Add the basics to get the operating system running, including how to
exit the operating system.
Since Xous has no libc, there is no default entrypoint. Add a `_start`
entrypoint to the system-specific os module.
Signed-off-by: Sean Cross <sean@xobs.io>
Xous has no C FFI. Instead, all FFI is done via syscalls that are
specified in Rust. Add these FFI calls to libstd, as well as some of the
currently-supported syscalls.
This enables Rust programs to interact with the Xous operating system
while avoiding adding an extra dependency to libstd.
Signed-off-by: Sean Cross <sean@xobs.io>
Fix UB in `std::sys::os::getenv()`
Fixes#114949.
Reduced the loops to 1k iterations (100k was taking way too long), Miri no longer shows any UB.
`@rustbot` label +A-process +C-bug +I-unsound +O-unix
rustdoc: Add lint `redundant_explicit_links`
Closes#87799.
- Lint warns by default
- Reworks link parser to cache original link's display text
r? `@jyn514`
Usage zero as language id for `FormatMessageW()`
This switches the language selection from using system language (note that this might be different than application language, typically stored as thread ui language) to use `FormatMessageW` default search strategy, which is `neutral` first, then `thread ui lang`, then `user language`, then `system language`, then `English`. (See https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessagew)
This allows the Rust program to take more control of `std::io::Error`'s message field, by setting up thread ui language themselves before hand (which many programs already do).
Increase clarity about Hash - Eq consistency in HashMap and HashSet docs
As discussed [here](https://users.rust-lang.org/t/what-hapens-if-hash-and-partialeq-dont-match-when-using-hashmap/98052/13) the description of logic errors in `HashMap` and `HashSet` does not explicitly apply to
```text
k1 == k2 -> hash(k1) == hash(k2)
```
but this is likely what is intended.
This PR is a small doc change to correct this.
r? rust-lang/libs
Add the following facts:
* `handle_alloc_error` may panic instead of aborting.
* What happens if a hook returns rather than diverging.
* A hook may panic. (This was already demonstrated in an example,
but not stated in prose.)
* A hook must be sound to call — it cannot assume that it is only
called by the runtime, since its function pointer can be retrieved by
safe code.
Add `modulo` and `mod` as doc aliases for `rem_euclid`.
When I was learning Rust I looked for “a modulo function” and couldn’t find one, so thought I had to write my own; it wasn't at all obvious that a function with “rem” in the name was the function I wanted. Hopefully this will save the next learner from that.
However, it does have the disadvantage that the top results in rustdoc for “mod” are now these aliases instead of the Rust keyword, which probably isn't ideal.
Add doc aliases for trigonometry and other f32,f64 methods.
These are common alternate names, usually a less-abbreviated form, for the operation; e.g. `arctan` instead of `atan`. Prompted by <https://users.rust-lang.org/t/64-bit-trigonometry/98599>
When I was learning Rust I looked for “a modulo function” and couldn’t
find one, so thought I had to write my own; it wasn't at all obvious
that a function with “rem” in the name was the function I wanted.
Hopefully this will save the next learner from that.
However, it does have the disadvantage that the top results in rustdoc
for “mod” are now these aliases instead of the Rust keyword, which
probably isn't ideal.
Synchronize with all calls to `unpark` in id-based thread parker
[The documentation for `thread::park`](https://doc.rust-lang.org/nightly/std/thread/fn.park.html#memory-ordering) guarantees that "park synchronizes-with all prior unpark operations". In the id-based thread parking implementation, this is not implemented correctly, as the state variable is reset with a simple store, so there will not be a *synchronizes-with* edge if an `unpark` happens just before the reset. This PR corrects this, replacing the load-check-reset sequence with a single `compare_exchange`.
Partially revert #107200
`Ok(0)` is indeed something the caller may interpret as an error, but
that's the *correct* thing to return if the writer can't accept any more
bytes.
Improve docs for impl Default for ExitStatus
This addresses a review comment in #106425 (which is on the way to being merged I think).
Some of the other followup work is more complicated so I'm going to do individual MRs.
~~Note this branch is on top of #106425~~
std: add some missing repr(transparent)
For some types we don't want to stably guarantee this, so hide the `repr` from rustdoc. This nice approach was suggested by `@thomcc.`
add a csky-unknown-linux-gnuabiv2 target
This is the rustc side changes to support csky based Linux target(`csky-unknown-linux-gnuabiv2`).
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I pledge to do my best maintaining it.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
This `csky` section is the arch name and the `unknown-linux` section is the same as other linux target, and `gnuabiv2` is from the cross-compile toolchain of `gcc`
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I think the explanation in platform support doc is enough to make this aspect clear.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
It's using open source tools only.
> The target must not introduce license incompatibilities.
No new license
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
There are no new dependencies/features required.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
As previously said it's using open source tools only.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
There are no such terms present/
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
I'm not the reviewer here.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
I'm not the reviewer here.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
It supports for std
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
I have added the documentation, and I think it's clear.
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Understood.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
I believe I didn't break any other target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I think there are no such problems in this PR.
* remove `impl Provider for Error`
* rename `Demand` to `Request`
* update docstrings to focus on the conceptual API provided by `Request`
* move `core::any::{request_ref, request_value}` functions into `core::error`
* move `core::any::tag`, `core::any::Request`, an `core::any::TaggedOption` into `core::error`
* replace `provide_any` feature name w/ `error_generic_member_access`
* move `core::error::request_{ref,value} tests into core::tests::error module
* update unit and doc tests
reduce deps for windows-msvc targets for backtrace
(eventually) mirrors https://github.com/rust-lang/backtrace-rs/pull/543
Some dependencies of backtrace don't used on windows-msvc targets, so exclude them:
miniz_oxide (+ adler)
addr2line (+ gimli)
object (+ memchr)
This saves about 30kb of std.dll + 17.5mb of rlibs
[library/std] Replace condv while loop with `cvar.wait_while`.
`wait_while` takes care of spurious wake-ups in centralized place, reducing chances for mistakes and potential future optimizations (who knows, maybe in future there will be no spurious wake-ups? :)
Inline trivial (noop) flush calls
At work I noticed that `writer.flush()?` didn't get optimized away in cases where the flush is obviously a no-op, which I had expected (well, desired).
