Commit Graph

7886 Commits

Author SHA1 Message Date
Michael Goulet
21d95fb7b2 More compare_impl_item simplifications 2024-10-23 14:33:44 +00:00
bors
be01dabfef Auto merge of #132027 - RalfJung:lang-feature-bool-fields, r=nnethercote
nightly feature tracking: get rid of the per-feature bool fields

The `struct Features` that tracks which features are enabled has a ton of public `bool`-typed fields that are basically caching the result of looking up the corresponding feature in `enabled_lang_features`. Having public fields with an invariant is not great, so at least they should be made private. However, it turns out caching these lookups is actually [not worth it](https://github.com/rust-lang/rust/pull/131321#issuecomment-2402068336), so this PR just entirely gets rid of these fields. (The alternative would be to make them private and have a method for each of them to expose them in a read-only way. Most of the diff of this PR would be the same in that case.)

r? `@nnethercote`
2024-10-23 12:16:41 +00:00
bors
ffd978b7bf Auto merge of #132044 - lcnr:no-relate-abi, r=compiler-errors
do not implement `Relate`  for "boring" types

and update some macros while we're at it. This means we don't have to implement `TypeVisitable` for them.

r? `@compiler-errors`
2024-10-23 08:41:24 +00:00
Ralf Jung
ad3991d303 nightly feature tracking: get rid of the per-feature bool fields 2024-10-23 09:14:41 +01:00
lcnr
00266eeaa5 remove PredicatePolarity and BoundConstness relate impls
Also removes `TypeError::ConstnessMismatch`. It is unused.
2024-10-23 00:52:37 +02:00
lcnr
196fdf144f do not relate Abi and Safety
and update some macros while we're at it
2024-10-22 23:13:04 +02:00
Michael Goulet
febb3f7c88 Represent TraitBoundModifiers as distinct parts in HIR 2024-10-22 19:48:44 +00:00
bors
86d69c705a Auto merge of #132035 - matthiaskrgr:rollup-ty1e4q0, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #125205 (Fixup Windows verbatim paths when used with the `include!` macro)
 - #131049 (Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`)
 - #131549 (Add a note for `?` on a `impl Future<Output = Result<..>>` in sync function)
 - #131731 (add `TestFloatParse` to `tools.rs` for bootstrap)
 - #131732 (Add doc(plugins), doc(passes), etc. to INVALID_DOC_ATTRIBUTES)
 - #132006 (don't stage-off to previous compiler when CI rustc is available)
 - #132022 (Move `cmp_in_dominator_order` out of graph dominator computation)
 - #132033 (compiletest: Make `line_directive` return a `DirectiveLine`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-22 14:16:37 +00:00
Matthias Krüger
3f15d296f4
Rollup merge of #131049 - compiler-errors:more-validation, r=spastorino
Validate args are correct for `UnevaluatedConst`, `ExistentialTraitRef`/`ExistentialProjection`

For the `Existential*` ones, we have to do some adjustment to the args list to deal with the missing `Self` type, so we introduce a `debug_assert_existential_args_compatible` function to the interner as well.
2024-10-22 15:28:38 +02:00
bors
bca5fdebe0 Auto merge of #131321 - RalfJung:feature-activation, r=nnethercote
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)

Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions  `tcx.features().active(...)` and  `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]`  exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.

So really, our terminology is just a mess.

I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for  `#[feature(name)]`. This PR implements that.
2024-10-22 11:02:35 +00:00
Ralf Jung
46ce5cbf33 terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it) 2024-10-22 07:37:54 +01:00
Jubilee
fe2cbbd2d5
Rollup merge of #130432 - azhogin:azhogin/regparm, r=workingjubilee,pnkfelix
rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972)

Command line flag `-Zregparm=<N>` for X86 (32-bit) for rust-for-linux: https://github.com/rust-lang/rust/issues/116972
Implemented in the similar way as fastcall/vectorcall support (args are marked InReg if fit).
2024-10-21 20:32:00 -07:00
Matthias Krüger
20b1dadf92
Rollup merge of #130350 - RalfJung:strict-provenance, r=dtolnay
stabilize Strict Provenance and Exposed Provenance APIs

