vulkano/examples/deferred/frame/system.rs

580 lines
23 KiB
Rust
Raw Normal View History

use super::{
ambient_lighting_system::AmbientLightingSystem,
directional_lighting_system::DirectionalLightingSystem,
point_lighting_system::PointLightingSystem,
};
use cgmath::{Matrix4, SquareMatrix, Vector3};
use std::sync::Arc;
use vulkano::{
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferUsage, PrimaryAutoCommandBuffer,
RecordingCommandBuffer, RenderPassBeginInfo, SecondaryAutoCommandBuffer, SubpassBeginInfo,
SubpassContents,
},
descriptor_set::allocator::StandardDescriptorSetAllocator,
device::Queue,
format::Format,
image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage},
memory::allocator::{AllocationCreateInfo, StandardMemoryAllocator},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
sync::GpuFuture,
};
/// System that contains the necessary facilities for rendering a single frame.
pub struct FrameSystem {
// Queue to use to render everything.
gfx_queue: Arc<Queue>,
// Render pass used for the drawing. See the `new` method for the actual render pass content.
// We need to keep it in `FrameSystem` because we may want to recreate the intermediate buffers
// in of a change in the dimensions.
render_pass: Arc<RenderPass>,
2022-10-26 14:25:01 +00:00
memory_allocator: Arc<StandardMemoryAllocator>,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
// Intermediate render target that will contain the albedo of each pixel of the scene.
diffuse_buffer: Arc<ImageView>,
// Intermediate render target that will contain the normal vector in world coordinates of each
// pixel of the scene.
// The normal vector is the vector perpendicular to the surface of the object at this point.
normals_buffer: Arc<ImageView>,
// Intermediate render target that will contain the depth of each pixel of the scene.
// This is a traditional depth buffer. `0.0` means "near", and `1.0` means "far".
depth_buffer: Arc<ImageView>,
// Will allow us to add an ambient lighting to a scene during the second subpass.
ambient_lighting_system: AmbientLightingSystem,
// Will allow us to add a directional light to a scene during the second subpass.
directional_lighting_system: DirectionalLightingSystem,
// Will allow us to add a spot light source to a scene during the second subpass.
point_lighting_system: PointLightingSystem,
}
impl FrameSystem {
/// Initializes the frame system.
///
/// Should be called at initialization, as it can take some time to build.
///
/// - `gfx_queue` is the queue that will be used to perform the main rendering.
/// - `final_output_format` is the format of the image that will later be passed to the
/// `frame()` method. We need to know that in advance. If that format ever changes, we have
/// to create a new `FrameSystem`.
pub fn new(
gfx_queue: Arc<Queue>,
final_output_format: Format,
2022-10-26 14:25:01 +00:00
memory_allocator: Arc<StandardMemoryAllocator>,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
) -> FrameSystem {
// Creating the render pass.
//
// The render pass has two subpasses. In the first subpass, we draw all the objects of the
// scene. Note that it is not the `FrameSystem` that is responsible for the drawing,
// instead it only provides an API that allows the user to do so.
//
// The drawing of the objects will write to the `diffuse`, `normals` and `depth`
// attachments.
//
// Then in the second subpass, we read these three attachments as input attachments and
// draw to `final_color`. Each draw operation performed in this second subpass has its
// value added to `final_color` and not replaced, thanks to blending.
//
// > **Warning**: If the red, green or blue component of the final image goes over `1.0`
// > then it will be clamped. For example a pixel of `[2.0, 1.0, 1.0]` (which is red) will
// > be clamped to `[1.0, 1.0, 1.0]` (which is white) instead of being converted to
// > `[1.0, 0.5, 0.5]` as desired. In a real-life application you want to use an additional
// > intermediate image with a floating-point format, then perform additional passes to
// > convert all the colors in the correct range. These techniques are known as HDR and
// > tone mapping.
//
// Input attachments are a special kind of way to read images. You can only read from them
// from a fragment shader, and you can only read the pixel corresponding to the pixel
// currently being processed by the fragment shader. If you want to read from attachments
// but can't deal with these restrictions, then you should create multiple render passes
// instead.
let render_pass = vulkano::ordered_passes_renderpass!(
gfx_queue.device().clone(),
attachments: {
// The image that will contain the final rendering (in this example the swapchain
// image, but it could be another image).
final_color: {
format: final_output_format,
samples: 1,
load_op: Clear,
store_op: Store,
},
// Will be bound to `self.diffuse_buffer`.
diffuse: {
format: Format::A2B10G10R10_UNORM_PACK32,
samples: 1,
load_op: Clear,
store_op: DontCare,
},
// Will be bound to `self.normals_buffer`.
normals: {
format: Format::R16G16B16A16_SFLOAT,
samples: 1,
load_op: Clear,
store_op: DontCare,
},
// Will be bound to `self.depth_buffer`.
depth_stencil: {
format: Format::D16_UNORM,
samples: 1,
load_op: Clear,
store_op: DontCare,
},
},
passes: [
// Write to the diffuse, normals and depth attachments.