I went through and added `#[inline]` to a bunch of cases that were obviously noops, or delegated to ones that were obviously noops. I omitted platforms I don't have access to (some tier3). I didn't do this very scientifically, in cases where it was non-obvious I left `#[inline]` off.
Rollup of 6 pull requests
Successful merges:
- #113939 (open pidfd in child process and send to the parent via SOCK_SEQPACKET+CMSG)
- #114548 (Migrate a trait selection error to use diagnostic translation)
- #114606 (fix: not insert missing lifetime for `ConstParamTy`)
- #114634 (Mention riscv64-linux-android support in Android documentation)
- #114638 (Remove old RPITIT tests (revisions were removed))
- #114641 (Rename copying `ascii::Char` methods from `as_` to `to_`)
r? `@ghost`
`@rustbot` modify labels: rollup
open pidfd in child process and send to the parent via SOCK_SEQPACKET+CMSG
This avoids using `clone3` when a pidfd is requested while still getting it in a 100% race-free manner by passing it up from the child process.
This should solve most concerns in #82971
Make ExitStatus implement Default
And, necessarily, make it inhabited even on platforms without processes.
I noticed while preparing https://github.com/rust-lang/rfcs/pull/3362 that there was no way for anyone to construct an `ExitStatus`.
This would be insta-stable so needs an FCP.
unix/kernel_copy.rs: copy_file_range_candidate allows empty output files
This is for https://github.com/rust-lang/rust/issues/114341
The `meta.len() > 0` condition here is intended for inputs only, ie. when input is in the `/proc` filesystem as documented.
That inaccurately included empty output files which are then shunted to the sendfile() routine leading to higher than nescessary IO util in some cases, specifically with CoW filesystems like btrfs.
Simply, determine what is input or output given the passed boolean.
This is for https://github.com/rust-lang/rust/issues/114341
The `meta.len() > 0` condition here is intended for inputs only,
ie. when input is in the `/proc` filesystem as documented.
That inaccurately included empty output files which are then shunted to
the sendfile() routine leading to higher than nescessary IO util in some
cases, specifically with CoW filesystems like btrfs.
Further, `NoneObtained` is not relevant in this context, so remove it.
Simply, determine what is input or output given the passed enum Unit.
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
The extra `\0` in this commit is needed because the assertion on line 49 will fail otherwise (as `skip_until` stops reading on EOF and therefore does not read a trailing `\0`, returning 6 read bytes rather than the expected 7)
`wait_while` takes care of spurious wake-ups in centralized place,
reducing chances for mistakes and potential future optimizations
(who knows, maybe in future there will be no spurious wake-ups? :)
WASI threads, implementation of wasm32-wasi-preview1-threads target
This PR adds a target proposed in https://github.com/rust-lang/compiler-team/issues/574 by `@abrown` and implementation of `std:🧵:spawn` for the target `wasm32-wasi-preview1-threads`
### Tier 3 Target Policy
As tier 3 targets, the new targets are required to adhere to [the tier 3 target policy](https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-3-target-policy) requirements. This section quotes each requirement in entirety and describes how they are met.
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
See [src/doc/rustc/src/platform-support/wasm32-wasi-preview1-threads.md](https://github.com/rust-lang/rust/pull/112922/files#diff-a48ee9d94f13e12be24eadd08eb47b479c153c340eeea4ef22276d876dfd4f3e).
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
The target is using the same name for $ARCH=wasm32 and $OS=wasi as existing Rust targets. The suffix `preview1` introduced to accurately set expectations because eventually this target will be deprecated and follows [MCP 607](https://github.com/rust-lang/compiler-team/issues/607). The suffix `threads` indicates that it’s an extension that enables threads to the existing target and it follows [MCP 574](https://github.com/rust-lang/compiler-team/issues/574) which describes the rationale behind introducing a separate target.
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
This PR does not introduce any new dependency.
The new target doesn’t support building host tools.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
The full standard library is available for this target as it’s an extension to an existing target that has already supported it.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Only manual test running is supported at the moment with some tweaks in the test runner codebase. For build and running tests see [src/doc/rustc/src/platform-support/wasm32-wasi-preview1-threads.md](https://github.com/rust-lang/rust/pull/112922/files#diff-a48ee9d94f13e12be24eadd08eb47b479c153c340eeea4ef22276d876dfd4f3e).
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> - This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I acknowledge these requirements and intend to ensure they are met.
Change default panic handler message format.
This changes the default panic hook's message format from:
```
thread '{thread}' panicked at '{message}', {location}
```
to
```
thread '{thread}' panicked at {location}:
{message}
```
This puts the message on its own line without surrounding quotes, making it easiser to read. For example:
Before:
```
thread 'main' panicked at 'env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`', src/main.rs:4:6
```
After:
```
thread 'main' panicked at src/main.rs:4:6:
env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`
```
---
See this PR by `@nyurik,` which does that for only multi-line messages (specifically because of `assert_eq`): https://github.com/rust-lang/rust/pull/111071
This is the change that does that for *all* panic messages.
Re-export core::ffi::FromBytesUntilNulError in std::ffi
Like the other CStr and CString error types, make a re-export for std::ffi::FromBytesUntilNulError.
This seems to have slipped through the cracks in the cstr_from_bytes_until_nul implementation and core_c_str migration.
Tracking Issue: #95027
Make `Debug` representations of `[Lazy, Once]*[Cell, Lock]` consistent with `Mutex` and `RwLock`
`Mutex` prints `<locked>` as a field value when its inner value cannot be accessed, but the lazy types print a fixed string like "`OnceCell(Uninit)`". This could cause confusion if the inner type is a unit type named `Uninit` and does not respect the pretty-printing flag. With this change, the format message is now "`OnceCell(<uninit>)`", consistent with `Mutex`.
Use `LazyLock` to lazily resolve backtraces
By using TAIT to name the initializing closure, `LazyLock` can be used to replace the current `LazilyResolvedCapture`.
merge functionality of `io::Sink` into `io::Empty`
Many times, there is a need for a simple dummy `io::Read`er + `io::Write`r, but currently the only options are `io::Empty` and `io::Sink` respectively. Having both of their functionality together requires writing your own boilerplate for something that makes sense to have in the standard library. This PR adds the functionality of `io::Sink` to `io::Empty`, making `io::Empty` be able to perform the tasks of both of the previous structs. (This idea was first mentioned in #24235)
Note: I also updated some doc comments in `io::utils` in this pull request to fix inconsistencies between `io::Sink` and `io::Empty`.