Given that [RFC 3559](https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html) has been accepted, t-lang has approved the concept of provenance to exist in the language. So I think it's time that we stabilize the strict provenance and exposed provenance APIs, and discuss provenance explicitly in the docs:
```rust
// core::ptr
pub const fn without_provenance<T>(addr: usize) -> *const T;
pub const fn dangling<T>() -> *const T;
pub const fn without_provenance_mut<T>(addr: usize) -> *mut T;
pub const fn dangling_mut<T>() -> *mut T;
pub fn with_exposed_provenance<T>(addr: usize) -> *const T;
pub fn with_exposed_provenance_mut<T>(addr: usize) -> *mut T;

impl<T: ?Sized> *const T {
    pub fn addr(self) -> usize;
    pub fn expose_provenance(self) -> usize;
    pub fn with_addr(self, addr: usize) -> Self;
    pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}

impl<T: ?Sized> *mut T {
    pub fn addr(self) -> usize;
    pub fn expose_provenance(self) -> usize;
    pub fn with_addr(self, addr: usize) -> Self;
    pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}

impl<T: ?Sized> NonNull<T> {
    pub fn addr(self) -> NonZero<usize>;
    pub fn with_addr(self, addr: NonZero<usize>) -> Self;
    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self;
}
```

I also did a pass over the docs to adjust them, because this is no longer an "experiment". The `ptr` docs now discuss the concept of provenance in general, and then they go into the two families of APIs for dealing with provenance: Strict Provenance and Exposed Provenance. I removed the discussion of how pointers also have an associated "address space" -- that is not actually tracked in the pointer value, it is tracked in the type, so IMO it just distracts from the core point of provenance. I also adjusted the docs for `with_exposed_provenance` to make it clear that we cannot guarantee much about this function, it's all best-effort.

There are two unstable lints associated with the strict_provenance feature gate; I moved them to a new [strict_provenance_lints](https://github.com/rust-lang/rust/issues/130351) feature since I didn't want this PR to have an even bigger FCP. ;)

`@rust-lang/opsem` Would be great to get some feedback on the docs here. :)
Nominating for `@rust-lang/libs-api.`

Part of https://github.com/rust-lang/rust/issues/95228.

[FCP comment](https://github.com/rust-lang/rust/pull/130350#issuecomment-2395114536)
2024-10-21 18:11:19 +02:00
Ralf Jung
56ee492a6e move strict provenance lints to new feature gate, remove old feature gates 2024-10-21 15:22:17 +01:00
bors
93742bd782 Auto merge of #131988 - matthiaskrgr:rollup-tx173wn, r=matthiaskrgr
Rollup of 4 pull requests

Successful merges:

 - #126588 (Added more scenarios where comma to be removed in the function arg)
 - #131728 (bootstrap: extract builder cargo to its own module)
 - #131968 (Rip out old effects var handling code from traits)
 - #131981 (Remove the `BoundConstness::NotConst` variant)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-21 06:13:34 +00:00
Matthias Krüger
62b7293a90
Rollup merge of #131981 - compiler-errors:bound-constness, r=cjgillot
Remove the `BoundConstness::NotConst` variant

I find it easier to represent `BoundConstness::NotConst` as just `None` for some refactorings I'm doing.
2024-10-21 07:01:37 +02:00
bors
f2ba41113d Auto merge of #130950 - compiler-errors:yeet-eval, r=BoxyUwU
Continue to get rid of `ty::Const::{try_}eval*`

This PR mostly does:

* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.