{
color: [diffuse, normals],
depth_stencil: {depth_stencil},
input: [],
},
// Apply lighting by reading these three attachments and writing to `final_color`.
{
color: [final_color],
depth_stencil: {},
input: [diffuse, normals, depth_stencil],
},
],
)
.unwrap();
// For now we create three temporary images with a dimension of 1 by 1 pixel. These images
// will be replaced the first time we call `frame()`.
let diffuse_buffer = ImageView::new_default(
Image::new(
memory_allocator.clone(),
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::A2B10G10R10_UNORM_PACK32,
extent: [1, 1, 1],
usage: ImageUsage::COLOR_ATTACHMENT
| ImageUsage::TRANSIENT_ATTACHMENT
| ImageUsage::INPUT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
let normals_buffer = ImageView::new_default(
Image::new(
memory_allocator.clone(),
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::R16G16B16A16_SFLOAT,
extent: [1, 1, 1],
usage: ImageUsage::TRANSIENT_ATTACHMENT | ImageUsage::INPUT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
let depth_buffer = ImageView::new_default(
Image::new(
memory_allocator.clone(),
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::D16_UNORM,
extent: [1, 1, 1],
usage: ImageUsage::TRANSIENT_ATTACHMENT | ImageUsage::INPUT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
gfx_queue.device().clone(),
Default::default(),
));
// Initialize the three lighting systems. Note that we need to pass to them the subpass
// where they will be executed.
let lighting_subpass = Subpass::from(render_pass.clone(), 1).unwrap();
let ambient_lighting_system = AmbientLightingSystem::new(
gfx_queue.clone(),
lighting_subpass.clone(),
memory_allocator.clone(),
command_buffer_allocator.clone(),
descriptor_set_allocator.clone(),
);
let directional_lighting_system = DirectionalLightingSystem::new(
gfx_queue.clone(),
lighting_subpass.clone(),
memory_allocator.clone(),
command_buffer_allocator.clone(),
descriptor_set_allocator.clone(),
);
let point_lighting_system = PointLightingSystem::new(
gfx_queue.clone(),
lighting_subpass,
memory_allocator.clone(),
command_buffer_allocator.clone(),
descriptor_set_allocator,
);
FrameSystem {
gfx_queue,
render_pass,
2022-10-26 14:25:01 +00:00
memory_allocator,
command_buffer_allocator,
diffuse_buffer,
normals_buffer,
depth_buffer,
ambient_lighting_system,
directional_lighting_system,
point_lighting_system,
}
}
/// Returns the subpass of the render pass where the rendering should write info to gbuffers.
///
/// Has two outputs: the diffuse color (3 components) and the normals in world coordinates
/// (3 components). Also has a depth attachment.
///
/// This method is necessary in order to initialize the pipelines that will draw the objects
/// of the scene.
#[inline]
pub fn deferred_subpass(&self) -> Subpass {
Subpass::from(self.render_pass.clone(), 0).unwrap()
}
/// Starts drawing a new frame.
///
/// - `before_future` is the future after which the main rendering should be executed.
/// - `final_image` is the image we are going to draw to.
/// - `world_to_framebuffer` is the matrix that will be used to convert from 3D coordinates in
/// the world into 2D coordinates on the framebuffer.
pub fn frame<F>(
&mut self,
before_future: F,
final_image_view: Arc<ImageView>,
world_to_framebuffer: Matrix4<f32>,
) -> Frame
where
F: GpuFuture + 'static,
{
// First of all we recreate `self.diffuse_buffer`, `self.normals_buffer` and
// `self.depth_buffer` if their extent doesn't match the extent of the final image.
let extent = final_image_view.image().extent();
if self.diffuse_buffer.image().extent() != extent {
// Note that we create "transient" images here. This means that the content of the
// image is only defined when within a render pass. In other words you can draw to
// them in a subpass then read them in another subpass, but as soon as you leave the
// render pass their content becomes undefined.
