vulkano/examples/self-copy-buffer/main.rs

215 lines
6.8 KiB
Rust
Raw Normal View History

// This example is a copy of `basic-compute-shaders.rs`, but initalizes half of the input buffer
// and then we use `copy_buffer_dimensions` to copy the first half of the input buffer to the
// second half.
use std::sync::Arc;
use vulkano::{
buffer::{Buffer, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, BufferCopy,
CommandBufferUsage, CopyBufferInfoTyped,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
compute::ComputePipelineCreateInfo, layout::PipelineDescriptorSetLayoutCreateInfo,
ComputePipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
sync::{self, GpuFuture},
VulkanLibrary,
};
fn main() {
let library = VulkanLibrary::new().unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
khr_storage_buffer_storage_class: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.position(|q| q.queue_flags.intersects(QueueFlags::COMPUTE))
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let pipeline = {
mod cs {
vulkano_shaders::shader! {
ty: "compute",
src: r"
#version 450
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout(set = 0, binding = 0) buffer Data {
uint data[];
};
void main() {
uint idx = gl_GlobalInvocationID.x;
data[idx] *= 12;
}
",
}
}
let cs = cs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let stage = PipelineShaderStageCreateInfo::new(cs);
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
ComputePipeline::new(
device.clone(),
None,
ComputePipelineCreateInfo::stage_layout(stage, layout),
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
device.clone(),
Default::default(),
));
let command_buffer_allocator =
StandardCommandBufferAllocator::new(device.clone(), Default::default());
let data_buffer = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::STORAGE_BUFFER
| BufferUsage::TRANSFER_SRC
| BufferUsage::TRANSFER_DST,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_RANDOM_ACCESS,
..Default::default()
},
// We intitialize half of the array and leave the other half at 0, we will use the copy
// command later to fill it.
(0..65536u32).map(|n| if n < 65536 / 2 { n } else { 0 }),
)
.unwrap();
let layout = pipeline.layout().set_layouts().get(0).unwrap();
let set = PersistentDescriptorSet::new(
descriptor_set_allocator,
layout.clone(),
[WriteDescriptorSet::buffer(0, data_buffer.clone())],
[],
)
.unwrap();
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
// Copy from the first half to the second half (inside the same buffer) before we run the
// computation.
.copy_buffer(CopyBufferInfoTyped {
regions: [BufferCopy {
src_offset: 0,
dst_offset: 65536 / 2,
size: 65536 / 2,
..Default::default()
}]
.into(),
..CopyBufferInfoTyped::buffers(data_buffer.clone(), data_buffer.clone())
})
.unwrap()
.bind_pipeline_compute(pipeline.clone())
.unwrap()
.bind_descriptor_sets(
PipelineBindPoint::Compute,
pipeline.layout().clone(),
0,
set,
)
.unwrap()
.dispatch([1024, 1, 1])
.unwrap();
let command_buffer = builder.build().unwrap();
let future = sync::now(device)
.then_execute(queue, command_buffer)
.unwrap()
.then_signal_fence_and_flush()
.unwrap();
future.wait(None).unwrap();
let data_buffer_content = data_buffer.read().unwrap();
// Here we have the same data in the two halfs of the buffer.
for n in 0..65536 / 2 {
// The two halfs should have the same data.
assert_eq!(data_buffer_content[n as usize], n * 12);
assert_eq!(data_buffer_content[n as usize + 65536 / 2], n * 12);
}
println!("Success");
}