I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.

r? BoxyUwU

Part of https://github.com/rust-lang/rust/issues/130704
2024-10-21 03:46:28 +00:00
Michael Goulet
61ed4cb5b4 Remove the BoundConstness::NotConst variant 2024-10-20 18:33:59 +00:00
Michael Goulet
6f6f91ab82 Rip out old effects var handling code from traits 2024-10-20 13:40:22 +00:00
Michael Goulet
38bbcc001e Rename normalize to normalize_internal, remove unnecessary usages 2024-10-19 18:07:35 +00:00
Michael Goulet
e83e4e8112 Get rid of const eval_* and try_eval_* helpers 2024-10-19 18:07:35 +00:00
blyxyas
637d5cc56f Remove module passes filtering 2024-10-19 16:20:51 +02:00
blyxyas
71b4d108c7 Follow review comments (optimize the filtering) 2024-10-19 16:20:33 +02:00
blyxyas
edc6577627 Change lints_to_emit to lints_that_actually_run 2024-10-19 16:19:44 +02:00
blyxyas
b4da058595 Do not run lints that cannot emit
Before this change, adding a lint was a difficult matter
because it always had some overhead involved. This was
because all lints would run, no matter their default level,
or if the user had #![allow]ed them. This PR changes that
2024-10-19 16:19:44 +02:00
Ralf Jung
eea74be5c1 interpret errors: add map_err_kind, rename InterpError -> InterpErrorKind 2024-10-19 09:22:38 +02:00
许杰友 Jieyou Xu (Joe)
aae4730c78
Rollup merge of #131802 - compiler-errors:fnonce-coverage, r=Zalathar
Dont ICE when computing coverage of synthetic async closure body

I'm not totally certain if this is *right*, but at least it doesn't ICE.

The issue is that we end up generating two MIR bodies for each async closure, since the `FnOnce` and `Fn`/`FnMut` implementations have different borrowing behavior of their captured variables. They should ideally both contribute to the coverage, since those MIR bodies are (*to the user*) the same code and should have no behavioral differences.

This PR at least suppresses the ICEs, and then I guess worst case we can fix this the right way later.

r? Zalathar or re-roll

Fixes #131190
2024-10-18 12:00:51 +01:00
Michael Goulet
cdbf28af76 Dont ICE when computing coverage of synthetic async closure body 2024-10-18 20:14:02 +11:00
Andrew Zhogin
b3ae64d24f rust_for_linux: -Zregparm=<N> commandline flag for X86 (#116972) 2024-10-18 00:29:31 +07:00
lcnr
3360c1773a move defining_opaque_types out of Canonical 2024-10-17 10:22:52 +02:00
lcnr
f3ce557fcd DropckOutlives to rustc_middle 2024-10-17 09:53:27 +02:00
lcnr
9334d85e69 remove type_op constructors 2024-10-17 09:53:27 +02:00
lcnr
401f9b4e0a ImpliedOutlivesBounds to rustc_middle 2024-10-17 09:53:27 +02:00
Matthias Krüger
c1ed1f133e
Rollup merge of #131381 - Nadrieril:min-match-ergonomics, r=pnkfelix
Implement edition 2024 match ergonomics restrictions

This implements the minimalest version of [match ergonomics for edition 2024](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html). This minimal version makes it an error to ever reset the default binding mode. The implemented proposal is described precisely [here](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q#RFC-3627-nano), where it is called "RFC 3627-nano".

Rules:
- Rule 1C: When the DBM (default binding mode) is not `move` (whether or not behind a reference), writing `mut`, `ref`, or `ref mut` on a binding is an error.
- Rule 2C: Reference patterns can only match against references in the scrutinee when the DBM is `move`.

This minimal version is forward-compatible with the main proposals for match ergonomics 2024: [RFC3627](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html) itself, the alternative [rule 4-early variant](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html), and [others](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q). The idea is to give us more time to iron out a final proposal.

This includes a migration lint that desugars any offending pattern into one that doesn't make use of match ergonomics. Such patterns have identical meaning across editions.

This PR insta-stabilizes the proposed behavior onto edition 2024.

r? `@ghost`

Tracking:

- https://github.com/rust-lang/rust/issues/123076
2024-10-16 19:18:30 +02:00
bors
d829780c4e Auto merge of #131481 - nnethercote:rm-GenKillSet, r=cjgillot
Remove `GenKillAnalysis`

There are two kinds of dataflow analysis in the compiler: `Analysis`, which is the basic kind, and `GenKillAnalysis`, which is a more specialized kind for gen/kill analyses that is intended as an optimization. However, it turns out that `GenKillAnalysis` is actually a  pessimization! It's faster (and much simpler) to do all the gen/kill analyses via `Analysis`. This lets us remove `GenKillAnalysis`, and `GenKillSet`, and a few other things, and also merge `AnalysisDomain` into `Analysis`. The PR removes 500 lines of code and improves performance.