self.diffuse_buffer = ImageView::new_default(
Image::new(
self.memory_allocator.clone(),
ImageCreateInfo {
extent,
format: Format::A2B10G10R10_UNORM_PACK32,
usage: ImageUsage::COLOR_ATTACHMENT
| ImageUsage::TRANSIENT_ATTACHMENT
| ImageUsage::INPUT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
self.normals_buffer = ImageView::new_default(
Image::new(
self.memory_allocator.clone(),
ImageCreateInfo {
extent,
format: Format::R16G16B16A16_SFLOAT,
usage: ImageUsage::COLOR_ATTACHMENT
| ImageUsage::TRANSIENT_ATTACHMENT
| ImageUsage::INPUT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
self.depth_buffer = ImageView::new_default(
Image::new(
self.memory_allocator.clone(),
ImageCreateInfo {
extent,
format: Format::D16_UNORM,
usage: ImageUsage::DEPTH_STENCIL_ATTACHMENT
| ImageUsage::TRANSIENT_ATTACHMENT
| ImageUsage::INPUT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
}
// Build the framebuffer. The image must be attached in the same order as they were defined
// with the `ordered_passes_renderpass!` macro.
let framebuffer = Framebuffer::new(
self.render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![
final_image_view,
self.diffuse_buffer.clone(),
self.normals_buffer.clone(),
self.depth_buffer.clone(),
],
..Default::default()
},
)
.unwrap();
// Start the command buffer builder that will be filled throughout the frame handling.
let mut command_buffer_builder = RecordingCommandBuffer::primary(
self.command_buffer_allocator.clone(),
self.gfx_queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
command_buffer_builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![
Some([0.0, 0.0, 0.0, 0.0].into()),
Some([0.0, 0.0, 0.0, 0.0].into()),
Some([0.0, 0.0, 0.0, 0.0].into()),
Some(1.0f32.into()),
],
..RenderPassBeginInfo::framebuffer(framebuffer.clone())
},
SubpassBeginInfo {
contents: SubpassContents::SecondaryCommandBuffers,
..Default::default()
},
)
.unwrap();
Frame {
system: self,
before_main_cb_future: Some(Box::new(before_future)),
framebuffer,
num_pass: 0,
command_buffer_builder: Some(command_buffer_builder),
world_to_framebuffer,
}
}
}
/// Represents the active process of rendering a frame.
///
/// This struct mutably borrows the `FrameSystem`.
pub struct Frame<'a> {
// The `FrameSystem`.
system: &'a mut FrameSystem,
// The active pass we are in. This keeps track of the step we are in.
// - If `num_pass` is 0, then we haven't start anything yet.
// - If `num_pass` is 1, then we have finished drawing all the objects of the scene.
// - If `num_pass` is 2, then we have finished applying lighting.
// - Otherwise the frame is finished.
// In a more complex application you can have dozens of passes, in which case you probably
// don't want to document them all here.
num_pass: u8,
// Future to wait upon before the main rendering.
2019-07-02 08:25:58 +00:00
before_main_cb_future: Option<Box<dyn GpuFuture>>,
// Framebuffer that was used when starting the render pass.
framebuffer: Arc<Framebuffer>,
// The command buffer builder that will be built during the lifetime of this object.
command_buffer_builder: Option<RecordingCommandBuffer<PrimaryAutoCommandBuffer>>,
// Matrix that was passed to `frame()`.
world_to_framebuffer: Matrix4<f32>,
}
impl<'a> Frame<'a> {
/// Returns an enumeration containing the next pass of the rendering.
pub fn next_pass<'f>(&'f mut self) -> Option<Pass<'f, 'a>> {
// This function reads `num_pass` increments its value, and returns a struct corresponding
// to that pass that the user will be able to manipulate in order to customize the pass.
match {
let current_pass = self.num_pass;
self.num_pass += 1;
current_pass
} {
0 => {
// If we are in the pass 0 then we haven't start anything yet.
// We already called `begin_render_pass` (in the `frame()` method), and that's the
// state we are in.
// We return an object that will allow the user to draw objects on the scene.
Some(Pass::Deferred(DrawPass { frame: self }))
}
1 => {
// If we are in pass 1 then we have finished drawing the objects on the scene.
// Going to the next subpass.
self.command_buffer_builder
.as_mut()
.unwrap()
.next_subpass(
Default::default(),
SubpassBeginInfo {
contents: SubpassContents::SecondaryCommandBuffers,
..Default::default()
},
)
.unwrap();
// And returning an object that will allow the user to apply lighting to the scene.
