vulkano/examples/tessellation/main.rs

619 lines
21 KiB
Rust
Raw Normal View History

2018-08-24 16:32:39 +00:00
// Some relevant documentation:
//
// - Tessellation overview https://www.khronos.org/opengl/wiki/Tessellation
// - Tessellation Control Shader https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
// - Tessellation Evaluation Shader https://www.khronos.org/opengl/wiki/Tessellation_Evaluation_Shader
// - Tessellation real-world usage 1 http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html
// - Tessellation real-world usage 2 https://prideout.net/blog/?p=48
2018-08-24 16:32:39 +00:00
// Notable elements of this example:
//
// - Usage of a tessellation control shader and a tessellation evaluation shader.
// - `tessellation_shaders` and `tessellation_state` are called on the pipeline builder.
// - The use of `PrimitiveTopology::PatchList`.
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
2024-10-18 18:00:21 +00:00
RenderPassBeginInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures,
Queue, QueueCreateInfo, QueueFlags,
},
image::{view::ImageView, Image, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::{InputAssemblyState, PrimitiveTopology},
multisample::MultisampleState,
rasterization::{PolygonMode, RasterizationState},
tessellation::TessellationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, VulkanError, VulkanLibrary,
};
use winit::{
application::ApplicationHandler,
event::WindowEvent,
event_loop::{ActiveEventLoop, EventLoop},
window::{Window, WindowId},
};
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let mut app = App::new(&event_loop);
event_loop.run_app(&mut app)
}
struct App {
instance: Arc<Instance>,
device: Arc<Device>,
queue: Arc<Queue>,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
vertex_buffer: Subbuffer<[MyVertex]>,
rcx: Option<RenderContext>,
}
struct RenderContext {
window: Arc<Window>,
swapchain: Arc<Swapchain>,
render_pass: Arc<RenderPass>,
framebuffers: Vec<Arc<Framebuffer>>,
pipeline: Arc<GraphicsPipeline>,
viewport: Viewport,
recreate_swapchain: bool,
previous_frame_end: Option<Box<dyn GpuFuture>>,
}
impl App {
fn new(event_loop: &EventLoop<()>) -> Self {
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let device_features = DeviceFeatures {
tessellation_shader: true,
fill_mode_non_solid: true,
..DeviceFeatures::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter(|p| p.supported_features().contains(&device_features))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.presentation_support(i as u32, event_loop).unwrap()
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
enabled_extensions: device_extensions,
enabled_features: device_features,
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
2022-10-26 14:25:01 +00:00
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
let vertices = [
MyVertex {
position: [-0.5, -0.25],
},
MyVertex {
position: [0.0, 0.5],
},
MyVertex {
position: [0.25, -0.1],
},
MyVertex {
position: [0.9, 0.9],
},
MyVertex {
position: [0.9, 0.8],
},
MyVertex {
position: [0.8, 0.8],
},
MyVertex {
position: [-0.9, 0.9],
},
MyVertex {
position: [-0.7, 0.6],
},
MyVertex {
position: [-0.5, 0.9],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
App {
instance,
device,
queue,
command_buffer_allocator,
vertex_buffer,
rcx: None,
}
}
}
impl ApplicationHandler for App {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
let window = Arc::new(
event_loop
.create_window(Window::default_attributes())
.unwrap(),
);
let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap();
let window_size = window.inner_size();
let (swapchain, images) = {
let surface_capabilities = self
.device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let (image_format, _) = self
.device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0];
Swapchain::new(
self.device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let render_pass = vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
let framebuffers = window_size_dependent_setup(&images, &render_pass);
let pipeline = {
let vs = vs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let tcs = tcs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let tes = tes::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(tcs),
PipelineShaderStageCreateInfo::new(tes),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
self.device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(self.device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
self.device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState {
topology: PrimitiveTopology::PatchList,
..Default::default()
}),
tessellation_state: Some(TessellationState {
// Use a patch_control_points of 3, because we want to convert one
// *triangle* into lots of little ones. A value of 4 would convert a
// *rectangle* into lots of little triangles.
