rust/compiler/rustc_mir_transform/src/coverage/query.rs
Rémy Rakic a13354bea0 rename BitSet to DenseBitSet
This should make it clearer that this bitset is dense, with the
advantages and disadvantages that it entails.
2025-01-11 11:34:01 +00:00

241 lines
9.9 KiB
Rust

use rustc_data_structures::captures::Captures;
use rustc_index::bit_set::DenseBitSet;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::coverage::{
CounterId, CovTerm, CoverageIdsInfo, CoverageKind, Expression, ExpressionId,
FunctionCoverageInfo, MappingKind, Op,
};
use rustc_middle::mir::{Body, Statement, StatementKind};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::{self, TyCtxt};
use rustc_middle::util::Providers;
use rustc_span::def_id::LocalDefId;
use rustc_span::sym;
use tracing::trace;
/// Registers query/hook implementations related to coverage.
pub(crate) fn provide(providers: &mut Providers) {
providers.hooks.is_eligible_for_coverage =
|TyCtxtAt { tcx, .. }, def_id| is_eligible_for_coverage(tcx, def_id);
providers.queries.coverage_attr_on = coverage_attr_on;
providers.queries.coverage_ids_info = coverage_ids_info;
}
/// Hook implementation for [`TyCtxt::is_eligible_for_coverage`].
fn is_eligible_for_coverage(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
// Only instrument functions, methods, and closures (not constants since they are evaluated
// at compile time by Miri).
// FIXME(#73156): Handle source code coverage in const eval, but note, if and when const
// expressions get coverage spans, we will probably have to "carve out" space for const
// expressions from coverage spans in enclosing MIR's, like we do for closures. (That might
// be tricky if const expressions have no corresponding statements in the enclosing MIR.
// Closures are carved out by their initial `Assign` statement.)
if !tcx.def_kind(def_id).is_fn_like() {
trace!("InstrumentCoverage skipped for {def_id:?} (not an fn-like)");
return false;
}
// Don't instrument functions with `#[automatically_derived]` on their
// enclosing impl block, on the assumption that most users won't care about
// coverage for derived impls.
if let Some(impl_of) = tcx.impl_of_method(def_id.to_def_id())
&& tcx.is_automatically_derived(impl_of)
{
trace!("InstrumentCoverage skipped for {def_id:?} (automatically derived)");
return false;
}
if tcx.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::NAKED) {
trace!("InstrumentCoverage skipped for {def_id:?} (`#[naked]`)");
return false;
}
if !tcx.coverage_attr_on(def_id) {
trace!("InstrumentCoverage skipped for {def_id:?} (`#[coverage(off)]`)");
return false;
}
true
}
/// Query implementation for `coverage_attr_on`.
fn coverage_attr_on(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
// Check for annotations directly on this def.
if let Some(attr) = tcx.get_attr(def_id, sym::coverage) {
match attr.meta_item_list().as_deref() {
Some([item]) if item.has_name(sym::off) => return false,
Some([item]) if item.has_name(sym::on) => return true,
Some(_) | None => {
// Other possibilities should have been rejected by `rustc_parse::validate_attr`.
// Use `span_delayed_bug` to avoid an ICE in failing builds (#127880).
tcx.dcx().span_delayed_bug(attr.span, "unexpected value of coverage attribute");
}
}
}
match tcx.opt_local_parent(def_id) {
// Check the parent def (and so on recursively) until we find an
// enclosing attribute or reach the crate root.
Some(parent) => tcx.coverage_attr_on(parent),
// We reached the crate root without seeing a coverage attribute, so
// allow coverage instrumentation by default.
None => true,
}
}
/// Query implementation for `coverage_ids_info`.
fn coverage_ids_info<'tcx>(
tcx: TyCtxt<'tcx>,
instance_def: ty::InstanceKind<'tcx>,
) -> CoverageIdsInfo {
let mir_body = tcx.instance_mir(instance_def);
let Some(fn_cov_info) = mir_body.function_coverage_info.as_deref() else {
return CoverageIdsInfo {
counters_seen: DenseBitSet::new_empty(0),
zero_expressions: DenseBitSet::new_empty(0),
};
};
let mut counters_seen = DenseBitSet::new_empty(fn_cov_info.num_counters);
let mut expressions_seen = DenseBitSet::new_filled(fn_cov_info.expressions.len());
// For each expression ID that is directly used by one or more mappings,
// mark it as not-yet-seen. This indicates that we expect to see a
// corresponding `ExpressionUsed` statement during MIR traversal.
for mapping in fn_cov_info.mappings.iter() {
// Currently we only worry about ordinary code mappings.
// For branch and MC/DC mappings, expressions might not correspond
// to any particular point in the control-flow graph.
