rust/compiler/rustc_passes/src/check_const.rs
Yuri Astrakhan 5160f8f843 Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
2022-03-30 15:14:15 -04:00

310 lines
12 KiB
Rust

//! This pass checks HIR bodies that may be evaluated at compile-time (e.g., `const`, `static`,
//! `const fn`) for structured control flow (e.g. `if`, `while`), which is forbidden in a const
//! context.
//!
//! By the time the MIR const-checker runs, these high-level constructs have been lowered to
//! control-flow primitives (e.g., `Goto`, `SwitchInt`), making it tough to properly attribute
//! errors. We still look for those primitives in the MIR const-checker to ensure nothing slips
//! through, but errors for structured control flow in a `const` should be emitted here.
use rustc_attr as attr;
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{self, Visitor};
use rustc_middle::hir::nested_filter;
use rustc_middle::ty;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::TyCtxt;
use rustc_session::parse::feature_err;
use rustc_span::{sym, Span, Symbol};
/// An expression that is not *always* legal in a const context.
#[derive(Clone, Copy)]
enum NonConstExpr {
Loop(hir::LoopSource),
Match(hir::MatchSource),
}
impl NonConstExpr {
fn name(self) -> String {
match self {
Self::Loop(src) => format!("`{}`", src.name()),
Self::Match(src) => format!("`{}`", src.name()),
}
}
fn required_feature_gates(self) -> Option<&'static [Symbol]> {
use hir::LoopSource::*;
use hir::MatchSource::*;
let gates: &[_] = match self {
Self::Match(AwaitDesugar) => {
return None;
}
Self::Loop(ForLoop) | Self::Match(ForLoopDesugar) => &[sym::const_for],
Self::Match(TryDesugar) => &[sym::const_try],
// All other expressions are allowed.
Self::Loop(Loop | While) | Self::Match(Normal) => &[],
};
Some(gates)
}
}
fn check_mod_const_bodies(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
let mut vis = CheckConstVisitor::new(tcx);
tcx.hir().visit_item_likes_in_module(module_def_id, &mut vis.as_deep_visitor());
tcx.hir().visit_item_likes_in_module(module_def_id, &mut CheckConstTraitVisitor::new(tcx));
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { check_mod_const_bodies, ..*providers };
}
struct CheckConstTraitVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> CheckConstTraitVisitor<'tcx> {
fn new(tcx: TyCtxt<'tcx>) -> Self {
CheckConstTraitVisitor { tcx }
}
}
impl<'tcx> hir::itemlikevisit::ItemLikeVisitor<'tcx> for CheckConstTraitVisitor<'tcx> {
/// check for const trait impls, and errors if the impl uses provided/default functions
/// of the trait being implemented; as those provided functions can be non-const.
fn visit_item<'hir>(&mut self, item: &'hir hir::Item<'hir>) {
let _: Option<_> = try {
if let hir::ItemKind::Impl(ref imp) = item.kind && let hir::Constness::Const = imp.constness {
let trait_def_id = imp.of_trait.as_ref()?.trait_def_id()?;
let ancestors = self
.tcx
.trait_def(trait_def_id)
.ancestors(self.tcx, item.def_id.to_def_id())
.ok()?;
let mut to_implement = Vec::new();
for trait_item in self.tcx.associated_items(trait_def_id).in_definition_order()
{
if let ty::AssocItem {
kind: ty::AssocKind::Fn,
defaultness,
def_id: trait_item_id,
..
} = *trait_item
{
// we can ignore functions that do not have default bodies:
// if those are unimplemented it will be caught by typeck.
if !defaultness.has_value()
|| self
.tcx
.has_attr(trait_item_id, sym::default_method_body_is_const)
{
continue;
}
let is_implemented = ancestors
.leaf_def(self.tcx, trait_item_id)
.map(|node_item| !node_item.defining_node.is_from_trait())
.unwrap_or(false);
if !is_implemented {
to_implement.push(self.tcx.item_name(trait_item_id).to_string());
}
}
}
// all nonconst trait functions (not marked with #[default_method_body_is_const])
// must be implemented
if !to_implement.is_empty() {
self.tcx
.sess
.struct_span_err(
item.span,
"const trait implementations may not use non-const default functions",
)
.note(&format!("`{}` not implemented", to_implement.join("`, `")))
.emit();
}
}
};
}
fn visit_trait_item<'hir>(&mut self, _: &'hir hir::TraitItem<'hir>) {}
fn visit_impl_item<'hir>(&mut self, _: &'hir hir::ImplItem<'hir>) {}
fn visit_foreign_item<'hir>(&mut self, _: &'hir hir::ForeignItem<'hir>) {}
}
#[derive(Copy, Clone)]
struct CheckConstVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
const_kind: Option<hir::ConstContext>,
def_id: Option<LocalDefId>,
}
impl<'tcx> CheckConstVisitor<'tcx> {
fn new(tcx: TyCtxt<'tcx>) -> Self {
CheckConstVisitor { tcx, const_kind: None, def_id: None }
}
/// Emits an error when an unsupported expression is found in a const context.