API Change Proposal: https://github.com/rust-lang/libs-team/issues/49
Make std tests pass on newer Android
Newer versions of Android forbid the creation of hardlinks as well as Unix domain sockets in the /data filesystem via SELinux rules, which causes several tests depending on this behavior to fail. So let's skip these tests on Android if we see an EACCES from one of these syscalls. To achieve this, introduce a macro with the horrible name of or_panic_or_skip_on_android_eacces (better suggestions welcome) which skips (returns from) the test if an EACCES return value is seen on Android.
Add `x86_64-unikraft-linux-musl` target
This introduces `x86_64-unikraft-linux-musl` as the first Rust target for the [Unikraft] Unikernel Development Kit.
[Unikraft]: https://unikraft.org/
Unikraft imitates Linux and uses musl as libc.
It is extremely configurable, and does not even provide a `poll` implementation or a network stack, unless enabled by the end user who compiles the application.
Our approach for integrating the build process with `rustc` is to hide the build process as well as the actual final linking step behind a linker-shim (`kraftld`, see https://github.com/unikraft/kraftkit/issues/612).
## Tier 3 target policy
> - A tier 3 target must have a designated developer or developers (the "target
> maintainers") on record to be CCed when issues arise regarding the target.
> (The mechanism to track and CC such developers may evolve over time.)
I will be the target maintainer.
> - Targets must use naming consistent with any existing targets; for instance, a
> target for the same CPU or OS as an existing Rust target should use the same
> name for that CPU or OS. Targets should normally use the same names and
> naming conventions as used elsewhere in the broader ecosystem beyond Rust
> (such as in other toolchains), unless they have a very good reason to
> diverge. Changing the name of a target can be highly disruptive, especially
> once the target reaches a higher tier, so getting the name right is important
> even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless
> absolutely necessary to maintain ecosystem compatibility. For example, if
> the name of the target makes people extremely likely to form incorrect
> beliefs about what it targets, the name should be changed or augmented to
> disambiguate it.
> - If possible, use only letters, numbers, dashes and underscores for the name.
> Periods (`.`) are known to cause issues in Cargo.
The target name `x86_64-unikraft-linux-musl` was derived from `x86_64-unknown-linux-musl`, setting Unikraft as vendor.
Unikraft exactly imitates Linux + musl.
> - Tier 3 targets may have unusual requirements to build or use, but must not
> create legal issues or impose onerous legal terms for the Rust project or for
> Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust
> license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other
> host (even when supporting cross-compilation to the target) to depend
> on any new dependency less permissive than the Rust licensing policy. This
> applies whether the dependency is a Rust crate that would require adding
> new license exceptions (as specified by the `tidy` tool in the
> rust-lang/rust repository), or whether the dependency is a native library
> or binary. In other words, the introduction of the target must not cause a
> user installing or running a version of Rust or the Rust tools to be
> subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other
> code for the target (whether hosted on the target itself or cross-compiling
> from another target) must not depend on proprietary (non-FOSS) libraries.
> Host tools built for the target itself may depend on the ordinary runtime
> libraries supplied by the platform and commonly used by other applications
> built for the target, but those libraries must not be required for code
> generation for the target; cross-compilation to the target must not require
> such libraries at all. For instance, `rustc` built for the target may
> depend on a common proprietary C runtime library or console output library,
> but must not depend on a proprietary code generation library or code
> optimization library. Rust's license permits such combinations, but the
> Rust project has no interest in maintaining such combinations within the
> scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous"
> legal/licensing terms include but are *not* limited to: non-disclosure
> requirements, non-compete requirements, contributor license agreements
> (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
> requirements conditional on the employer or employment of any particular
> Rust developers, revocable terms, any requirements that create liability
> for the Rust project or its developers or users, or any requirements that
> adversely affect the livelihood or prospects of the Rust project or its
> developers or users.
No dependencies were added to Rust.
Requirements for linking are [Unikraft] and [KraftKit] (both BSD-3-Clause), but none of these are added to Rust.
[KraftKit]: https://github.com/unikraft/kraftkit
> - Neither this policy nor any decisions made regarding targets shall create any
> binding agreement or estoppel by any party. If any member of an approving
> Rust team serves as one of the maintainers of a target, or has any legal or
> employment requirement (explicit or implicit) that might affect their
> decisions regarding a target, they must recuse themselves from any approval
> decisions regarding the target's tier status, though they may otherwise
> participate in discussions.
> - This requirement does not prevent part or all of this policy from being
> cited in an explicit contract or work agreement (e.g. to implement or
> maintain support for a target). This requirement exists to ensure that a
> developer or team responsible for reviewing and approving a target does not
> face any legal threats or obligations that would prevent them from freely
> exercising their judgment in such approval, even if such judgment involves
> subjective matters or goes beyond the letter of these requirements.
Understood.
I am not a member of a Rust team.
> - Tier 3 targets should attempt to implement as much of the standard libraries
> as possible and appropriate (`core` for most targets, `alloc` for targets
> that can support dynamic memory allocation, `std` for targets with an
> operating system or equivalent layer of system-provided functionality), but
> may leave some code unimplemented (either unavailable or stubbed out as
> appropriate), whether because the target makes it impossible to implement or
> challenging to implement. The authors of pull requests are not obligated to
> avoid calling any portions of the standard library on the basis of a tier 3
> target not implementing those portions.
Understood.
`std` is supported.
> - The target must provide documentation for the Rust community explaining how
> to build for the target, using cross-compilation if possible. If the target
> supports running binaries, or running tests (even if they do not pass), the
> documentation must explain how to run such binaries or tests for the target,
> using emulation if possible or dedicated hardware if necessary.
Building is described in the platform support doc.
It will be updated once proper `kraftld` support has landed.
> - Tier 3 targets must not impose burden on the authors of pull requests, or
> other developers in the community, to maintain the target. In particular,
> do not post comments (automated or manual) on a PR that derail or suggest a
> block on the PR based on a tier 3 target. Do not send automated messages or
> notifications (via any medium, including via ``@`)` to a PR author or others
> involved with a PR regarding a tier 3 target, unless they have opted into
> such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to
> an issue or PR are not considered a violation of this policy, within
> reason. However, such messages (even on a separate repository) must not
> generate notifications to anyone involved with a PR who has not requested
> such notifications.