r? `@tmiasko`
2024-10-16 09:45:05 +00:00
bors
9618da7c99 Auto merge of #131422 - GnomedDev:smallvec-predicate-obligations, r=compiler-errors
Use `ThinVec` for PredicateObligation storage

~~I noticed while profiling clippy on a project that a large amount of time is being spent allocating `Vec`s for `PredicateObligation`, and the `Vec`s are often quite small. This is an attempt to optimise this by using SmallVec to avoid heap allocations for these common small Vecs.~~

This PR turns all the `Vec<PredicateObligation>` into a single type alias while avoiding referring to `Vec` around it, then swaps the type over to `ThinVec<PredicateObligation>` and fixes the fallout. This also contains an implementation of `ThinVec::extract_if`, copied from `Vec::extract_if` and currently being upstreamed to https://github.com/Gankra/thin-vec/pull/66.

This leads to a small (0.2-0.7%) performance gain in the latest perf run.
2024-10-16 04:06:14 +00:00
bors
a0c2aba29a Auto merge of #130654 - lcnr:stabilize-coherence-again, r=compiler-errors
stabilize `-Znext-solver=coherence` again

r? `@compiler-errors`

---

This PR stabilizes the use of the next generation trait solver in coherence checking by enabling `-Znext-solver=coherence` by default. More specifically its use in the *implicit negative overlap check*. The tracking issue for this is https://github.com/rust-lang/rust/issues/114862. Closes #114862.

This is a direct copy of #121848 which has been reverted due to a hang in `nalgebra`: #130056. This hang should have been fixed by #130617 and #130821. See the added section in the stabilization report containing user facing changes merged since the original FCP.

## Background

### The next generation trait solver

The new solver lives in [`rustc_trait_selection::solve`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/solve/mod.rs) and is intended to replace the existing *evaluate*, *fulfill*, and *project* implementation. It also has a wider impact on the rest of the type system, for example by changing our approach to handling associated types.

For a more detailed explanation of the new trait solver, see the [rustc-dev-guide](https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html). This does not stabilize the current behavior of the new trait solver, only the behavior impacting the implicit negative overlap check. There are many areas in the new solver which are not yet finalized. We are confident that their final design will not conflict with the user-facing behavior observable via coherence. More on that further down.

Please check out [the chapter](https://rustc-dev-guide.rust-lang.org/solve/significant-changes.html) summarizing the most significant changes between the existing and new implementations.

### Coherence and the implicit negative overlap check

Coherence checking detects any overlapping impls. Overlapping trait impls always error while overlapping inherent impls result in an error if they have methods with the same name. Coherence also results in an error if any other impls could exist, even if they are currently unknown. This affects impls which may get added to upstream crates in a backwards compatible way and impls from downstream crates.

Coherence failing to detect overlap is generally considered to be unsound, even if it is difficult to actually get runtime UB this way. It is quite easy to get ICEs due to bugs in coherence.

It currently consists of two checks:

The [orphan check] validates that impls do not overlap with other impls we do not know about: either because they may be defined in a sibling crate, or because an upstream crate is allowed to add it without being considered a breaking change.

The [overlap check] validates that impls do not overlap with other impls we know about. This is done as follows:
- Instantiate the generic parameters of both impls with inference variables
- Equate the `TraitRef`s of both impls. If it fails there is no overlap.
- [implicit negative]: Check whether any of the instantiated `where`-bounds of one of the impls definitely do not hold when using the constraints from the previous step. If a `where`-bound does not hold, there is no overlap.
- *explicit negative (still unstable, ignored going forward)*: Check whether the any negated `where`-bounds can be proven, e.g. a `&mut u32: Clone` bound definitely does not hold as an explicit `impl<T> !Clone for &mut T` exists.

The overlap check has to *prove that unifying the impls does not succeed*. This means that **incorrectly getting a type error during coherence is unsound** as it would allow impls to overlap: coherence has to be *complete*.

