rust/compiler/rustc_codegen_cranelift/src/abi/mod.rs
Trevor Gross 7a2db88a56 Add a span to CompilerBuiltinsCannotCall
Currently, this error emit a diagnostic with no context like:

    error: `compiler_builtins` cannot call functions through upstream monomorphizations; encountered invalid call from `<math::libm::support::hex_float::Hexf<i32> as core::fmt::LowerHex>::fmt` to `core::fmt::num::<impl core::fmt::LowerHex for i32>::fmt`

With this change, it at least usually points to the problematic
function:

    error: `compiler_builtins` cannot call functions through upstream monomorphizations; encountered invalid call from `<math::libm::support::hex_float::Hexf<i32> as core::fmt::LowerHex>::fmt` to `core::fmt::num::<impl core::fmt::LowerHex for i32>::fmt`
       --> src/../libm/src/math/support/hex_float.rs:270:5
        |
    270 |     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        |
2025-02-24 03:33:16 +00:00

826 lines
32 KiB
Rust

//! Handling of everything related to the calling convention. Also fills `fx.local_map`.
mod comments;
mod pass_mode;
mod returning;
use std::borrow::Cow;
use std::mem;
use cranelift_codegen::ir::{ArgumentPurpose, SigRef};
use cranelift_codegen::isa::CallConv;
use cranelift_module::ModuleError;
use rustc_abi::ExternAbi;
use rustc_codegen_ssa::base::is_call_from_compiler_builtins_to_upstream_monomorphization;
use rustc_codegen_ssa::errors::CompilerBuiltinsCannotCall;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::ty::TypeVisitableExt;
use rustc_middle::ty::layout::FnAbiOf;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_session::Session;
use rustc_span::source_map::Spanned;
use rustc_target::callconv::{Conv, FnAbi, PassMode};
use self::pass_mode::*;
pub(crate) use self::returning::codegen_return;
use crate::prelude::*;
fn clif_sig_from_fn_abi<'tcx>(
tcx: TyCtxt<'tcx>,
default_call_conv: CallConv,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
) -> Signature {
let call_conv = conv_to_call_conv(tcx.sess, fn_abi.conv, default_call_conv);
let inputs = fn_abi.args.iter().flat_map(|arg_abi| arg_abi.get_abi_param(tcx).into_iter());
let (return_ptr, returns) = fn_abi.ret.get_abi_return(tcx);
// Sometimes the first param is a pointer to the place where the return value needs to be stored.
let params: Vec<_> = return_ptr.into_iter().chain(inputs).collect();
Signature { params, returns, call_conv }
}
pub(crate) fn conv_to_call_conv(sess: &Session, c: Conv, default_call_conv: CallConv) -> CallConv {
match c {
Conv::Rust | Conv::C => default_call_conv,
Conv::Cold | Conv::PreserveMost | Conv::PreserveAll => CallConv::Cold,
Conv::X86_64SysV => CallConv::SystemV,
Conv::X86_64Win64 => CallConv::WindowsFastcall,
// Should already get a back compat warning
Conv::X86Fastcall | Conv::X86Stdcall | Conv::X86ThisCall | Conv::X86VectorCall => {
default_call_conv
}
Conv::X86Intr | Conv::RiscvInterrupt { .. } => {
sess.dcx().fatal(format!("interrupt call conv {c:?} not yet implemented"))
}
Conv::ArmAapcs => sess.dcx().fatal("aapcs call conv not yet implemented"),
Conv::CCmseNonSecureCall => {
