vulkano/examples/src/bin/teapot/main.rs

377 lines
14 KiB
Rust
Raw Normal View History

2016-03-26 09:17:37 +00:00
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
2016-03-26 09:17:37 +00:00
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
use cgmath::{Matrix3, Matrix4, Point3, Rad, Vector3};
use examples::{Normal, Vertex, INDICES, NORMALS, VERTICES};
use std::sync::Arc;
use std::time::Instant;
use vulkano::buffer::cpu_pool::CpuBufferPool;
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, TypedBufferAccess};
use vulkano::command_buffer::{AutoCommandBufferBuilder, CommandBufferUsage, SubpassContents};
use vulkano::descriptor_set::{PersistentDescriptorSet, WriteDescriptorSet};
use vulkano::device::physical::{PhysicalDevice, PhysicalDeviceType};
use vulkano::device::{Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo};
use vulkano::format::Format;
use vulkano::image::attachment::AttachmentImage;
use vulkano::image::view::ImageView;
use vulkano::image::{ImageAccess, ImageUsage, SwapchainImage};
use vulkano::instance::{Instance, InstanceCreateInfo};
use vulkano::pipeline::graphics::depth_stencil::DepthStencilState;
use vulkano::pipeline::graphics::input_assembly::InputAssemblyState;
use vulkano::pipeline::graphics::vertex_input::BuffersDefinition;
use vulkano::pipeline::graphics::viewport::{Viewport, ViewportState};
use vulkano::pipeline::{GraphicsPipeline, Pipeline, PipelineBindPoint};
use vulkano::render_pass::{Framebuffer, RenderPass, Subpass};
use vulkano::shader::ShaderModule;
use vulkano::swapchain::{self, AcquireError, Swapchain, SwapchainCreationError};
use vulkano::sync::{self, FlushError, GpuFuture};
use vulkano_win::VkSurfaceBuild;
use winit::event::{Event, WindowEvent};
use winit::event_loop::{ControlFlow, EventLoop};
use winit::window::{Window, WindowBuilder};
2016-02-20 09:55:51 +00:00
fn main() {
// The start of this example is exactly the same as `triangle`. You should read the
// `triangle` example if you haven't done so yet.
let required_extensions = vulkano_win::required_extensions();
let instance = Instance::new(InstanceCreateInfo {
enabled_extensions: required_extensions,
..Default::default()
})
.unwrap();
2016-02-20 09:55:51 +00:00
let event_loop = EventLoop::new();
let surface = WindowBuilder::new()
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
2016-02-20 09:55:51 +00:00
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::none()
};
let (physical_device, queue_family) = PhysicalDevice::enumerate(&instance)
.filter(|&p| p.supported_extensions().is_superset_of(&device_extensions))
.filter_map(|p| {
p.queue_families()
.find(|&q| q.supports_graphics() && surface.is_supported(q).unwrap_or(false))
.map(|q| (p, q))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
2016-02-20 09:55:51 +00:00
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: physical_device
.required_extensions()
.union(&device_extensions),
queue_create_infos: vec![QueueCreateInfo::family(queue_family)],
..Default::default()
},
)
.unwrap();
2016-03-10 06:47:45 +00:00
let queue = queues.next().unwrap();
let dimensions: [u32; 2] = surface.window().inner_size().into();
2016-02-20 09:55:51 +00:00
let (mut swapchain, images) = {
let caps = surface.capabilities(physical_device).unwrap();
let format = caps.supported_formats[0].0;
let composite_alpha = caps.supported_composite_alpha.iter().next().unwrap();
let dimensions: [u32; 2] = surface.window().inner_size().into();
Swapchain::start(device.clone(), surface.clone())
.num_images(caps.min_image_count)
.format(format)
.dimensions(dimensions)
.usage(ImageUsage::color_attachment())
.sharing_mode(&queue)
.composite_alpha(composite_alpha)
.build()
.unwrap()
2016-02-20 09:55:51 +00:00
};
let vertices = VERTICES.iter().cloned();
let vertex_buffer =
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), false, vertices)
.unwrap();
2016-02-20 09:55:51 +00:00
let normals = NORMALS.iter().cloned();
let normals_buffer =
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), false, normals).unwrap();
2016-02-20 09:55:51 +00:00
let indices = INDICES.iter().cloned();
let index_buffer =
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), false, indices).unwrap();
2016-02-21 07:50:15 +00:00
let uniform_buffer = CpuBufferPool::<vs::ty::Data>::new(device.clone(), BufferUsage::all());
2016-02-20 13:40:50 +00:00
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
2016-02-20 09:55:51 +00:00
let render_pass = vulkano::single_pass_renderpass!(device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
},
depth: {
load: Clear,
store: DontCare,
format: Format::D16_UNORM,
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {depth}
}
)
.unwrap();
let (mut pipeline, mut framebuffers) =
