//! This pass checks HIR bodies that may be evaluated at compile-time (e.g., `const`, `static`, //! `const fn`) for structured control flow (e.g. `if`, `while`), which is forbidden in a const //! context. //! //! By the time the MIR const-checker runs, these high-level constructs have been lowered to //! control-flow primitives (e.g., `Goto`, `SwitchInt`), making it tough to properly attribute //! errors. We still look for those primitives in the MIR const-checker to ensure nothing slips //! through, but errors for structured control flow in a `const` should be emitted here. use rustc_attr as attr; use rustc_errors::struct_span_err; use rustc_hir as hir; use rustc_hir::def_id::LocalDefId; use rustc_hir::intravisit::{self, Visitor}; use rustc_middle::hir::nested_filter; use rustc_middle::ty; use rustc_middle::ty::query::Providers; use rustc_middle::ty::TyCtxt; use rustc_session::parse::feature_err; use rustc_span::{sym, Span, Symbol}; /// An expression that is not *always* legal in a const context. #[derive(Clone, Copy)] enum NonConstExpr { Loop(hir::LoopSource), Match(hir::MatchSource), } impl NonConstExpr { fn name(self) -> String { match self { Self::Loop(src) => format!("`{}`", src.name()), Self::Match(src) => format!("`{}`", src.name()), } } fn required_feature_gates(self) -> Option<&'static [Symbol]> { use hir::LoopSource::*; use hir::MatchSource::*; let gates: &[_] = match self { Self::Match(AwaitDesugar) => { return None; } Self::Loop(ForLoop) | Self::Match(ForLoopDesugar) => &[sym::const_for], Self::Match(TryDesugar) => &[sym::const_try], // All other expressions are allowed. Self::Loop(Loop | While) | Self::Match(Normal) => &[], }; Some(gates) } } fn check_mod_const_bodies(tcx: TyCtxt<'_>, module_def_id: LocalDefId) { let mut vis = CheckConstVisitor::new(tcx); tcx.hir().visit_item_likes_in_module(module_def_id, &mut vis.as_deep_visitor()); tcx.hir().visit_item_likes_in_module(module_def_id, &mut CheckConstTraitVisitor::new(tcx)); } pub(crate) fn provide(providers: &mut Providers) { *providers = Providers { check_mod_const_bodies, ..*providers }; } struct CheckConstTraitVisitor<'tcx> { tcx: TyCtxt<'tcx>, } impl<'tcx> CheckConstTraitVisitor<'tcx> { fn new(tcx: TyCtxt<'tcx>) -> Self { CheckConstTraitVisitor { tcx } } } impl<'tcx> hir::itemlikevisit::ItemLikeVisitor<'tcx> for CheckConstTraitVisitor<'tcx> { /// check for const trait impls, and errors if the impl uses provided/default functions /// of the trait being implemented; as those provided functions can be non-const. fn visit_item<'hir>(&mut self, item: &'hir hir::Item<'hir>) { let _: Option<_> = try { if let hir::ItemKind::Impl(ref imp) = item.kind && let hir::Constness::Const = imp.constness { let trait_def_id = imp.of_trait.as_ref()?.trait_def_id()?; let ancestors = self .tcx .trait_def(trait_def_id) .ancestors(self.tcx, item.def_id.to_def_id()) .ok()?; let mut to_implement = Vec::new(); for trait_item in self.tcx.associated_items(trait_def_id).in_definition_order() { if let ty::AssocItem { kind: ty::AssocKind::Fn, defaultness, def_id: trait_item_id, .. } = *trait_item { // we can ignore functions that do not have default bodies: // if those are unimplemented it will be caught by typeck. if !defaultness.has_value() || self .tcx .has_attr(trait_item_id, sym::default_method_body_is_const) { continue; } let is_implemented = ancestors .leaf_def(self.tcx, trait_item_id) .map(|node_item| !node_item.defining_node.is_from_trait()) .unwrap_or(false); if !is_implemented { to_implement.push(self.tcx.item_name(trait_item_id).to_string()); } } } // all nonconst trait functions (not marked with #[default_method_body_is_const]) // must be implemented if !to_implement.is_empty() { self.tcx .sess .struct_span_err( item.span, "const trait implementations may not use non-const default functions", ) .note(&format!