sess.dcx().fatal("C-cmse-nonsecure-call call conv is not yet implemented");
}
Conv::CCmseNonSecureEntry => {
sess.dcx().fatal("C-cmse-nonsecure-entry call conv is not yet implemented");
}
Conv::Msp430Intr | Conv::GpuKernel | Conv::AvrInterrupt | Conv::AvrNonBlockingInterrupt => {
unreachable!("tried to use {c:?} call conv which only exists on an unsupported target");
}
}
}
pub(crate) fn get_function_sig<'tcx>(
tcx: TyCtxt<'tcx>,
default_call_conv: CallConv,
inst: Instance<'tcx>,
) -> Signature {
assert!(!inst.args.has_infer());
clif_sig_from_fn_abi(
tcx,
default_call_conv,
&FullyMonomorphizedLayoutCx(tcx).fn_abi_of_instance(inst, ty::List::empty()),
)
}
/// Instance must be monomorphized
pub(crate) fn import_function<'tcx>(
tcx: TyCtxt<'tcx>,
module: &mut dyn Module,
inst: Instance<'tcx>,
) -> FuncId {
let name = tcx.symbol_name(inst).name;
let sig = get_function_sig(tcx, module.target_config().default_call_conv, inst);
match module.declare_function(name, Linkage::Import, &sig) {
Ok(func_id) => func_id,
Err(ModuleError::IncompatibleDeclaration(_)) => tcx.dcx().fatal(format!(
"attempt to declare `{name}` as function, but it was already declared as static"
)),
Err(ModuleError::IncompatibleSignature(_, prev_sig, new_sig)) => tcx.dcx().fatal(format!(
"attempt to declare `{name}` with signature {new_sig:?}, \
but it was already declared with signature {prev_sig:?}"
)),
Err(err) => Err::<_, _>(err).unwrap(),
}
}
impl<'tcx> FunctionCx<'_, '_, 'tcx> {
/// Instance must be monomorphized
pub(crate) fn get_function_ref(&mut self, inst: Instance<'tcx>) -> FuncRef {
let func_id = import_function(self.tcx, self.module, inst);
let func_ref = self.module.declare_func_in_func(func_id, &mut self.bcx.func);
if self.clif_comments.enabled() {
self.add_comment(func_ref, format!("{:?}", inst));
}
func_ref
}
pub(crate) fn lib_call(
&mut self,
name: &str,
params: Vec<AbiParam>,
mut returns: Vec<AbiParam>,
args: &[Value],
) -> Cow<'_, [Value]> {
// Pass i128 arguments by-ref on Windows.
let (params, args): (Vec<_>, Cow<'_, [_]>) = if self.tcx.sess.target.is_like_windows {
let (params, args): (Vec<_>, Vec<_>) = params
.into_iter()
.zip(args)
.map(|(param, &arg)| {
if param.value_type == types::I128 {
let arg_ptr = self.create_stack_slot(16, 16);
arg_ptr.store(self, arg, MemFlags::trusted());
(AbiParam::new(self.pointer_type), arg_ptr.get_addr(self))
} else {
(param, arg)
}
})
.unzip();
(params, args.into())
} else {
(params, args.into())
};
let ret_single_i128 = returns.len() == 1 && returns[0].value_type == types::I128;
if ret_single_i128 && self.tcx.sess.target.is_like_windows {
// Return i128 using the vector ABI on Windows
returns[0].value_type = types::I64X2;
let ret = self.lib_call_unadjusted(name, params, returns, &args)[0];
// FIXME(bytecodealliance/wasmtime#6104) use bitcast instead of store to get from i64x2 to i128
let ret_ptr = self.create_stack_slot(16, 16);
ret_ptr.store(self, ret, MemFlags::trusted());
Cow::Owned(vec![ret_ptr.load(self, types::I128, MemFlags::trusted())])
} else if ret_single_i128 && self.tcx.sess.target.arch == "s390x" {
// Return i128 using a return area pointer on s390x.