Completeness means that we never incorrectly error. This means that during coherence we must only add inference constraints if they are definitely necessary. During ordinary type checking [this does not hold](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=01d93b592bd9036ac96071cbf1d624a9), so the trait solver has to behave differently, depending on whether we're in coherence or not.

The implicit negative check only considers goals to "definitely not hold" if they could not be implemented downstream, by a sibling, or upstream in a backwards compatible way. If the goal is is "unknowable" as it may get added in another crate, we add an ambiguous candidate: [source](bea5bebf3d/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L858-L883)).

[orphan check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L566-L579)
[overlap check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L92-L98)
[implicit negative]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L223-L281)

## Motivation

Replacing the existing solver in coherence fixes soundness bugs by removing sources of incompleteness in the type system. The new solver separately strengthens coherence, resulting in more impls being disjoint and passing the coherence check. The concrete changes will be elaborated further down. We believe the stabilization to reduce the likelihood of future bugs in coherence as the new implementation is easier to understand and reason about.

It allows us to remove the support for coherence and implicit-negative reasoning in the old solver, allowing us to remove some code and simplifying the old trait solver. We will only remove the old solver support once this stabilization has reached stable to make sure we're able to quickly revert in case any unexpected issues are detected before then.

Stabilizing the use of the next-generation trait solver expresses our confidence that its current behavior is intended and our work towards enabling its use everywhere will not require any breaking changes to the areas used by coherence checking. We are also confident that we will be able to replace the existing solver everywhere, as maintaining two separate systems adds a significant maintainance burden.

## User-facing impact and reasoning

### Breakage due to improved handling of associated types

The new solver fixes multiple issues related to associated types. As these issues caused coherence to consider more types distinct, fixing them results in more overlap errors. This is therefore a breaking change.

#### Structurally relating aliases containing bound vars

Fixes https://github.com/rust-lang/rust/issues/102048. In the existing solver relating ambiguous projections containing bound variables is structural. This is *incomplete* and allows overlapping impls. These was mostly not exploitable as the same issue also caused impls to not apply when trying to use them. The new solver defers alias-relating to a nested goal, fixing this issue:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Trait {}

trait Project {
    type Assoc<'a>;
}

impl Project for u32 {
    type Assoc<'a> = &'a u32;
}

// Eagerly normalizing `<?infer as Project>::Assoc<'a>` is ambiguous,
// so the old solver ended up structurally relating
//
//     (?infer, for<'a> fn(<?infer as Project>::Assoc<'a>))
//
// with
//
//     ((u32, fn(&'a u32)))
//
// Equating `&'a u32` with `<u32 as Project>::Assoc<'a>` failed, even
// though these types are equal modulo normalization.
impl<T: Project> Trait for (T, for<'a> fn(<T as Project>::Assoc<'a>)) {}

impl<'a> Trait for (u32, fn(&'a u32)) {}
//[next]~^ ERROR conflicting implementations of trait `Trait` for type `(u32, for<'a> fn(&'a u32))`
```

A crater run did not discover any breakage due to this change.

#### Unknowable candidates for higher ranked trait goals

This avoids an unsoundness by attempting to normalize in `trait_ref_is_knowable`, fixing https://github.com/rust-lang/rust/issues/114061. This is a side-effect of supporting lazy normalization, as that forces us to attempt to normalize when checking whether a `TraitRef` is knowable: [source](47dd709bed/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L754-L764)).

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait IsUnit {}
impl IsUnit for () {}

pub trait WithAssoc<'a> {
    type Assoc;
}

// We considered `for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit`
// to be knowable, even though the projection is ambiguous.
pub trait Trait {}
impl<T> Trait for T
where
    T: 'static,
    for<'a> T: WithAssoc<'a>,
    for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit,
{
}
impl<T> Trait for Box<T> {}
//[next]~^ ERROR conflicting implementations of trait `Trait`
```
The two impls of `Trait` overlap given the following downstream crate:
```rust
use dep::*;
struct Local;
impl WithAssoc<'_> for Box<Local> {
    type Assoc = ();
}
```

There a similar coherence unsoundness caused by our handling of aliases which is fixed separately in https://github.com/rust-lang/rust/pull/117164.