Understood.
> - Patches adding or updating tier 3 targets must not break any existing tier 2
> or tier 1 target, and must not knowingly break another tier 3 target without
> approval of either the compiler team or the maintainers of the other tier 3
> target.
> - In particular, this may come up when working on closely related targets,
> such as variations of the same architecture with different features. Avoid
> introducing unconditional uses of features that another variation of the
> target may not have; use conditional compilation or runtime detection, as
> appropriate, to let each target run code supported by that target.
I don't think this PR breaks anything.
r? compiler-team
fix docs & example for `std::os::unix::prelude::FileExt::write_at`
Changelog:
* used `File::create` instead of `File::read` to get a writeable file
* explicity mentioned the bug with `pwrite64` in docs
Unfortunately, I don't think that there is really much we can do about this since the feature has already been stabilised.
We could potentially add a clippy lint warning people on Linux that using `write_at` with the `O_APPEND` flag does not exhibit the behaviour that they would have assumed.
fixes#113627
Allow limited access to `OsString` bytes
This extends #109698 to allow no-cost conversion between `Vec<u8>` and `OsString` as suggested in feedback from `os_str_bytes` crate in #111544.
std: remove an allocation in `Path::with_extension`
`Path::with_extension` used to reallocate (and copy) paths twice per call, now it does it once, by checking the size of the previous and new extensions it's possible to call `PathBuf::with_capacity` and pass the exact capacity required.
This also reduces the memory consumption of the path returned from `Path::with_extension` by using exact capacity instead of using amortized exponential growth.
Update documentation for std::process::Command's new method
In the current documentation, it's not specified that when creating a Command, the .exe extension can be omitted for Windows executables. However, for other types of executable files like .bat or .cmd, the complete filename including the extension must be provided.
I encountered it by noticing that `Command::new("wt").spawn().unwrap()` succeeds on my machine while `Command::new("code").spawn().unwrap()` panics. Turns out VS Code's entrypoint is .cmd file.
`resolve_exe` method mentions this behaviour in [a comment](e7fda447e7/library/std/src/sys/windows/process.rs (L425)), but it makes sense to mention it at a more visible place.
I've added this clarification to the documentation, which should make it more accurate and helpful for Rust developers working on the Windows platform.
Implement rust-lang/compiler-team#578.
When an ICE is encountered on nightly releases, the new rustc panic
handler will also write the contents of the backtrace to disk. If any
`delay_span_bug`s are encountered, their backtrace is also added to the
file. The platform and rustc version will also be collected.
In the current documentation, it's not specified that when creating
a Command, the .exe extension can be omitted for Windows executables.
However, for other types of executable files like .bat or .cmd,
the complete filename including the extension must be provided.
I encountered it by noticing that `Command::new("wt").spawn().unwrap()`
succeeds on my machine while `Command::new("code").spawn().unwrap()`
panics. Turns out VS Code's entrypoint is .cmd file.
`resolve_exe` method mentions this behaviour in a comment[1], but it
makes sense to mention it at more visible place.
I've added this clarification to the documentation, which should
make it more accurate and helpful for Rust developers
working on the Windows platform.
[1] e7fda447e7/library/std/src/sys/windows/process.rs (L425)
Like the other CStr and CString error types, make a re-export for
std::ffi::FromBytesUntilNulError.
This seems to have slipped through the cracks in the
cstr_from_bytes_until_nul implementation and core_c_str migration.
Tracking Issue: #95027
Adjustments for RustyHermit
The interface between `libstd` and the OS changed and some changes are not correctly merged for RustHermit. For instance, the crate `hermit_abi` isn't defined as public, although it provided the socket interface for the application.
In addition, the support of thread::available_parallelism is realized. It returns the number of available processors.
Add `Read`, `Write` and `Seek` impls for `Arc<File>` where appropriate
If `&T` implements these traits, `Arc<T>` has no reason not to do so
either. This is useful for operating system handles like `File` or
`TcpStream` which don't need a mutable reference to implement these
traits.
CC #53835.
CC #94744.
move pal cfgs in f32 and f64 to sys
I'd like to push forward on `sys` being a separate crate. To start with, most of these PAL exception cases are very simple little bits of code like this, so I thought I would try tidying them up.
Revert the lexing of `c"…"` string literals
Fixes \[after beta-backport\] #113235.
Further progress is tracked in #113333.
This PR *manually* reverts parts of #108801 (since a git-revert would've been too coarse-grained & messy)
and git-reverts #111647.
CC `@fee1-dead` (#108801) `@klensy` (#111647)
r? `@compiler-errors`
`@rustbot` label F-c_str_literals beta-nominated
`Path::with_extension` used to reallocate (and copy) paths twice per
call, now it does it once, by checking the size of the previous and new
extensions it's possible to call `PathBuf::with_capacity` and pass the
exact capacity it takes.
Also reduce the memory consumption of the path returned from
`Path::with_extension` by using exact capacity instead of using
amortized exponential growth.
Move windows-sys arm32 shim to c.rs
This moves the arm32 shim in to c.rs instead of appending to the generated file itself.
This makes it simpler to change these workarounds if/when needed. The downside is we need to exclude a couple of functions from being generated (see the comment). A metadata solution could help here but they'll be easy enough to add back if that happens.
Remove unnecessary `path` attribute
Follow up to #111401. I missed this at the time but it should now be totally unnecessary since the other include was removed.
r? `@workingjubilee`
Implement `Sync` for `mpsc::Sender`
`mpsc::Sender` is currently `!Sync` because the previous implementation contained an optimization where the channel started out as single-producer and was dynamically upgraded on the first clone, which relied on a unique reference to the sender. This optimization is one of the main reasons the old implementation was so complex and was removed in #93563. `mpsc::Sender` can now soundly implement `Sync`.
Note for any potential confusion, this chance does *not* add MPMC behavior. This only affects the already `Send + Clone` *sender*, not *receiver*.
It's technically possible to rely on the `!Sync` behavior in the same way as a `PhantomData<*mut T>`, but that seems very unlikely in practice. Either way, this change is insta-stable and needs an FCP.