let mut params = params;
let mut args = args.to_vec();
params.insert(0, AbiParam::new(self.pointer_type));
let ret_ptr = self.create_stack_slot(16, 16);
args.insert(0, ret_ptr.get_addr(self));
self.lib_call_unadjusted(name, params, vec![], &args);
Cow::Owned(vec![ret_ptr.load(self, types::I128, MemFlags::trusted())])
} else {
Cow::Borrowed(self.lib_call_unadjusted(name, params, returns, &args))
}
}
fn lib_call_unadjusted(
&mut self,
name: &str,
params: Vec<AbiParam>,
returns: Vec<AbiParam>,
args: &[Value],
) -> &[Value] {
let sig = Signature { params, returns, call_conv: self.target_config.default_call_conv };
let func_id = self.module.declare_function(name, Linkage::Import, &sig).unwrap();
let func_ref = self.module.declare_func_in_func(func_id, &mut self.bcx.func);
if self.clif_comments.enabled() {
self.add_comment(func_ref, format!("{:?}", name));
}
let call_inst = self.bcx.ins().call(func_ref, args);
if self.clif_comments.enabled() {
self.add_comment(call_inst, format!("lib_call {}", name));
}
let results = self.bcx.inst_results(call_inst);
assert!(results.len() <= 2, "{}", results.len());
results
}
}
/// Make a [`CPlace`] capable of holding value of the specified type.
fn make_local_place<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
local: Local,
layout: TyAndLayout<'tcx>,
is_ssa: bool,
) -> CPlace<'tcx> {
if layout.is_unsized() {
fx.tcx.dcx().span_fatal(
fx.mir.local_decls[local].source_info.span,
"unsized locals are not yet supported",
);
}
let place = if is_ssa {
if let BackendRepr::ScalarPair(_, _) = layout.backend_repr {
CPlace::new_var_pair(fx, local, layout)
} else {
CPlace::new_var(fx, local, layout)
}
} else {
CPlace::new_stack_slot(fx, layout)
};
self::comments::add_local_place_comments(fx, place, local);
place
}
pub(crate) fn codegen_fn_prelude<'tcx>(fx: &mut FunctionCx<'_, '_, 'tcx>, start_block: Block) {
fx.bcx.append_block_params_for_function_params(start_block);
fx.bcx.switch_to_block(start_block);
fx.bcx.ins().nop();
let ssa_analyzed = crate::analyze::analyze(fx);
self::comments::add_args_header_comment(fx);
let mut block_params_iter = fx.bcx.func.dfg.block_params(start_block).to_vec().into_iter();
let ret_place =
self::returning::codegen_return_param(fx, &ssa_analyzed, &mut block_params_iter);
assert_eq!(fx.local_map.push(ret_place), RETURN_PLACE);
// None means pass_mode == NoPass
enum ArgKind<'tcx> {
Normal(Option<CValue<'tcx>>),
Spread(Vec<Option<CValue<'tcx>>>),
}
// FIXME implement variadics in cranelift
if fx.fn_abi.c_variadic {
fx.tcx.dcx().span_fatal(
fx.mir.span,
"Defining variadic functions is not yet supported by Cranelift",
);
}
let mut arg_abis_iter = fx.fn_abi.args.iter();
let func_params = fx
.mir
.args_iter()
.map(|local| {
let arg_ty = fx.monomorphize(fx.mir.local_decls[local].ty);
// Adapted from https://github.com/rust-lang/rust/blob/145155dc96757002c7b2e9de8489416e2fdbbd57/src/librustc_codegen_llvm/mir/mod.rs#L442-L482
if Some(local) == fx.mir.spread_arg {
// This argument (e.g. the last argument in the "rust-call" ABI)
// is a tuple that was spread at the ABI level and now we have
// to reconstruct it into a tuple local variable, from multiple
// individual function arguments.