// (Keep this in sync with the injection of `ExpressionUsed`
// statements in the `InstrumentCoverage` MIR pass.)
if let MappingKind::Code(CovTerm::Expression(id)) = mapping.kind {
expressions_seen.remove(id);
}
}
for kind in all_coverage_in_mir_body(mir_body) {
match *kind {
CoverageKind::CounterIncrement { id } => {
counters_seen.insert(id);
}
CoverageKind::ExpressionUsed { id } => {
expressions_seen.insert(id);
}
_ => {}
}
}
let zero_expressions =
identify_zero_expressions(fn_cov_info, &counters_seen, &expressions_seen);
CoverageIdsInfo { counters_seen, zero_expressions }
}
fn all_coverage_in_mir_body<'a, 'tcx>(
body: &'a Body<'tcx>,
) -> impl Iterator<Item = &'a CoverageKind> + Captures<'tcx> {
body.basic_blocks.iter().flat_map(|bb_data| &bb_data.statements).filter_map(|statement| {
match statement.kind {
StatementKind::Coverage(ref kind) if !is_inlined(body, statement) => Some(kind),
_ => None,
}
})
}
fn is_inlined(body: &Body<'_>, statement: &Statement<'_>) -> bool {
let scope_data = &body.source_scopes[statement.source_info.scope];
scope_data.inlined.is_some() || scope_data.inlined_parent_scope.is_some()
}
/// Identify expressions that will always have a value of zero, and note their
/// IDs in a `DenseBitSet`. Mappings that refer to a zero expression can instead
/// become mappings to a constant zero value.
///
/// This function mainly exists to preserve the simplifications that were
/// already being performed by the Rust-side expression renumbering, so that
/// the resulting coverage mappings don't get worse.
fn identify_zero_expressions(
fn_cov_info: &FunctionCoverageInfo,
counters_seen: &DenseBitSet<CounterId>,
expressions_seen: &DenseBitSet<ExpressionId>,
) -> DenseBitSet<ExpressionId> {
// The set of expressions that either were optimized out entirely, or
// have zero as both of their operands, and will therefore always have
// a value of zero. Other expressions that refer to these as operands
// can have those operands replaced with `CovTerm::Zero`.
let mut zero_expressions = DenseBitSet::new_empty(fn_cov_info.expressions.len());
// Simplify a copy of each expression based on lower-numbered expressions,
// and then update the set of always-zero expressions if necessary.
// (By construction, expressions can only refer to other expressions
// that have lower IDs, so one pass is sufficient.)
for (id, expression) in fn_cov_info.expressions.iter_enumerated() {
if !expressions_seen.contains(id) {
// If an expression was not seen, it must have been optimized away,
// so any operand that refers to it can be replaced with zero.
zero_expressions.insert(id);
continue;
}
// We don't need to simplify the actual expression data in the
// expressions list; we can just simplify a temporary copy and then
// use that to update the set of always-zero expressions.
let Expression { mut lhs, op, mut rhs } = *expression;
// If an expression has an operand that is also an expression, the
// operand's ID must be strictly lower. This is what lets us find
// all zero expressions in one pass.
let assert_operand_expression_is_lower = |operand_id: ExpressionId| {
assert!(
operand_id < id,
"Operand {operand_id:?} should be less than {id:?} in {expression:?}",
)
};
// If an operand refers to a counter or expression that is always
// zero, then that operand can be replaced with `CovTerm::Zero`.
let maybe_set_operand_to_zero = |operand: &mut CovTerm| {
if let CovTerm::Expression(id) = *operand {
assert_operand_expression_is_lower(id);
}
if is_zero_term(&counters_seen, &zero_expressions, *operand) {
*operand = CovTerm::Zero;
}
};
maybe_set_operand_to_zero(&mut lhs);
maybe_set_operand_to_zero(&mut rhs);
// Coverage counter values cannot be negative, so if an expression
// involves subtraction from zero, assume that its RHS must also be zero.
// (Do this after simplifications that could set the LHS to zero.)
if lhs == CovTerm::Zero && op == Op::Subtract {
rhs = CovTerm::Zero;
}
// After the above simplifications, if both operands are zero, then
// we know that this expression is always zero too.
if lhs == CovTerm::Zero && rhs == CovTerm::Zero {
zero_expressions.insert(id);
}
}
zero_expressions
}
/// Returns `true` if the given term is known to have a value of zero, taking
/// into account knowledge of which counters are unused and which expressions
/// are always zero.
fn is_zero_term(
counters_seen: &DenseBitSet<CounterId>,
zero_expressions: &DenseBitSet<ExpressionId>,
term: CovTerm,
) -> bool {
match term {
CovTerm::Zero => true,
CovTerm::Counter(id) => !counters_seen.contains(id),
CovTerm::Expression(id) => zero_expressions.contains(id),
}
}