fn const_check_violated(&self, expr: NonConstExpr, span: Span) {
let Self { tcx, def_id, const_kind } = *self;
let features = tcx.features();
let required_gates = expr.required_feature_gates();
let is_feature_allowed = |feature_gate| {
// All features require that the corresponding gate be enabled,
// even if the function has `#[rustc_allow_const_fn_unstable(the_gate)]`.
if !tcx.features().enabled(feature_gate) {
return false;
}
// If `def_id` is `None`, we don't need to consider stability attributes.
let def_id = match def_id {
Some(x) => x.to_def_id(),
None => return true,
};
// If the function belongs to a trait, then it must enable the const_trait_impl
// feature to use that trait function (with a const default body).
if tcx.trait_of_item(def_id).is_some() {
return true;
}
// If this crate is not using stability attributes, or this function is not claiming to be a
// stable `const fn`, that is all that is required.
if !tcx.features().staged_api || tcx.has_attr(def_id, sym::rustc_const_unstable) {
return true;
}
// However, we cannot allow stable `const fn`s to use unstable features without an explicit
// opt-in via `rustc_allow_const_fn_unstable`.
attr::rustc_allow_const_fn_unstable(&tcx.sess, &tcx.get_attrs(def_id))
.any(|name| name == feature_gate)
};
match required_gates {
// Don't emit an error if the user has enabled the requisite feature gates.
Some(gates) if gates.iter().copied().all(is_feature_allowed) => return,
// `-Zunleash-the-miri-inside-of-you` only works for expressions that don't have a
// corresponding feature gate. This encourages nightly users to use feature gates when
// possible.
None if tcx.sess.opts.debugging_opts.unleash_the_miri_inside_of_you => {
tcx.sess.span_warn(span, "skipping const checks");
return;
}
_ => {}
}
let const_kind =
const_kind.expect("`const_check_violated` may only be called inside a const context");
let msg = format!("{} is not allowed in a `{}`", expr.name(), const_kind.keyword_name());
let required_gates = required_gates.unwrap_or(&[]);
let missing_gates: Vec<_> =
required_gates.iter().copied().filter(|&g| !features.enabled(g)).collect();
match missing_gates.as_slice() {
[] => {
struct_span_err!(tcx.sess, span, E0744, "{}", msg).emit();
}
[missing_primary, ref missing_secondary @ ..] => {
let mut err = feature_err(&tcx.sess.parse_sess, *missing_primary, span, &msg);
// If multiple feature gates would be required to enable this expression, include
// them as help messages. Don't emit a separate error for each missing feature gate.
//
// FIXME(ecstaticmorse): Maybe this could be incorporated into `feature_err`? This
// is a pretty narrow case, however.
if tcx.sess.is_nightly_build() {
for gate in missing_secondary {
let note = format!(
"add `#![feature({})]` to the crate attributes to enable",
gate,
);
err.help(&note);
}
}
err.emit();
}
}
}
/// Saves the parent `const_kind` before calling `f` and restores it afterwards.
fn recurse_into(
&mut self,
kind: Option<hir::ConstContext>,
def_id: Option<LocalDefId>,
f: impl FnOnce(&mut Self),
) {
let parent_def_id = self.def_id;
let parent_kind = self.const_kind;
self.def_id = def_id;
self.const_kind = kind;
f(self);
self.def_id = parent_def_id;
self.const_kind = parent_kind;
}
}
impl<'tcx> Visitor<'tcx> for CheckConstVisitor<'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_anon_const(&mut self, anon: &'tcx hir::AnonConst) {
let kind = Some(hir::ConstContext::Const);
self.recurse_into(kind, None, |this| intravisit::walk_anon_const(this, anon));
}
fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) {
let owner = self.tcx.hir().body_owner_def_id(body.id());
let kind = self.tcx.hir().body_const_context(owner);
self.recurse_into(kind, Some(owner), |this| intravisit::walk_body(this, body));
}
fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
match &e.kind {
// Skip the following checks if we are not currently in a const context.
_ if self.const_kind.is_none() => {}
hir::ExprKind::Loop(_, _, source, _) => {
self.const_check_violated(NonConstExpr::Loop(*source), e.span);
}
hir::ExprKind::Match(_, _, source) => {
let non_const_expr = match source {
// These are handled by `ExprKind::Loop` above.
hir::MatchSource::ForLoopDesugar => None,
_ => Some(NonConstExpr::Match(*source)),
};
if let Some(expr) = non_const_expr {
self.const_check_violated(expr, e.span);
}
}
_ => {}
}
intravisit::walk_expr(self, e);
}
}