let tupled_arg_tys = match arg_ty.kind() {
ty::Tuple(ref tys) => tys,
_ => bug!("spread argument isn't a tuple?! but {:?}", arg_ty),
};
let mut params = Vec::new();
for (i, _arg_ty) in tupled_arg_tys.iter().enumerate() {
let arg_abi = arg_abis_iter.next().unwrap();
let param =
cvalue_for_param(fx, Some(local), Some(i), arg_abi, &mut block_params_iter);
params.push(param);
}
(local, ArgKind::Spread(params), arg_ty)
} else {
let arg_abi = arg_abis_iter.next().unwrap();
let param =
cvalue_for_param(fx, Some(local), None, arg_abi, &mut block_params_iter);
(local, ArgKind::Normal(param), arg_ty)
}
})
.collect::<Vec<(Local, ArgKind<'tcx>, Ty<'tcx>)>>();
assert!(fx.caller_location.is_none());
if fx.instance.def.requires_caller_location(fx.tcx) {
// Store caller location for `#[track_caller]`.
let arg_abi = arg_abis_iter.next().unwrap();
fx.caller_location =
Some(cvalue_for_param(fx, None, None, arg_abi, &mut block_params_iter).unwrap());
}
assert!(arg_abis_iter.next().is_none(), "ArgAbi left behind");
assert!(block_params_iter.next().is_none(), "arg_value left behind");
self::comments::add_locals_header_comment(fx);
for (local, arg_kind, ty) in func_params {
// While this is normally an optimization to prevent an unnecessary copy when an argument is
// not mutated by the current function, this is necessary to support unsized arguments.
if let ArgKind::Normal(Some(val)) = arg_kind {
if let Some((addr, meta)) = val.try_to_ptr() {
// Ownership of the value at the backing storage for an argument is passed to the
// callee per the ABI, so it is fine to borrow the backing storage of this argument
// to prevent a copy.
let place = if let Some(meta) = meta {
CPlace::for_ptr_with_extra(addr, meta, val.layout())
} else {
CPlace::for_ptr(addr, val.layout())
};
self::comments::add_local_place_comments(fx, place, local);
assert_eq!(fx.local_map.push(place), local);
continue;
}
}
let layout = fx.layout_of(ty);
let is_ssa = ssa_analyzed[local].is_ssa(fx, ty);
let place = make_local_place(fx, local, layout, is_ssa);
assert_eq!(fx.local_map.push(place), local);
match arg_kind {
ArgKind::Normal(param) => {
if let Some(param) = param {
place.write_cvalue(fx, param);
}
}
ArgKind::Spread(params) => {
for (i, param) in params.into_iter().enumerate() {
if let Some(param) = param {
place.place_field(fx, FieldIdx::new(i)).write_cvalue(fx, param);
}
}
}
}
}
for local in fx.mir.vars_and_temps_iter() {
let ty = fx.monomorphize(fx.mir.local_decls[local].ty);
let layout = fx.layout_of(ty);
let is_ssa = ssa_analyzed[local].is_ssa(fx, ty);
let place = make_local_place(fx, local, layout, is_ssa);
assert_eq!(fx.local_map.push(place), local);
}
fx.bcx.ins().jump(*fx.block_map.get(START_BLOCK).unwrap(), &[]);
}
struct CallArgument<'tcx> {
value: CValue<'tcx>,
is_owned: bool,
}
// FIXME avoid intermediate `CValue` before calling `adjust_arg_for_abi`
fn codegen_call_argument_operand<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
operand: &Operand<'tcx>,
) -> CallArgument<'tcx> {
CallArgument {
value: codegen_operand(fx, operand),
is_owned: matches!(operand, Operand::Move(_)),
}
}
pub(crate) fn codegen_terminator_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
source_info: mir::SourceInfo,
func: &Operand<'tcx>,
args: &[Spanned<Operand<'tcx>>],
destination: Place<'tcx>,
target: Option<BasicBlock>,
) {
let func = codegen_operand(fx, func);
let fn_sig = func.layout().ty.fn_sig(fx.tcx);
let ret_place = codegen_place(fx, destination);
// Handle special calls like intrinsics and empty drop glue.