This change breaks the [`derive-visitor`](https://crates.io/crates/derive-visitor) crate. I have opened an issue in that repo: nikis05/derive-visitor#16.

### Evaluating goals to a fixpoint and applying inference constraints

In the old implementation of the implicit-negative check, each obligation is [checked separately without applying its inference constraints](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L323-L338)). The new solver instead [uses a `FulfillmentCtxt`](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L315-L321)) for this, which evaluates all obligations in a loop until there's no further inference progress.

This is necessary for backwards compatibility as we do not eagerly normalize with the new solver, resulting in constraints from normalization to only get applied by evaluating a separate obligation. This also allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Mirror {
    type Assoc;
}
impl<T> Mirror for T {
    type Assoc = T;
}

trait Foo {}
trait Bar {}

// The self type starts out as `?0` but is constrained to `()`
// due to the where-clause below. Because `(): Bar` is known to
// not hold, we can prove the impls disjoint.
impl<T> Foo for T where (): Mirror<Assoc = T> {}
//[current]~^ ERROR conflicting implementations of trait `Foo` for type `()`
impl<T> Foo for T where T: Bar {}

fn main() {}
```
The old solver does not run nested goals to a fixpoint in evaluation. The new solver does do so, strengthening inference and improving the overlap check:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Foo {}
impl<T> Foo for (u8, T, T) {}
trait NotU8 {}
trait Bar {}
impl<T, U: NotU8> Bar for (T, T, U) {}

trait NeedsFixpoint {}
impl<T: Foo + Bar> NeedsFixpoint for T {}
impl NeedsFixpoint for (u8, u8, u8) {}

trait Overlap {}
impl<T: NeedsFixpoint> Overlap for T {}
impl<T, U: NotU8, V> Overlap for (T, U, V) {}
//[current]~^ ERROR conflicting implementations of trait `Foo`
```

### Breakage due to removal of incomplete candidate preference

Fixes #107887. In the old solver we incompletely prefer the builtin trait object impl over user defined impls. This can break inference guidance, inferring `?x` in `dyn Trait<u32>: Trait<?x>` to `u32`, even if an explicit impl of `Trait<u64>` also exists.

This caused coherence to incorrectly allow overlapping impls, resulting in ICEs and a theoretical unsoundness. See https://github.com/rust-lang/rust/issues/107887#issuecomment-1997261676. This compiles on stable but results in an overlap error with `-Znext-solver=coherence`:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
struct W<T: ?Sized>(*const T);

trait Trait<T: ?Sized> {
    type Assoc;
}

// This would trigger the check for overlap between automatic and custom impl.
// They actually don't overlap so an impl like this should remain possible
// forever.
//
// impl Trait<u64> for dyn Trait<u32> {}
trait Indirect {}
impl Indirect for dyn Trait<u32, Assoc = ()> {}
impl<T: Indirect + ?Sized> Trait<u64> for T {
    type Assoc = ();
}

// Incomplete impl where `dyn Trait<u32>: Trait<_>` does not hold, but
// `dyn Trait<u32>: Trait<u64>` does.
trait EvaluateHack<U: ?Sized> {}
impl<T: ?Sized, U: ?Sized> EvaluateHack<W<U>> for T
where
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
    U: IsU64,
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
{
}