patch_control_points: 3,
..Default::default()
}),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState {
polygon_mode: PolygonMode::Line,
..Default::default()
}),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let viewport = Viewport {
offset: [0.0, 0.0],
extent: window_size.into(),
depth_range: 0.0..=1.0,
};
let previous_frame_end = Some(sync::now(self.device.clone()).boxed());
self.rcx = Some(RenderContext {
window,
swapchain,
render_pass,
framebuffers,
pipeline,
viewport,
recreate_swapchain: false,
previous_frame_end,
});
}
fn window_event(
&mut self,
event_loop: &ActiveEventLoop,
_window_id: WindowId,
event: WindowEvent,
) {
let rcx = self.rcx.as_mut().unwrap();
match event {
WindowEvent::CloseRequested => {
event_loop.exit();
}
WindowEvent::Resized(_) => {
rcx.recreate_swapchain = true;
}
WindowEvent::RedrawRequested => {
let window_size = rcx.window.inner_size();
if window_size.width == 0 || window_size.height == 0 {
return;
}
rcx.previous_frame_end.as_mut().unwrap().cleanup_finished();
if rcx.recreate_swapchain {
let (new_swapchain, new_images) = rcx
.swapchain
.recreate(SwapchainCreateInfo {
image_extent: window_size.into(),
..rcx.swapchain.create_info()
})
.expect("failed to recreate swapchain");
rcx.swapchain = new_swapchain;
rcx.framebuffers = window_size_dependent_setup(&new_images, &rcx.render_pass);
rcx.viewport.extent = window_size.into();
rcx.recreate_swapchain = false;
}
let (image_index, suboptimal, acquire_future) = match acquire_next_image(
rcx.swapchain.clone(),
None,
)
.map_err(Validated::unwrap)
{
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
rcx.recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
rcx.recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
self.command_buffer_allocator.clone(),
self.queue.queue_family_index(),
2024-10-18 18:00:21 +00:00
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 0.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(
rcx.framebuffers[image_index as usize].clone(),
)
},
Default::default(),
)
.unwrap()
.set_viewport(0, [rcx.viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(rcx.pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, self.vertex_buffer.clone())
.unwrap();
unsafe {
builder
.draw(self.vertex_buffer.len() as u32, 1, 0, 0)
.unwrap();
}
builder.end_render_pass(Default::default()).unwrap();
let command_buffer = builder.build().unwrap();
let future = rcx
.previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
self.queue.clone(),
SwapchainPresentInfo::swapchain_image_index(
rcx.swapchain.clone(),
image_index,
),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
rcx.previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
rcx.recreate_swapchain = true;
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
}
}
}
_ => {}
}
}
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
let rcx = self.rcx.as_mut().unwrap();
rcx.window.request_redraw();
}
}
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct MyVertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
images: &[Arc<Image>],
render_pass: &Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod tcs {
vulkano_shaders::shader! {
ty: "tess_ctrl",
src: r"
#version 450
// A value of 3 means a patch consists of a single triangle.
layout(vertices = 3) out;
void main(void) {
// Save the position of the patch, so the TES can access it. We could define our
// own output variables for this, but `gl_out` is handily provided.
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
// Many triangles are generated in the center.
gl_TessLevelInner[0] = 10;
// No triangles are generated for this edge.
gl_TessLevelOuter[0] = 1;
// Many triangles are generated for this edge.
gl_TessLevelOuter[1] = 10;
// Many triangles are generated for this edge.
gl_TessLevelOuter[2] = 10;
// These are only used when TES uses `layout(quads)`.
// gl_TessLevelInner[1] = ...;
// gl_TessLevelOuter[3] = ...;
}
",
}
}
// There is a stage in between TCS and TES called Primitive Generation (PG). Shaders cannot be
// defined for it. It takes `gl_TessLevelInner` and `gl_TessLevelOuter` and uses them to generate
// positions within the patch and pass them to TES via `gl_TessCoord`.
//
// When TES uses `layout(triangles)` then `gl_TessCoord` is in Barycentric coordinates. If
// `layout(quads)` is used then `gl_TessCoord` is in Cartesian coordinates. Barycentric coordinates
// are of the form (x, y, z) where x + y + z = 1 and the values x, y and z represent the distance
// from a vertex of the triangle.
// https://mathworld.wolfram.com/BarycentricCoordinates.html
mod tes {
vulkano_shaders::shader! {
ty: "tess_eval",
src: r"
#version 450
layout(triangles, equal_spacing, cw) in;
void main(void) {
// Retrieve the vertex positions set by the TCS.
vec4 v1 = gl_in[0].gl_Position;
vec4 v2 = gl_in[1].gl_Position;
vec4 v3 = gl_in[2].gl_Position;
// Convert `gl_TessCoord` from Barycentric coordinates to Cartesian coordinates.
gl_Position = vec4(
gl_TessCoord.x * v1.x + gl_TessCoord.y * v2.x + gl_TessCoord.z * v3.x,
gl_TessCoord.x * v1.y + gl_TessCoord.y * v2.y + gl_TessCoord.z * v3.y,
gl_TessCoord.x * v1.z + gl_TessCoord.y * v2.z + gl_TessCoord.z * v3.z,
1.0
);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 1.0, 1.0, 1.0);
}
",
}
}