let instance = if let ty::FnDef(def_id, fn_args) = *func.layout().ty.kind() {
let instance = ty::Instance::expect_resolve(
fx.tcx,
ty::TypingEnv::fully_monomorphized(),
def_id,
fn_args,
source_info.span,
);
if is_call_from_compiler_builtins_to_upstream_monomorphization(fx.tcx, instance) {
if target.is_some() {
let caller_def = fx.instance.def_id();
let e = CompilerBuiltinsCannotCall {
span: fx.tcx.def_span(caller_def),
caller: with_no_trimmed_paths!(fx.tcx.def_path_str(caller_def)),
callee: with_no_trimmed_paths!(fx.tcx.def_path_str(def_id)),
};
fx.tcx.dcx().emit_err(e);
} else {
fx.bcx.ins().trap(TrapCode::user(2).unwrap());
return;
}
}
if fx.tcx.symbol_name(instance).name.starts_with("llvm.") {
crate::intrinsics::codegen_llvm_intrinsic_call(
fx,
&fx.tcx.symbol_name(instance).name,
args,
ret_place,
target,
source_info.span,
);
return;
}
match instance.def {
InstanceKind::Intrinsic(_) => {
match crate::intrinsics::codegen_intrinsic_call(
fx,
instance,
args,
ret_place,
target,
source_info,
) {
Ok(()) => return,
Err(instance) => Some(instance),
}
}
InstanceKind::DropGlue(_, None) | ty::InstanceKind::AsyncDropGlueCtorShim(_, None) => {
// empty drop glue - a nop.
let dest = target.expect("Non terminating drop_in_place_real???");
let ret_block = fx.get_block(dest);
fx.bcx.ins().jump(ret_block, &[]);
return;
}
_ => Some(instance),
}
} else {
None
};
let extra_args = &args[fn_sig.inputs().skip_binder().len()..];
let extra_args = fx.tcx.mk_type_list_from_iter(
extra_args.iter().map(|op_arg| fx.monomorphize(op_arg.node.ty(fx.mir, fx.tcx))),
);
let fn_abi = if let Some(instance) = instance {
FullyMonomorphizedLayoutCx(fx.tcx).fn_abi_of_instance(instance, extra_args)
} else {
FullyMonomorphizedLayoutCx(fx.tcx).fn_abi_of_fn_ptr(fn_sig, extra_args)
};
let is_cold = if fn_sig.abi() == ExternAbi::RustCold {
true
} else {
instance.is_some_and(|inst| {
fx.tcx.codegen_fn_attrs(inst.def_id()).flags.contains(CodegenFnAttrFlags::COLD)
})
};
if is_cold {
fx.bcx.set_cold_block(fx.bcx.current_block().unwrap());
if let Some(destination_block) = target {
fx.bcx.set_cold_block(fx.get_block(destination_block));
}
}
// Unpack arguments tuple for closures
let mut args = if fn_sig.abi() == ExternAbi::RustCall {
let (self_arg, pack_arg) = match args {
[pack_arg] => (None, codegen_call_argument_operand(fx, &pack_arg.node)),
[self_arg, pack_arg] => (
Some(codegen_call_argument_operand(fx, &self_arg.node)),
codegen_call_argument_operand(fx, &pack_arg.node),
),
_ => panic!("rust-call abi requires one or two arguments"),
};
let tupled_arguments = match pack_arg.value.layout().ty.kind() {
ty::Tuple(ref tupled_arguments) => tupled_arguments,
_ => bug!("argument to function with \"rust-call\" ABI is not a tuple"),
};
let mut args = Vec::with_capacity(1 + tupled_arguments.len());
args.extend(self_arg);
for i in 0..tupled_arguments.len() {
args.push(CallArgument {
value: pack_arg.value.value_field(fx, FieldIdx::new(i)),
is_owned: pack_arg.is_owned,
});
}
args
} else {
args.iter().map(|arg| codegen_call_argument_operand(fx, &arg.node)).collect::<Vec<_>>()
};
// Pass the caller location for `#[track_caller]`.