`@rustbot` label +T-libs-api -T-libs
If `&T` implements these traits, `Arc<T>` has no reason not to do so
either. This is useful for operating system handles like `File` or
`TcpStream` which don't need a mutable reference to implement these
traits.
CC #53835.
CC #94744.
Document memory orderings of `thread::{park, unpark}`
Document `thread::park/unpark` as having acquire/release synchronization. Without that guarantee, even the example in the documentation can deadlock:
```rust
let flag = Arc::new(AtomicBool::new(false));
let t2 = thread::spawn(move || {
while !flag.load(Ordering::Acquire) {
thread::park();
}
});
flag.store(true, Ordering::Release);
t2.thread().unpark();
// t1: flag.store(true)
// t1: thread.unpark()
// t2: flag.load() == false
// t2 now parks, is immediately unblocked but never
// acquires the flag, and thus spins forever
```
Multiple calls to `unpark` should also maintain a release sequence to make sure operations released by previous `unpark`s are not lost:
```rust
let a = Arc::new(AtomicBool::new(false));
let b = Arc::new(AtomicBool::new(false));
let t2 = thread::spawn(move || {
while !a.load(Ordering::Acquire) || !b.load(Ordering::Acquire) {
thread::park();
}
});
thread::spawn(move || {
a.store(true, Ordering::Release);
t2.thread().unpark();
});
b.store(true, Ordering::Release);
t2.thread().unpark();
// t1: a.store(true)
// t1: t2.unpark()
// t3: b.store(true)
// t3: t2.unpark()
// t2 now parks, is immediately unblocked but never
// acquires the store of `a`, only the store of `b` which
// was released by the most recent unpark, and thus spins forever
```
This is of course a contrived example, but is reasonable to rely upon in real code.
Note that all implementations of park/unpark already comply with the rules, it's just undocumented.
io: soften ‘at most one write attempt’ requirement in io::Write::write
At the moment, documentation of std::io::Write::write indicates that
call to it ‘represents at most one attempt to write to any wrapped
object’. It seems that such wording was put there to contrast it with
pre-1.0 interface which attempted to write all the data (it has since
been changed in [RFC 517]).
However, the requirement puts unnecessary constraints and may
complicate adaptors which perform non-trivial transformations on the
data. For example, they may maintain an internal buffer which needs
to be written out before the write method accepts more data. It might
be natural to code the method such that it flushes the buffer and then
grabs another chunk of user data. With the current wording in the
documentation, the adaptor would be forced to return Ok(0).
This commit softens the wording such that implementations can choose
code structure which makes most sense for their particular use case.
While at it, elaborate on the meaning of `Ok(0)` return pointing out
that the write_all methods interprets it as an error.
[RFC 517]: https://rust-lang.github.io/rfcs/0517-io-os-reform.html
fix: get the l4re target working again
This is based on work from https://github.com/rust-lang/rust/pull/103966, addressing the review comment by `@m-ou-se` at the time and "fixing" the (probably newly) missing read_buf.
Rollup of 6 pull requests
Successful merges:
- #112352 (Fix documentation build on FreeBSD)
- #112644 (Correct types in method descriptions of `NonZero*` types)
- #112683 (fix ICE on specific malformed asm clobber_abi)
- #112707 ([rustdoc] Fix invalid handling of "going back in history" when "go to only search result" setting is enabled)
- #112719 (Replace fvdl with ffx, allow test without install)
- #112728 (Add `<meta charset="utf-8">` to `-Zdump-mir-spanview` output)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix documentation build on FreeBSD
After the socket ancillary data implementation was introduced, the documentation build was broken on FreeBSD hosts, add the same workaround as for the existing implementations.
Fixes the doc build after #91793
previously it was only able to use BufWriter. This was due to a limitation in the
BufReader generics that prevented specialization. This change works around the issue
by using `where Self: Read` instead of `where I: Read`. This limits our options, e.g.
we can't access BufRead methods, but it happens to work out if we rely on some
implementation details.
Fix building libstd documentation on FreeBSD.
It fixes the following error:
```
error[E0412]: cannot find type `sockcred2` in module `libc`
--> library/std/src/os/unix/net/ancillary.rs:211:29
|
211 | pub struct SocketCred(libc::sockcred2);
| ^^^^^^^^^ not found in `libc`
```
Implement `TryFrom<&OsStr>` for `&str`
Recently when trying to work with `&OsStr` I was surprised to find this `impl` missing.
Since the `to_str` method already existed the actual implementation is fairly non-controversial, except for maybe the choice of the error type. I chose an opaque error here instead of something like `std::str::Utf8Error`, since that would already make a number of assumption about the underlying implementation of `OsStr`.
As this is a trait implementation, it is insta-stable, if I'm not mistaken?
Either way this will need an FCP.
I chose "1.64.0" as the version, since this is unlikely to land before the beta cut-off.
`@rustbot` modify labels: +T-libs-api
API Change Proposal: rust-lang/rust#99031 (accepted)
It fixes the following error:
error[E0412]: cannot find type `sockcred2` in module `libc`
--> library/std/src/os/unix/net/ancillary.rs:211:29
|
211 | pub struct SocketCred(libc::sockcred2);
| ^^^^^^^^^ not found in `libc`
Avoid unwind across `extern "C"` in `thread_local::fast_local`
This is a minimal fix for #112285, in case we want a simple patch that can be easily to backported if that's desirable.
*(Note: I have another broader cleanup which I've mostly omitted from here to avoid clutter, except for the `Cell` change, which isn't needed to fix UB, but simplifies safety comments).*
The only tier-1 target that this occurs on in a way that seems likely to cause problems in practice linux-gnu, although I believe some folks care about that platform somewhat 😉. I'm unsure how big of an issue this is. I've seen stuff like this behave quite badly, but there's a number of reasons to think this might actually be "fine in practice".
I've hedged my bets and assumed we'll backport this at least to beta but my feeling is that there's not enough evidence this is a problem worth backporting further than that.
### More details
This issue seems to have existed since `thread_local!`'s `const` init functionality was added. It occurs if you have a `const`-initialized thread local for a type that `needs_drop`, the drop panics, and you're on a target with support for static thread locals. In this case, we will end up defining an `extern "C"` function in the user crate rather than in libstd, and because the user crate will not have `#![feature(c_unwind)]` enabled, their panic will not be caught by an auto-inserted abort guard.
