use rustc_data_structures::captures::Captures; use rustc_index::bit_set::DenseBitSet; use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc_middle::mir::coverage::{ CounterId, CovTerm, CoverageIdsInfo, CoverageKind, Expression, ExpressionId, FunctionCoverageInfo, MappingKind, Op, }; use rustc_middle::mir::{Body, Statement, StatementKind}; use rustc_middle::query::TyCtxtAt; use rustc_middle::ty::{self, TyCtxt}; use rustc_middle::util::Providers; use rustc_span::def_id::LocalDefId; use rustc_span::sym; use tracing::trace; /// Registers query/hook implementations related to coverage. pub(crate) fn provide(providers: &mut Providers) { providers.hooks.is_eligible_for_coverage = |TyCtxtAt { tcx, .. }, def_id| is_eligible_for_coverage(tcx, def_id); providers.queries.coverage_attr_on = coverage_attr_on; providers.queries.coverage_ids_info = coverage_ids_info; } /// Hook implementation for [`TyCtxt::is_eligible_for_coverage`]. fn is_eligible_for_coverage(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { // Only instrument functions, methods, and closures (not constants since they are evaluated // at compile time by Miri). // FIXME(#73156): Handle source code coverage in const eval, but note, if and when const // expressions get coverage spans, we will probably have to "carve out" space for const // expressions from coverage spans in enclosing MIR's, like we do for closures. (That might // be tricky if const expressions have no corresponding statements in the enclosing MIR. // Closures are carved out by their initial `Assign` statement.) if !tcx.def_kind(def_id).is_fn_like() { trace!("InstrumentCoverage skipped for {def_id:?} (not an fn-like)"); return false; } // Don't instrument functions with `#[automatically_derived]` on their // enclosing impl block, on the assumption that most users won't care about // coverage for derived impls. if let Some(impl_of) = tcx.impl_of_method(def_id.to_def_id()) && tcx.is_automatically_derived(impl_of) { trace!("InstrumentCoverage skipped for {def_id:?} (automatically derived)"); return false; } if tcx.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::NAKED) { trace!("InstrumentCoverage skipped for {def_id:?} (`#[naked]`)"); return false; } if !tcx.coverage_attr_on(def_id) { trace!("InstrumentCoverage skipped for {def_id:?} (`#[coverage(off)]`)"); return false; } true } /// Query implementation for `coverage_attr_on`. fn coverage_attr_on(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { // Check for annotations directly on this def. if let Some(attr) = tcx.get_attr(def_id, sym::coverage) { match attr.meta_item_list().as_deref() { Some([item]) if item.has_name(sym::off) => return false, Some([item]) if item.has_name(sym::on) => return true, Some(_) | None => { // Other possibilities should have been rejected by `rustc_parse::validate_attr`. // Use `span_delayed_bug` to avoid an ICE in failing builds (#127880). tcx.dcx().span_delayed_bug(attr.span, "unexpected value of coverage attribute"); } } } match tcx.opt_local_parent(def_id) { // Check the parent def (and so on recursively) until we find an // enclosing attribute or reach the crate root. Some(parent) => tcx.coverage_attr_on(parent), // We reached the crate root without seeing a coverage attribute, so // allow coverage instrumentation by default. None => true, } } /// Query implementation for `coverage_ids_info`. fn coverage_ids_info<'tcx>( tcx: TyCtxt<'tcx>, instance_def: ty::InstanceKind<'tcx>, ) -> CoverageIdsInfo { let mir_body = tcx.instance_mir(instance_def); let Some(fn_cov_info) = mir_body.function_coverage_info.as_deref() else { return CoverageIdsInfo { counters_seen: DenseBitSet::new_empty(0), zero_expressions: DenseBitSet::new_empty(0), }; }; let mut counters_seen = DenseBitSet::new_empty(fn_cov_info.num_counters); let mut expressions_seen = DenseBitSet::new_filled(fn_cov_info.expressions.len()); // For each expression ID that is directly used by one or more mappings, // mark it as not-yet-seen. This indicates that we expect to see a // corresponding `ExpressionUsed` statement during MIR traversal. for mapping in fn_cov_info.mappings.iter() { // Currently we only worry about ordinary code mappings. // For branch and MC/DC mappings, expressions might not correspond // to any particular point in the control-flow graph. // (Keep this in sync with the injection of `ExpressionUsed` // statements in the `InstrumentCoverage` MIR