if instance.is_some_and(|inst| inst.def.requires_caller_location(fx.tcx)) {
let caller_location = fx.get_caller_location(source_info);
args.push(CallArgument { value: caller_location, is_owned: false });
}
let args = args;
assert_eq!(fn_abi.args.len(), args.len());
#[derive(Copy, Clone)]
enum CallTarget {
Direct(FuncRef),
Indirect(SigRef, Value),
}
let (func_ref, first_arg_override) = match instance {
// Trait object call
Some(Instance { def: InstanceKind::Virtual(_, idx), .. }) => {
if fx.clif_comments.enabled() {
let nop_inst = fx.bcx.ins().nop();
fx.add_comment(
nop_inst,
with_no_trimmed_paths!(format!(
"virtual call; self arg pass mode: {:?}",
fn_abi.args[0]
)),
);
}
let (ptr, method) = crate::vtable::get_ptr_and_method_ref(fx, args[0].value, idx);
let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi);
let sig = fx.bcx.import_signature(sig);
(CallTarget::Indirect(sig, method), Some(ptr.get_addr(fx)))
}
// Normal call
Some(instance) => {
let func_ref = fx.get_function_ref(instance);
(CallTarget::Direct(func_ref), None)
}
// Indirect call
None => {
if fx.clif_comments.enabled() {
let nop_inst = fx.bcx.ins().nop();
fx.add_comment(nop_inst, "indirect call");
}
let func = func.load_scalar(fx);
let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi);
let sig = fx.bcx.import_signature(sig);
(CallTarget::Indirect(sig, func), None)
}
};
self::returning::codegen_with_call_return_arg(fx, &fn_abi.ret, ret_place, |fx, return_ptr| {
let mut call_args = return_ptr
.into_iter()
.chain(first_arg_override.into_iter())
.chain(
args.into_iter()
.enumerate()
.skip(if first_arg_override.is_some() { 1 } else { 0 })
.flat_map(|(i, arg)| {
adjust_arg_for_abi(fx, arg.value, &fn_abi.args[i], arg.is_owned).into_iter()
}),
)
.collect::<Vec<Value>>();
// FIXME: Find a cleaner way to support varargs.
if fn_abi.c_variadic {
adjust_call_for_c_variadic(fx, &fn_abi, source_info, func_ref, &mut call_args);
}
if fx.clif_comments.enabled() {
let nop_inst = fx.bcx.ins().nop();
with_no_trimmed_paths!(fx.add_comment(nop_inst, format!("abi: {:?}", fn_abi)));
}
match func_ref {
CallTarget::Direct(func_ref) => fx.bcx.ins().call(func_ref, &call_args),
CallTarget::Indirect(sig, func_ptr) => {
fx.bcx.ins().call_indirect(sig, func_ptr, &call_args)
}
}
});
if let Some(dest) = target {
let ret_block = fx.get_block(dest);
fx.bcx.ins().jump(ret_block, &[]);
} else {
fx.bcx.ins().trap(TrapCode::user(1 /* unreachable */).unwrap());
}
fn adjust_call_for_c_variadic<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
source_info: mir::SourceInfo,
target: CallTarget,
call_args: &mut Vec<Value>,
) {
if fn_abi.conv != Conv::C {
fx.tcx.dcx().span_fatal(
source_info.span,
format!("Variadic call for non-C abi {:?}", fn_abi.conv),
);
}
let sig_ref = match target {
CallTarget::Direct(func_ref) => fx.bcx.func.dfg.ext_funcs[func_ref].signature,
CallTarget::Indirect(sig_ref, _) => sig_ref,
};
// `mem::take()` the `params` so that `fx.bcx` can be used below.
let mut abi_params = mem::take(&mut fx.bcx.func.dfg.signatures[sig_ref].params);
// Recalculate the parameters in the signature to ensure the signature contains the variadic arguments.