window_size_dependent_setup(device.clone(), &vs, &fs, &images, render_pass.clone());
let mut recreate_swapchain = false;
2016-02-20 12:05:44 +00:00
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let rotation_start = Instant::now();
2016-09-11 12:11:45 +00:00
event_loop.run(move |event, _, control_flow| {
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::RedrawEventsCleared => {
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let dimensions: [u32; 2] = surface.window().inner_size().into();
let (new_swapchain, new_images) =
match swapchain.recreate().dimensions(dimensions).build() {
Ok(r) => r,
Err(SwapchainCreationError::UnsupportedDimensions) => return,
Err(e) => panic!("Failed to recreate swapchain: {:?}", e),
};
swapchain = new_swapchain;
let (new_pipeline, new_framebuffers) = window_size_dependent_setup(
device.clone(),
&vs,
&fs,
&new_images,
render_pass.clone(),
);
pipeline = new_pipeline;
framebuffers = new_framebuffers;
recreate_swapchain = false;
}
2016-02-20 09:55:51 +00:00
let uniform_buffer_subbuffer = {
let elapsed = rotation_start.elapsed();
let rotation =
elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0;
let rotation = Matrix3::from_angle_y(Rad(rotation as f32));
// note: this teapot was meant for OpenGL where the origin is at the lower left
// instead the origin is at the upper left in Vulkan, so we reverse the Y axis
let aspect_ratio = dimensions[0] as f32 / dimensions[1] as f32;
let proj = cgmath::perspective(
Rad(std::f32::consts::FRAC_PI_2),
aspect_ratio,
0.01,
100.0,
);
2021-02-05 19:35:24 +00:00
let view = Matrix4::look_at_rh(
Point3::new(0.3, 0.3, 1.0),
Point3::new(0.0, 0.0, 0.0),
Vector3::new(0.0, -1.0, 0.0),
);
let scale = Matrix4::from_scale(0.01);
let uniform_data = vs::ty::Data {
world: Matrix4::from(rotation).into(),
view: (view * scale).into(),
proj: proj.into(),
};
uniform_buffer.next(uniform_data).unwrap()
};
let layout = pipeline.layout().descriptor_set_layouts().get(0).unwrap();
let set = PersistentDescriptorSet::new(
layout.clone(),
[WriteDescriptorSet::buffer(0, uniform_buffer_subbuffer)],
)
.unwrap();
let (image_num, suboptimal, acquire_future) =
match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("Failed to acquire next image: {:?}", e),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
device.clone(),
queue.family(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
framebuffers[image_num].clone(),
SubpassContents::Inline,
vec![[0.0, 0.0, 1.0, 1.0].into(), 1f32.into()],
)
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.bind_descriptor_sets(
PipelineBindPoint::Graphics,
pipeline.layout().clone(),
0,
set.clone(),
)
.bind_vertex_buffers(0, (vertex_buffer.clone(), normals_buffer.clone()))
.bind_index_buffer(index_buffer.clone())
.draw_indexed(index_buffer.len() as u32, 1, 0, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("Failed to flush future: {:?}", e);
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
}
});
2016-02-20 09:55:51 +00:00
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
device: Arc<Device>,
vs: &ShaderModule,
fs: &ShaderModule,
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<RenderPass>,
) -> (Arc<GraphicsPipeline>, Vec<Arc<Framebuffer>>) {
let dimensions = images[0].dimensions().width_height();
let depth_buffer = ImageView::new(
AttachmentImage::transient(device.clone(), dimensions, Format::D16_UNORM).unwrap(),
)
.unwrap();
let framebuffers = images
.iter()
.map(|image| {
let view = ImageView::new(image.clone()).unwrap();
Framebuffer::start(render_pass.clone())
.add(view)
.unwrap()
.add(depth_buffer.clone())
.unwrap()
.build()
.unwrap()
})
.collect::<Vec<_>>();
// In the triangle example we use a dynamic viewport, as its a simple example.
// However in the teapot example, we recreate the pipelines with a hardcoded viewport instead.
// This allows the driver to optimize things, at the cost of slower window resizes.
// https://computergraphics.stackexchange.com/questions/5742/vulkan-best-way-of-updating-pipeline-viewport
let pipeline = GraphicsPipeline::start()
.vertex_input_state(
BuffersDefinition::new()
.vertex::<Vertex>()
.vertex::<Normal>(),
)
.vertex_shader(vs.entry_point("main").unwrap(), ())
.input_assembly_state(InputAssemblyState::new())
.viewport_state(ViewportState::viewport_fixed_scissor_irrelevant([
Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0..1.0,
},
]))
.fragment_shader(fs.entry_point("main").unwrap(), ())
.depth_stencil_state(DepthStencilState::simple_depth_test())
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap();
(pipeline, framebuffers)
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
path: "src/bin/teapot/vert.glsl"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
path: "src/bin/teapot/frag.glsl"
}
}