In practice, the actual situation where problems are likely[^ub] is somewhat narrower.
On most targets with static thread locals, we manage the TLS dtor list by hand (for reentrancy reasons among others). In these cases, while the users code may panic, we're calling it inside our own `extern "C"` (or `extern "system"`) function, which seems to (at least in practice) catch the panic and convert it to an abort.
However, on a few targets, most notably linux-gnu with recent glibc (but also fuchsia and redox), a tls dtor registration mechanism exists which we can actually use directly, [`__cxa_thread_atexit_impl`](https://github.com/rust-lang/rust/blob/master/library/std/src/sys/unix/thread_local_dtor.rs#L26-L36).
This is the case that seems most likely to be a cause for concern, as now we're passing a function to the system library and panicking out of it in a case where there are may not be Rust frames above it on the call stack (since it's running thread shutdown), and even if there were, it may not be prepared to handle such unwinding. If that's the case, it'd be bad.
Is it? Dunno. The fact that it's a `__cxa_*` function makes me think they probably have considered that the callback could throw but I have no evidence here and it doesn't seem to be written down anywhere, so it's just a guess. (I would not be surprised if someone comes into this thread to tell me how definitely-bad-news it is).
That said, as I said, all this is actually UB! If this isn't a "technically UB but fine in practice", but all bets are off if this is the kind of thing we are telling LLVM about.
[^ub]: This is UB so take that with a grain of salt -- I'm absolutely making assumptions about how the UB will behave "in practice" here, which is almost certainly a mistake.
After the socket ancillary data implementation was introduced, the
build was broken on FreeBSD, add the same workaround as for the
existing implementations.
QNX Neutrino: exponential backoff when fork/spawn needs a retry
Fixes#108594: When retrying, sleep with an exponential duration. When sleep duration is lower than minimum possible sleeping time, yield instead (this will not be often due to the exponential increase of duration).
Minimum possible sleeping time is determined using `libc::clock_getres` but only when spawn/fork failed the first time in a request. This is cached using a LazyLock.
CC `@gh-tr`
r? `@workingjubilee`
`@rustbot` label +O-neutrino
use c literals in compiler and library
Use c literals #108801 in compiler and library
currently blocked on:
* <strike>rustfmt: don't know how to format c literals</strike> nope, nightly one works.
* <strike>bootstrap</strike>
r? `@ghost`
`@rustbot` blocked
This fixes the behavior of sending EOF by pressing Ctrl+Z => Enter in a
windows console.
Previously, that would trip the unpaired surrogate error, whereas now we
correctly detect EOF.
Mark internal functions and traits unsafe to reflect preconditions
No semantics are changed in this PR; I only mark some functions and and a trait `unsafe` which already had implicit preconditions. Although it seems somewhat redundant for `numfmt::Part::Copy` to contain a `&[u8]` instead of a `&str`, given that all of its current consumers ultimately expect valid UTF-8. Is the type also intended to work for byte-slice formatting in the future?
Add creation time support to `FileTimes` on apple and windows
Adds support for setting file creation times on platforms which support changing it directly (currently only Apple and Windows). Based on top of #110093 (which was split from this PR).
ACP: rust-lang/libs-team#199 (currently still in progress)
Tracking issue: #98245
`@rustbot` label +T-libs-api -T-libs
Shorten even more panic temporary lifetimes
Followup to #104134. As pointed out by `@bjorn3` in https://github.com/rust-lang/rust/pull/104134#pullrequestreview-1425585948, there are other cases in the panic macros which would also benefit from dropping their non-Send temporaries as soon as possible, avoiding pointlessly holding them across an await point.
For the tests added in this PR, here are the failures you get today on master without the macro changes in this PR:
<details>
<summary>tests/ui/macros/panic-temporaries-2018.rs</summary>
```console
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:52:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:52:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `NotSend`, the trait `Sync` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| ---------------------- ^^^^^- the value is later dropped here
| | |
| | await occurs here, with the value maybe used later
| has type `&NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:53:18
|
LL | require_send(panic_str());
| ^^^^^^^^^^^ future returned by `panic_str` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:40:36
|
LL | f(panic!((NOT_SEND, "...").1)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:54:18
|
LL | require_send(unreachable_display());
| ^^^^^^^^^^^^^^^^^^^^^ future returned by `unreachable_display` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:45:31
|
LL | f(unreachable!(NOT_SEND)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:54:18
|
LL | require_send(unreachable_display());
| ^^^^^^^^^^^^^^^^^^^^^ future returned by `unreachable_display` is not `Send`
|
= help: within `NotSend`, the trait `Sync` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:45:31
|
LL | f(unreachable!(NOT_SEND)).await;
| ---------------------- ^^^^^- the value is later dropped here
| | |
| | await occurs here, with the value maybe used later
| has type `&NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: aborting due to 5 previous errors
```
</details>
<details>
<summary>tests/ui/macros/panic-temporaries.rs</summary>
```console
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries.rs:42:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries.rs:38:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries.rs:42:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `NotSend`, the trait `Sync` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| ---------------------- ^^^^^- the value is later dropped here
| | |
| | await occurs here, with the value maybe used later
| has type `&NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries.rs:38:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: aborting due to 2 previous errors
```
</details>
r? bjorn3
add examples of port 0 binding behavior
Was trying to find the method to specify the IP address but not the port, and there wasn't information easily accessible about it in the `TcpListener` or `SocketAddr`. Adding examples to `TcpListener` and `UdpSocket` for clarity.
Don't claim `LocalKey::with` prevents a reference to be sent across threads
The documentation for `LocalKey` claims that `with` yields a reference that cannot be sent across threads, but this is false since you can easily do that with scoped threads. What it actually prevents is the reference from outliving the current thread.
Implement `AsHandle`/`AsSocket` for `Arc`/`Rc`/`Box` on Windows
Implement the Windows counterpart to #97437 and #107317: Implement `AsHandle` and `AsSocket` for `Arc<T>`, `Rc<T>`, and `Box<T>`.
Uplift `clippy::{drop,forget}_{ref,copy}` lints
This PR aims at uplifting the `clippy::drop_ref`, `clippy::drop_copy`, `clippy::forget_ref` and `clippy::forget_copy` lints.