("`{}` not implemented", to_implement.join("`, `"))) .emit(); } } }; } fn visit_trait_item<'hir>(&mut self, _: &'hir hir::TraitItem<'hir>) {} fn visit_impl_item<'hir>(&mut self, _: &'hir hir::ImplItem<'hir>) {} fn visit_foreign_item<'hir>(&mut self, _: &'hir hir::ForeignItem<'hir>) {} } #[derive(Copy, Clone)] struct CheckConstVisitor<'tcx> { tcx: TyCtxt<'tcx>, const_kind: Option, def_id: Option, } impl<'tcx> CheckConstVisitor<'tcx> { fn new(tcx: TyCtxt<'tcx>) -> Self { CheckConstVisitor { tcx, const_kind: None, def_id: None } } /// Emits an error when an unsupported expression is found in a const context. fn const_check_violated(&self, expr: NonConstExpr, span: Span) { let Self { tcx, def_id, const_kind } = *self; let features = tcx.features(); let required_gates = expr.required_feature_gates(); let is_feature_allowed = |feature_gate| { // All features require that the corresponding gate be enabled, // even if the function has `#[rustc_allow_const_fn_unstable(the_gate)]`. if !tcx.features().enabled(feature_gate) { return false; } // If `def_id` is `None`, we don't need to consider stability attributes. let def_id = match def_id { Some(x) => x.to_def_id(), None => return true, }; // If the function belongs to a trait, then it must enable the const_trait_impl // feature to use that trait function (with a const default body). if tcx.trait_of_item(def_id).is_some() { return true; } // If this crate is not using stability attributes, or this function is not claiming to be a // stable `const fn`, that is all that is required. if !tcx.features().staged_api || tcx.has_attr(def_id, sym::rustc_const_unstable) { return true; } // However, we cannot allow stable `const fn`s to use unstable features without an explicit // opt-in via `rustc_allow_const_fn_unstable`. attr::rustc_allow_const_fn_unstable(&tcx.sess, &tcx.get_attrs(def_id)) .any(|name| name == feature_gate) }; match required_gates { // Don't emit an error if the user has enabled the requisite feature gates. Some(gates) if gates.iter().copied().all(is_feature_allowed) => return, // `-Zunleash-the-miri-inside-of-you` only works for expressions that don't have a // corresponding feature gate. This encourages nightly users to use feature gates when // possible. None if tcx.sess.opts.debugging_opts.unleash_the_miri_inside_of_you => { tcx.sess.span_warn(span, "skipping const checks"); return; } _ => {} } let const_kind = const_kind.expect("`const_check_violated` may only be called inside a const context"); let msg = format!("{} is not allowed in a `{}`", expr.name(), const_kind.keyword_name()); let required_gates = required_gates.unwrap_or(&[]); let missing_gates: Vec<_> = required_gates.iter().copied().filter(|&g| !features.enabled(g)).collect(); match missing_gates.as_slice() { [] => { struct_span_err!(tcx.sess, span, E0744, "{}", msg).emit(); } [missing_primary, ref missing_secondary @ ..] => { let mut err = feature_err(&tcx.sess.parse_sess, *missing_primary, span, &msg); // If multiple feature gates would be required to enable this expression, include // them as help messages. Don't emit a separate error for each missing feature gate. // // FIXME(ecstaticmorse): Maybe this could be incorporated into `feature_err`? This // is a pretty narrow case, however. if tcx.sess.is_nightly_build() { for gate in missing_secondary { let note = format!( "add `#![feature({})]` to the crate attributes to enable", gate, ); err.help(¬e); } } err.emit(); } } } /// Saves the parent `const_kind` before calling `f` and restores it afterwards. fn recurse_into( &mut self, kind: Option, def_id: Option, f: impl FnOnce(&mut Self), ) { let parent_def_id = self.def_id; let parent_kind = self.const_kind; self.def_id = def_id; self.const_kind = kind; f(self); self.def_id = parent_def_id; self.const_kind = parent_kind; } } impl<'tcx> Visitor<'tcx> for CheckConstVisitor<'tcx> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.tcx.hir() } fn visit_anon_const(&mut self, anon: &'tcx hir::AnonConst) { let kind = Some(hir::ConstContext::Const); self.recurse_into(kind, None, |this| intravisit::walk_anon_const(this, anon)); } fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) { let owner = self.tcx.hir().body_owner_def_id(body.id()); let kind = self.tcx.hir().body_const_context(owner); self.recurse_into(kind, Some(owner), |this| intravisit::walk_body(this, body)); } fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) { match &e.kind { // Skip the following checks if we are not currently in a const context. _ if self.const_kind.is_none() => {} hir::ExprKind::Loop(_, _, source, _) => { self.const_check_violated(NonConstExpr::Loop(*source), e.span); } hir::ExprKind::Match(_, _, source) => { let non_const_expr = match source { // These are handled by `ExprKind::Loop` above. hir::MatchSource::ForLoopDesugar => None, _ => Some(NonConstExpr::Match(*source)), }; if let Some(expr) = non_const_expr { self.const_check_violated(expr, e.span); } } _ => {} } intravisit::walk_expr(self, e); } }