let has_return_arg = matches!(fn_abi.ret.mode, PassMode::Indirect { .. });
// Drop everything except the return argument (if there is one).
abi_params.truncate(if has_return_arg { 1 } else { 0 });
// Add the fixed arguments.
abi_params.extend(
fn_abi.args[..fn_abi.fixed_count as usize]
.iter()
.flat_map(|arg_abi| arg_abi.get_abi_param(fx.tcx).into_iter()),
);
let fixed_arg_count = abi_params.len();
// Add the variadic arguments.
abi_params.extend(
fn_abi.args[fn_abi.fixed_count as usize..]
.iter()
.flat_map(|arg_abi| arg_abi.get_abi_param(fx.tcx).into_iter()),
);
if fx.tcx.sess.target.is_like_osx && fx.tcx.sess.target.arch == "aarch64" {
// Add any padding arguments needed for Apple AArch64.
// There's no need to pad the argument list unless variadic arguments are actually being
// passed.
if abi_params.len() > fixed_arg_count {
// 128-bit integers take 2 registers, and everything else takes 1.
// FIXME: Add support for non-integer types
// This relies on the checks below to ensure all arguments are integer types and
// that the ABI is "C".
// The return argument isn't counted as it goes in its own dedicated register.
let integer_registers_used: usize = abi_params
[if has_return_arg { 1 } else { 0 }..fixed_arg_count]
.iter()
.map(|arg| if arg.value_type.bits() == 128 { 2 } else { 1 })
.sum();
// The ABI uses 8 registers before it starts pushing arguments to the stack. Pad out
// the registers if needed to ensure the variadic arguments are passed on the stack.
if integer_registers_used < 8 {
abi_params.splice(
fixed_arg_count..fixed_arg_count,
(integer_registers_used..8).map(|_| AbiParam::new(types::I64)),
);
call_args.splice(
fixed_arg_count..fixed_arg_count,
(integer_registers_used..8).map(|_| fx.bcx.ins().iconst(types::I64, 0)),
);
}
}
// `StructArgument` is not currently used by the `aarch64` ABI, and is therefore not
// handled when calculating how many padding arguments to use. Assert that this remains
// the case.
assert!(abi_params.iter().all(|param| matches!(
param.purpose,
// The only purposes used are `Normal` and `StructReturn`.
ArgumentPurpose::Normal | ArgumentPurpose::StructReturn
)));
}
// Check all parameters are integers.
for param in abi_params.iter() {
if !param.value_type.is_int() {
// FIXME: Set %al to upperbound on float args once floats are supported.
fx.tcx.dcx().span_fatal(
source_info.span,
format!("Non int ty {:?} for variadic call", param.value_type),
);
}
}
assert_eq!(abi_params.len(), call_args.len());
// Put the `AbiParam`s back in the signature.
fx.bcx.func.dfg.signatures[sig_ref].params = abi_params;
}
}
pub(crate) fn codegen_drop<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
source_info: mir::SourceInfo,
drop_place: CPlace<'tcx>,
target: BasicBlock,
) {
let ty = drop_place.layout().ty;
let drop_instance = Instance::resolve_drop_in_place(fx.tcx, ty);
if let ty::InstanceKind::DropGlue(_, None) | ty::InstanceKind::AsyncDropGlueCtorShim(_, None) =
drop_instance.def
{
// we don't actually need to drop anything
} else {
match ty.kind() {
ty::Dynamic(_, _, ty::Dyn) => {
// IN THIS ARM, WE HAVE:
// ty = *mut (dyn Trait)
// which is: exists<T> ( *mut T, Vtable<T: Trait> )
// args[0] args[1]
//
// args = ( Data, Vtable )
// |
// v
// /-------\
// | ... |
// \-------/
//
let (ptr, vtable) = drop_place.to_ptr_unsized();
let ptr = ptr.get_addr(fx);
let drop_fn = crate::vtable::drop_fn_of_obj(fx, vtable);
let is_null = fx.bcx.ins().icmp_imm(IntCC::Equal, drop_fn, 0);
let target_block = fx.get_block(target);
let continued = fx.bcx.create_block();
fx.bcx.ins().brif(is_null, target_block, &[], continued, &[]);
fx.bcx.switch_to_block(continued);
// FIXME(eddyb) perhaps move some of this logic into
// `Instance::resolve_drop_in_place`?