Those lints are/were declared in the correctness category of clippy because they lint on useless and most probably is not what the developer wanted.
## `drop_ref` and `forget_ref`
The `drop_ref` and `forget_ref` lint checks for calls to `std::mem::drop` or `std::mem::forget` with a reference instead of an owned value.
### Example
```rust
let mut lock_guard = mutex.lock();
std::mem::drop(&lock_guard) // Should have been drop(lock_guard), mutex
// still locked
operation_that_requires_mutex_to_be_unlocked();
```
### Explanation
Calling `drop` or `forget` on a reference will only drop the reference itself, which is a no-op. It will not call the `drop` or `forget` method on the underlying referenced value, which is likely what was intended.
## `drop_copy` and `forget_copy`
The `drop_copy` and `forget_copy` lint checks for calls to `std::mem::forget` or `std::mem::drop` with a value that derives the Copy trait.
### Example
```rust
let x: i32 = 42; // i32 implements Copy
std::mem::forget(x) // A copy of x is passed to the function, leaving the
// original unaffected
```
### Explanation
Calling `std::mem::forget` [does nothing for types that implement Copy](https://doc.rust-lang.org/std/mem/fn.drop.html) since the value will be copied and moved into the function on invocation.
-----
Followed the instructions for uplift a clippy describe here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
cc `@m-ou-se` (as T-libs-api leader because the uplifting was discussed in a recent meeting)
Start using `windows sys` for Windows FFI bindings in std
Switch to using windows-sys for FFI. In order to avoid some currently contentious issues, this uses windows-bindgen to generate a smaller set of bindings instead of using the full crate.
Unlike the windows-sys crate, the generated bindings uses `*mut c_void` for handle types instead of `isize`. This to sidestep opsem concerns about mixing pointer types and integers between languages. Note that `SOCKET` remains defined as an integer but instead of being a usize, it's changed to fit the [standard library definition](a41fc00eaf/library/std/src/os/windows/raw.rs (L12-L16)):
```rust
#[cfg(target_pointer_width = "32")]
pub type SOCKET = u32;
#[cfg(target_pointer_width = "64")]
pub type SOCKET = u64;
```
The generated bindings also customizes the `#[link]` imports. I hope to switch to using raw-dylib but I don't want to tie that too closely with the switch to windows-sys.
---
Changes outside of the bindings are, for the most part, fairly minimal (e.g. some differences in `*mut` vs. `*const` or a few types differ). One issue is that our own bindings sometimes mix in higher level types, like `BorrowedHandle`. This is pretty adhoc though.
STD support for PSVita
This PR adds std support for `armv7-sony-vita-newlibeabihf` target.
The work here is fairly similar to #95897, just for a different target platform.
This depends on the following pull requests:
rust-lang/backtrace-rs#523rust-lang/libc#3209
enable `rust_2018_idioms` lint group for doctests
With this change, `rust_2018_idioms` lint group will be enabled for compiler/libstd doctests.
Resolves#106086Resolves#99144
Signed-off-by: ozkanonur <work@onurozkan.dev>
Fix MXCSR configuration dependent timing
Dependent on the (potentially secret) data some vector instructions operate on, and the content in MXCSR, instruction retirement may be delayed by one cycle. This is a potential side channel.
This PR fixes this vulnerability for the `x86_64-fortanix-unknown-sgx` platform by loading MXCSR with `0x1fbf` through an `xrstor` instruction when the enclave is entered and executing an `lfence` immediately after. Other changes of the MXCSR happen only when the enclave is about to be exited and no vector instructions will be executed before it will actually do so. Users of EDP who change the MXCSR and do wish to defend against this side channel, will need to implement the software mitigation described [here](https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html).
cc: `@jethrogb` `@monokles`
Add FreeBSD cpuset support to `std:🧵:available_concurrency`
Use libc::cpuset_getaffinity to determine the CPUs available to the current process.
The existing sysconf and sysctl paths are left as fallback.
Fix `checked_{add,sub}_duration` incorrectly returning `None` when `other` has more than `i64::MAX` seconds
Use `checked_{add,sub}_unsigned` in `checked_{add,sub}_duration` so that the correct result is returned when adding/subtracting durations with more than `i64::MAX` seconds.
avoid duplicating TLS state between test std and realstd
This basically re-lands https://github.com/rust-lang/rust/pull/100201 and https://github.com/rust-lang/rust/pull/106638, which got reverted by https://github.com/rust-lang/rust/pull/110861. This works around 2 Miri limitations:
- Miri doesn't support the magic linker section that our Windows TLS support relies on, and instead knows where in std to find the symbol that stores the thread callback.
- For macOS, Miri only supports at most one destructor to be registered per thread.
The 2nd would not be very hard to fix (though the intended destructor order is unclear); the first would be a lot of work to fix. Neither of these is a problem for regular Rust code, but in the std test suite we have essentially 2 copies of the std code and then these both become issues. To avoid that we have the std test crate import the TLS code from the real std instead of having its own copy.
r? ``````@m-ou-se``````
Replace generic thread parker with explicit no-op parker
With #98391 merged, all platforms supporting threads now have their own parking implementations. Therefore, the generic implementation can be removed. On the remaining platforms (really just WASM without atomics), parking is not supported, so calls to `thread::park` now return instantly, which is [allowed by their API](https://doc.rust-lang.org/nightly/std/thread/fn.park.html). This is a change in behaviour, as spurious wakeups do not currently occur since all platforms guard against them. It is invalid to depend on this, but I'm still going to tag this as libs-api for confirmation.
````@rustbot```` label +T-libs +T-libs-api +A-atomic
r? rust-lang/libs
Implement tuple<->array convertions via `From`
This PR adds the following impls that convert between homogeneous tuples and arrays of the corresponding lengths:
```rust
impl<T> From<[T; 1]> for (T,) { ... }
impl<T> From<[T; 2]> for (T, T) { ... }
/* ... */
impl<T> From<[T; 12]> for (T, T, T, T, T, T, T, T, T, T, T, T) { ... }
impl<T> From<(T,)> for [T; 1] { ... }
impl<T> From<(T, T)> for [T; 2] { ... }
/* ... */
impl<T> From<(T, T, T, T, T, T, T, T, T, T, T, T)> for [T; 12] { ... }
```
IMO these are quite uncontroversial but note that they are, just like any other trait impls, insta-stable.