Some(Pass::Lighting(LightingPass { frame: self }))
}
2 => {
// If we are in pass 2 then we have finished applying lighting.
// We take the builder, call `end_render_pass()`, and then `build()` it to obtain
// an actual command buffer.
self.command_buffer_builder
.as_mut()
.unwrap()
.end_render_pass(Default::default())
.unwrap();
let command_buffer = self.command_buffer_builder.take().unwrap().end().unwrap();
// Extract `before_main_cb_future` and append the command buffer execution to it.
let after_main_cb = self
.before_main_cb_future
.take()
.unwrap()
.then_execute(self.system.gfx_queue.clone(), command_buffer)
.unwrap();
// We obtain `after_main_cb`, which we give to the user.
Some(Pass::Finished(Box::new(after_main_cb)))
}
// If the pass is over 2 then the frame is in the finished state and can't do anything
// more.
_ => None,
}
}
}
/// Struct provided to the user that allows them to customize or handle the pass.
pub enum Pass<'f, 's: 'f> {
/// We are in the pass where we draw objects on the scene. The `DrawPass` allows the user to
/// draw the objects.
Deferred(DrawPass<'f, 's>),
/// We are in the pass where we add lighting to the scene. The `LightingPass` allows the user
/// to add light sources.
Lighting(LightingPass<'f, 's>),
/// The frame has been fully prepared, and here is the future that will perform the drawing
/// on the image.
2019-07-02 08:25:58 +00:00
Finished(Box<dyn GpuFuture>),
}
/// Allows the user to draw objects on the scene.
pub struct DrawPass<'f, 's: 'f> {
frame: &'f mut Frame<'s>,
}
impl<'f, 's: 'f> DrawPass<'f, 's> {
/// Appends a command that executes a secondary command buffer that performs drawing.
pub fn execute(&mut self, command_buffer: Arc<SecondaryAutoCommandBuffer>) {
self.frame
.command_buffer_builder
.as_mut()
.unwrap()
.execute_commands(command_buffer)
.unwrap();
}
/// Returns the dimensions in pixels of the viewport.
pub fn viewport_dimensions(&self) -> [u32; 2] {
self.frame.framebuffer.extent()
}
/// Returns the 4x4 matrix that turns world coordinates into 2D coordinates on the framebuffer.
#[allow(dead_code)]
pub fn world_to_framebuffer_matrix(&self) -> Matrix4<f32> {
self.frame.world_to_framebuffer
}
}
/// Allows the user to apply lighting on the scene.
pub struct LightingPass<'f, 's: 'f> {
frame: &'f mut Frame<'s>,
}
impl<'f, 's: 'f> LightingPass<'f, 's> {
/// Applies an ambient lighting to the scene.
///
/// All the objects will be colored with an intensity of `color`.
pub fn ambient_light(&mut self, color: [f32; 3]) {
let command_buffer = self.frame.system.ambient_lighting_system.draw(
self.frame.framebuffer.extent(),
self.frame.system.diffuse_buffer.clone(),
color,
);
self.frame
.command_buffer_builder
.as_mut()
.unwrap()
.execute_commands(command_buffer)
.unwrap();
}
/// Applies an directional lighting to the scene.
///
/// All the objects will be colored with an intensity varying between `[0, 0, 0]` and `color`,
/// depending on the dot product of their normal and `direction`.
pub fn directional_light(&mut self, direction: Vector3<f32>, color: [f32; 3]) {
let command_buffer = self.frame.system.directional_lighting_system.draw(
self.frame.framebuffer.extent(),
self.frame.system.diffuse_buffer.clone(),
self.frame.system.normals_buffer.clone(),
direction,
color,
);
self.frame
.command_buffer_builder
.as_mut()
.unwrap()
.execute_commands(command_buffer)
.unwrap();
}
/// Applies a spot lighting to the scene.
///
/// All the objects will be colored with an intensity varying between `[0, 0, 0]` and `color`,
/// depending on their distance with `position`. Objects that aren't facing `position` won't
/// receive any light.
pub fn point_light(&mut self, position: Vector3<f32>, color: [f32; 3]) {
let command_buffer = {
self.frame.system.point_lighting_system.draw(
self.frame.framebuffer.extent(),
self.frame.system.diffuse_buffer.clone(),
self.frame.system.normals_buffer.clone(),
self.frame.system.depth_buffer.clone(),
self.frame.world_to_framebuffer.invert().unwrap(),
position,
color,
)
};
self.frame
.command_buffer_builder
.as_mut()
.unwrap()
.execute_commands(command_buffer)
.unwrap();
}
}