] proc-macro implementation with support for format and name attributes. Tests are implemented for both attributes and inferral matching impl_vertex macro * Rename num_elements into num_locations to make purpose clear, add helper function to calculate num_components and check them properly in BufferDefinition's VertexDefinition implementation. * Rename num_locations back to num_elements to make distinction to locations clear. Updated VertexDefinition implementation for BuffersDefinition to support double precision formats exceeding a single location. * Add additional validation for vertex attributes with formats exceeding their location. * Collect unnecessary, using iterator in loop to avoid unnecessary allocations. * Use field type directly and avoid any form of unsafe blocks. * Match shader scalar type directly in GraphicsPipelineBuilder * Rename impl_vertex test to fit macro name * Add VertexMember implementatinos for nalgebra and cgmath (incl matrices). * Add missing copyright headers to new files in proc macro crate * Document derive vertex with field-attribute options on the Vertex trait * Add example for vertex derive approach. * Do not publish internal macros crate as it is re-exported by vulkano itself * Deprecate impl_vertex and VertexMember and update documentation for Vertex accordingly * Make format field-level attribute mandatory for derive vertex * Update all examples to derive Vertex trait instead of impl_vertex macro * Fix doctests by adding missing imports and re-exporting crate self as vulkano to workaround limitations of distinguishing doctests in proc-macros
2022-12-28 10:23:36 +00:00
struct MyVertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
fn build_display<F>(ctx: glutin::Context<glutin::NotCurrent>, f: F)
where
F: FnOnce(Box<dyn glium::backend::Facade>),
F: Send + 'static,
{
std::thread::spawn(move || {
let display = Box::new(
glium::HeadlessRenderer::with_debug(
ctx,
glium::debug::DebugCallbackBehavior::PrintAll,
)
.unwrap(),
);
f(display);
});
}
fn window_size_dependent_setup(
images: &[Arc<Image>],
render_pass: &Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
tex_coords = position + vec2(0.5);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 0) uniform sampler s;
layout(set = 0, binding = 1) uniform texture2D tex;
void main() {
f_color = texture(sampler2D(tex, s), tex_coords);
}
",
}
}
}