Some data-independent timing vector instructions may have subtle data-dependent
timing due to MXCSR configuration; dependent on (potentially secret) data
instruction retirement may be delayed by one cycle.
This can be done by simply changing the `\??\` prefix to `\\?\` and then attempting to convert to a user path.
Currently it simply strips off the prefix which could lead to the wrong path being returned (e.g. if it's not a drive path or if the path contains trailing spaces, etc).
Remove `all` in target_thread_local cfg
I think it was left there by mistake after the previous refactoring. I just came across it while rebasing to master.
Make sure the implementation of TcpStream::as_raw_fd is fully inlined
Currently the following function:
```rust
use std::os::fd::{AsRawFd, RawFd};
use std::net::TcpStream;
pub fn as_raw_fd(socket: &TcpStream) -> RawFd {
socket.as_raw_fd()
}
```
Is optimized to the following:
```asm
example::as_raw_fd:
push rax
call qword ptr [rip + <std::net::tcp::TcpStream as std::sys_common::AsInner<std::sys_common::net::TcpStream>>::as_inner@GOTPCREL]
mov rdi, rax
call qword ptr [rip + std::sys_common::net::TcpStream::socket@GOTPCREL]
mov rdi, rax
pop rax
jmp qword ptr [rip + _ZN73_$LT$std..sys..unix..net..Socket$u20$as$u20$std..os..fd..raw..AsRawFd$GT$9as_raw_fd17h633bcf7e481df8bbE@GOTPCREL]
```
I think it would make more sense to inline trivial functions used within `TcpStream::AsRawFd`.
update wasi_clock_time_api ref.
Closes#110809
>Preview0 corresponded to the import module name wasi_unstable. It was also called snapshot_0 in some places. It was short-lived, and the changes to preview1 were minor, so the focus here is on preview1.
we use the `preview1` doc according to the above quote form [WASI legacy Readme](https://github.com/WebAssembly/WASI/blob/main/legacy/README.md) .
Add 64-bit `time_t` support on 32-bit glibc Linux to `set_times`
Add support to `set_times` for 64-bit `time_t` on 32-bit glibc Linux platforms which have a 32-bit `time_t`. Split from #109773.
Tracking issue: #98245
std docs: edit `PathBuf::set_file_name` example
To make explicit that `set_file_name` might replace or remove the
extension, not just the file stem.
Also edit docs for `Path::with_file_name`, which calls `set_file_name`.
Document `const {}` syntax for `std::thread_local`.
It exists and is pretty cool. More people should use it.
It was added in #83416 and stabilized in #91355 with the tracking issue #84223.
If opening a directory with `FILE_LIST_DIRECTORY` access fails then we should try opening without requesting that access. We may still be able to delete it if it's empty or a link.
Change memory ordering in System wrapper example
Currently, the `SeqCst` ordering is used, which seems unnecessary:
+ Even `Relaxed` ordering guarantees that all updates are atomic and are executed in total order
+ User code only reads atomic for monitoring purposes, no "happens-before" relationships with actual allocations and deallocations are needed for this
If argumentation above is correct, I propose changing ordering to `Relaxed` to clarify that no synchronization is required here, and improve performance (if somebody copy-pastes this example into their code).
Correct `std::prelude` comment
(Read the changed file first for context.)
First, `alloc` has no prelude.
Second, the docs for `v1` don't matter since the [prelude module] already has all the doc links. The `rust_2021` module for instance also doesnt have a convenient doc page. However as I understand glob imports still cant be used because the items dont have the same stabilisation versions.
[prelude module]: https://doc.rust-lang.org/std/prelude/index.html
docs(std): clarify remove_dir_all errors
When using `remove_dir_all`, I assumed that the function was idempotent and that I could always call it to remove a directory if it existed. That's not the case and it bit me in production, so I figured I'd submit this to clarify the docs.
Restructure and rename std thread_local internals to make it less of a maze
Every time I try to work on std's thread local internals, it feels like I'm trying to navigate a confusing maze made of macros, deeply nested modules, and types with multiple names/aliases. Time to clean it up a bit.
This PR:
- Exports `Key` with its own name (`Key`), instead of `__LocalKeyInner`
- Uses `pub macro` to put `__thread_local_inner` into a (unstable, hidden) module, removing `#[macro_export]`, removing it from the crate root.
- Removes the `__` from `__thread_local_inner`.
- Removes a few unnecessary `allow_internal_unstable` features from the macros
- Removes the `libstd_thread_internals` feature. (Merged with `thread_local_internals`.)
- And removes it from the unstable book
- Gets rid of the deeply nested modules for the `Key` definitions (`mod fast` / `mod os` / `mod statik`).
- Turns a `#[cfg]` mess into a single `cfg_if`, now that there's no `#[macro_export]` anymore that breaks with `cfg_if`.
- Simplifies the `cfg_if` conditions to not repeat the conditions.
- Removes useless `normalize-stderr-test`, which were left over from when the `Key` types had different names on different platforms.
- Removes a seemingly unnecessary `realstd` re-export on `cfg(test)`.
This PR changes nothing about the thread local implementation. That's for a later PR. (Which should hopefully be easier once all this stuff is a bit cleaned up.)
Spelling library
Split per https://github.com/rust-lang/rust/pull/110392
I can squash once people are happy w/ the changes. It's really uncommon for large sets of changes to be perfectly acceptable w/o at least some changes.
I probably won't have time to respond until tomorrow or the next day
Fix `std` compilation error for wasi+atomics
Fix https://github.com/rust-lang/rust/issues/109727
It seems that the `unsupported/once.rs` module isn't meant to exist at the same time as the `futex` module, as they have conflicting definitions.
I've solved this by defining the `once` module only if `not(target_feature = "atomics")`.
The `wasm32-unknown-unknown` target [similarly only defines the `once` module if `not(target_feature = "atomics")`](01c4f31927/library/std/src/sys/wasm/mod.rs (L69-L70)).
As show in [this block of code](01c4f31927/library/std/src/sys_common/once/mod.rs (L10-L34)), the `sys::once` module doesn't need to exist if `all(target_arch = "wasm32", target_feature = "atomics")`.
Update documentation wording on path 'try_exists' functions
Just eliminate the quadruple negation in `doesn't silently ignore errors unrelated to ... not existing.`