trait IsU64 {}
impl IsU64 for u64 {}

trait Overlap<U: ?Sized> {
    type Assoc: Default;
}
impl<T: ?Sized + EvaluateHack<W<U>>, U: ?Sized> Overlap<U> for T {
    type Assoc = Box<u32>;
}
impl<U: ?Sized> Overlap<U> for dyn Trait<u32, Assoc = ()> {
//[next]~^ ERROR conflicting implementations of trait `Overlap<_>`
    type Assoc = usize;
}
```

### Considering region outlives bounds in the `leak_check`

For details on the `leak_check`, see the FCP proposal #119820.[^leak_check]

[^leak_check]: which should get moved to the dev-guide :3

In both coherence and during candidate selection, the `leak_check` relies on the region constraints added in `evaluate`. It therefore currently does not register outlives obligations: [source](ccb1415eac/compiler/rustc_trait_selection/src/traits/select/mod.rs (L792-L810)). This was likely done as a performance optimization without considering its impact on the `leak_check`. This is the case as in the old solver, *evaluatation* and *fulfillment* are split, with evaluation being responsible for candidate selection and fulfillment actually registering all the constraints.

This split does not exist with the new solver. The `leak_check` can therefore eagerly detect errors caused by region outlives obligations. This improves both coherence itself and candidate selection:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait LeakErr<'a, 'b> {}
// Using this impl adds an `'b: 'a` bound which results
// in a higher-ranked region error. This bound has been
// previously ignored but is now considered.
impl<'a, 'b: 'a> LeakErr<'a, 'b> for () {}

trait NoOverlapDir<'a> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> NoOverlapDir<'a> for T {}
impl<'a> NoOverlapDir<'a> for () {}
//[current]~^ ERROR conflicting implementations of trait `NoOverlapDir<'_>`

// --------------------------------------

// necessary to avoid coherence unknowable candidates
struct W<T>(T);

trait GuidesSelection<'a, U> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> GuidesSelection<'a, W<u32>> for T {}
impl<'a, T> GuidesSelection<'a, W<u8>> for T {}

trait NotImplementedByU8 {}
trait NoOverlapInd<'a, U> {}
impl<'a, T: GuidesSelection<'a, W<U>>, U> NoOverlapInd<'a, U> for T {}
impl<'a, U: NotImplementedByU8> NoOverlapInd<'a, U> for () {}
//[current]~^ conflicting implementations of trait `NoOverlapInd<'_, _>`
```

### Removal of `fn match_fresh_trait_refs`

The old solver tries to [eagerly detect unbounded recursion](b14fd2359f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1196-L1211)), forcing the affected goals to be ambiguous. This check is only an approximation and has not been added to the new solver.

The check is not necessary in the new solver and it would be problematic for caching. As it depends on all goals currently on the stack, using a global cache entry would have to always make sure that doing so does not circumvent this check.

This changes some goals to error - or succeed - instead of failing with ambiguity. This allows more code to compile:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence

// Need to use this local wrapper for the impls to be fully
// knowable as unknowable candidate result in ambiguity.
struct Local<T>(T);

trait Trait<U> {}
// This impl does not hold, but is ambiguous in the old
// solver due to its overflow approximation.
impl<U> Trait<U> for Local<u32> where Local<u16>: Trait<U> {}
// This impl holds.
impl Trait<Local<()>> for Local<u8> {}

// In the old solver, `Local<?t>: Trait<Local<?u>>` is ambiguous,
// resulting in `Local<?u>: NoImpl`, also being ambiguous.
//
// In the new solver the first impl does not apply, constraining
// `?u` to `Local<()>`, causing `Local<()>: NoImpl` to error.
trait Indirect<T> {}
impl<T, U> Indirect<U> for T
where
    T: Trait<U>,
    U: NoImpl
{}

// Not implemented for `Local<()>`
trait NoImpl {}
impl NoImpl for Local<u8> {}
impl NoImpl for Local<u16> {}

// `Local<?t>: Indirect<Local<?u>>` cannot hold, so
// these impls do not overlap.
trait NoOverlap<U> {}
impl<T: Indirect<U>, U> NoOverlap<U> for T {}
impl<T, U> NoOverlap<Local<U>> for Local<T> {}
//~^ ERROR conflicting implementations of trait `NoOverlap<Local<_>>`
```

### Non-fatal overflow

The old solver immediately emits a fatal error when hitting the recursion limit. The new solver instead returns overflow. This both allows more code to compile and is results in performance and potential future compatability issues.

Non-fatal overflow is generally desirable. With fatal overflow, changing the order in which we evaluate nested goals easily causes breakage if we have goal which errors and one which overflows. It is also required to prevent breakage due to the removal of `fn match_fresh_trait_refs`, e.g. [in `typenum`](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

#### Enabling more code to compile

In the below example, the old solver first tried to prove an overflowing goal, resulting in a fatal error. The new solver instead returns ambiguity due to overflow for that goal, causing the implicit negative overlap check to succeed as `Box<u32>: NotImplemented` does not hold.
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
//[current] ERROR overflow evaluating the requirement

trait Indirect<T> {}
impl<T: Overflow<()>> Indirect<T> for () {}

trait Overflow<U> {}
impl<T, U> Overflow<U> for Box<T>
where
    U: Indirect<Box<Box<T>>>,
{}

trait NotImplemented {}

trait Trait<U> {}
impl<T, U> Trait<U> for T
where
    // T: NotImplemented, // causes old solver to succeed
    U: Indirect<T>,
    T: NotImplemented,
{}

impl Trait<()> for Box<u32> {}
```