let virtual_drop = Instance {
def: ty::InstanceKind::Virtual(drop_instance.def_id(), 0),
args: drop_instance.args,
};
let fn_abi = FullyMonomorphizedLayoutCx(fx.tcx)
.fn_abi_of_instance(virtual_drop, ty::List::empty());
let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi);
let sig = fx.bcx.import_signature(sig);
fx.bcx.ins().call_indirect(sig, drop_fn, &[ptr]);
}
ty::Dynamic(_, _, ty::DynStar) => {
// IN THIS ARM, WE HAVE:
// ty = *mut (dyn* Trait)
// which is: *mut exists<T: sizeof(T) == sizeof(usize)> (T, Vtable<T: Trait>)
//
// args = [ * ]
// |
// v
// ( Data, Vtable )
// |
// v
// /-------\
// | ... |
// \-------/
//
//
// WE CAN CONVERT THIS INTO THE ABOVE LOGIC BY DOING
//
// data = &(*args[0]).0 // gives a pointer to Data above (really the same pointer)
// vtable = (*args[0]).1 // loads the vtable out
// (data, vtable) // an equivalent Rust `*mut dyn Trait`
//
// SO THEN WE CAN USE THE ABOVE CODE.
let (data, vtable) = drop_place.to_cvalue(fx).dyn_star_force_data_on_stack(fx);
let drop_fn = crate::vtable::drop_fn_of_obj(fx, vtable);
let is_null = fx.bcx.ins().icmp_imm(IntCC::Equal, drop_fn, 0);
let target_block = fx.get_block(target);
let continued = fx.bcx.create_block();
fx.bcx.ins().brif(is_null, target_block, &[], continued, &[]);
fx.bcx.switch_to_block(continued);
let virtual_drop = Instance {
def: ty::InstanceKind::Virtual(drop_instance.def_id(), 0),
args: drop_instance.args,
};
let fn_abi = FullyMonomorphizedLayoutCx(fx.tcx)
.fn_abi_of_instance(virtual_drop, ty::List::empty());
let sig = clif_sig_from_fn_abi(fx.tcx, fx.target_config.default_call_conv, &fn_abi);
let sig = fx.bcx.import_signature(sig);
fx.bcx.ins().call_indirect(sig, drop_fn, &[data]);
}
_ => {
assert!(!matches!(drop_instance.def, InstanceKind::Virtual(_, _)));
let fn_abi = FullyMonomorphizedLayoutCx(fx.tcx)
.fn_abi_of_instance(drop_instance, ty::List::empty());
let arg_value = drop_place.place_ref(
fx,
fx.layout_of(Ty::new_mut_ref(fx.tcx, fx.tcx.lifetimes.re_erased, ty)),
);
let arg_value = adjust_arg_for_abi(fx, arg_value, &fn_abi.args[0], true);
let mut call_args: Vec<Value> = arg_value.into_iter().collect::<Vec<_>>();
if drop_instance.def.requires_caller_location(fx.tcx) {
// Pass the caller location for `#[track_caller]`.
let caller_location = fx.get_caller_location(source_info);
call_args.extend(
adjust_arg_for_abi(fx, caller_location, &fn_abi.args[1], false).into_iter(),
);
}
let func_ref = fx.get_function_ref(drop_instance);
fx.bcx.ins().call(func_ref, &call_args);
}
}
}
let target_block = fx.get_block(target);
fx.bcx.ins().jump(target_block, &[]);
}