pass.) if let MappingKind::Code(CovTerm::Expression(id)) = mapping.kind { expressions_seen.remove(id); } } for kind in all_coverage_in_mir_body(mir_body) { match *kind { CoverageKind::CounterIncrement { id } => { counters_seen.insert(id); } CoverageKind::ExpressionUsed { id } => { expressions_seen.insert(id); } _ => {} } } let zero_expressions = identify_zero_expressions(fn_cov_info, &counters_seen, &expressions_seen); CoverageIdsInfo { counters_seen, zero_expressions } } fn all_coverage_in_mir_body<'a, 'tcx>( body: &'a Body<'tcx>, ) -> impl Iterator + Captures<'tcx> { body.basic_blocks.iter().flat_map(|bb_data| &bb_data.statements).filter_map(|statement| { match statement.kind { StatementKind::Coverage(ref kind) if !is_inlined(body, statement) => Some(kind), _ => None, } }) } fn is_inlined(body: &Body<'_>, statement: &Statement<'_>) -> bool { let scope_data = &body.source_scopes[statement.source_info.scope]; scope_data.inlined.is_some() || scope_data.inlined_parent_scope.is_some() } /// Identify expressions that will always have a value of zero, and note their /// IDs in a `DenseBitSet`. Mappings that refer to a zero expression can instead /// become mappings to a constant zero value. /// /// This function mainly exists to preserve the simplifications that were /// already being performed by the Rust-side expression renumbering, so that /// the resulting coverage mappings don't get worse. fn identify_zero_expressions( fn_cov_info: &FunctionCoverageInfo, counters_seen: &DenseBitSet, expressions_seen: &DenseBitSet, ) -> DenseBitSet { // The set of expressions that either were optimized out entirely, or // have zero as both of their operands, and will therefore always have // a value of zero. Other expressions that refer to these as operands // can have those operands replaced with `CovTerm::Zero`. let mut zero_expressions = DenseBitSet::new_empty(fn_cov_info.expressions.len()); // Simplify a copy of each expression based on lower-numbered expressions, // and then update the set of always-zero expressions if necessary. // (By construction, expressions can only refer to other expressions // that have lower IDs, so one pass is sufficient.) for (id, expression) in fn_cov_info.expressions.iter_enumerated() { if !expressions_seen.contains(id) { // If an expression was not seen, it must have been optimized away, // so any operand that refers to it can be replaced with zero. zero_expressions.insert(id); continue; } // We don't need to simplify the actual expression data in the // expressions list; we can just simplify a temporary copy and then // use that to update the set of always-zero expressions. let Expression { mut lhs, op, mut rhs } = *expression; // If an expression has an operand that is also an expression, the // operand's ID must be strictly lower. This is what lets us find // all zero expressions in one pass. let assert_operand_expression_is_lower = |operand_id: ExpressionId| { assert!( operand_id < id, "Operand {operand_id:?} should be less than {id:?} in {expression:?}", ) }; // If an operand refers to a counter or expression that is always // zero, then that operand can be replaced with `CovTerm::Zero`. let maybe_set_operand_to_zero = |operand: &mut CovTerm| { if let CovTerm::Expression(id) = *operand { assert_operand_expression_is_lower(id); } if is_zero_term(&counters_seen, &zero_expressions, *operand) { *operand = CovTerm::Zero; } }; maybe_set_operand_to_zero(&mut lhs); maybe_set_operand_to_zero(&mut rhs); // Coverage counter values cannot be negative, so if an expression // involves subtraction from zero, assume that its RHS must also be zero. // (Do this after simplifications that could set the LHS to zero.) if lhs == CovTerm::Zero && op == Op::Subtract { rhs = CovTerm::Zero; } // After the above simplifications, if both operands are zero, then // we know that this expression is always zero too. if lhs == CovTerm::Zero && rhs == CovTerm::Zero { zero_expressions.insert(id); } } zero_expressions } /// Returns `true` if the given term is known to have a value of zero, taking /// into account knowledge of which counters are unused and which expressions /// are always zero. fn is_zero_term( counters_seen: &DenseBitSet, zero_expressions: &DenseBitSet, term: CovTerm, ) -> bool { match term { CovTerm::Zero => true, CovTerm::Counter(id) => !counters_seen.contains(id), CovTerm::Expression(id) => zero_expressions.contains(id), } }