#### Avoiding hangs with non-fatal overflow

Simply returning ambiguity when reaching the recursion limit can very easily result in hangs, e.g.
```rust
trait Recur {}
impl<T, U> Recur for ((T, U), (U, T))
where
    (T, U): Recur,
    (U, T): Recur,
{}

trait NotImplemented {}
impl<T: NotImplemented> Recur for T {}
```
This can happen quite frequently as it's easy to have exponential blowup due to multiple nested goals at each step. As the trait solver is depth-first, this immediately caused a fatal overflow error in the old solver. In the new solver we have to handle the whole proof tree instead, which can very easily hang.

To avoid this we restrict the recursion depth after hitting the recursion limit for the first time. We also **ignore all inference constraints from goals resulting in overflow**. This is mostly backwards compatible as any overflow in the old solver resulted in a fatal error.

### sidenote about normalization

We return ambiguous nested goals of `NormalizesTo` goals to the caller and ignore their impact when computing the `Certainty` of the current goal. See the [normalization chapter](https://rustc-dev-guide.rust-lang.org/solve/normalization.html) for more details.This means we apply constraints resulting from other nested goals and from equating the impl header when normalizing, even if a nested goal results in overflow. This is necessary to avoid breaking the following example:
```rust
trait Trait {
    type Assoc;
}

struct W<T: ?Sized>(*mut T);
impl<T: ?Sized> Trait for W<W<T>>
where
    W<T>: Trait,
{
    type Assoc = ();
}

// `W<?t>: Trait<Assoc = u32>` does not hold as
// `Assoc` gets normalized to `()`. However, proving
// the where-bounds of the impl results in overflow.
//
// For this to continue to compile we must not discard
// constraints from normalizing associated types.
trait NoOverlap {}
impl<T: Trait<Assoc = u32>> NoOverlap for T {}
impl<T: ?Sized> NoOverlap for W<T> {}
```

#### Future compatability concerns

Non-fatal overflow results in some unfortunate future compatability concerns. Changing the approach to avoid more hangs by more strongly penalizing overflow can cause breakage as we either drop constraints or ignore candidates necessary to successfully compile. Weakening the overflow penalities instead allows more code to compile and strengthens inference while potentially causing more code to hang.

While the current approach is not perfect, we believe it to be good enough. We believe it to apply the necessary inference constraints to avoid breakage and expect there to not be any desirable patterns broken by our current penalities. Similarly we believe the current constraints to avoid most accidental hangs. Ignoring constraints of overflowing goals is especially useful, as it may allow major future optimizations to our overflow handling. See [this summary](https://hackmd.io/ATf4hN0NRY-w2LIVgeFsVg) and the linked documents in case you want to know more.

### changes to performance

In general, trait solving during coherence checking is not significant for performance. Enabling the next-generation trait solver in coherence does not impact our compile time benchmarks. We are still unable to compile the benchmark suite when fully enabling the new trait solver.

There are rare cases where the new solver has significantly worse performance due to non-fatal overflow, its reliance on fixpoint algorithms and the removal of the `fn match_fresh_trait_refs` approximation. We encountered such issues in [`typenum`](https://crates.io/crates/typenum) and believe it should be [pretty much as bad as it can get](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

Due to an improved structure and far better caching, we believe that there is a lot of room for improvement and that the new solver will outperform the existing implementation in nearly all cases, sometimes significantly. We have not yet spent any time micro-optimizing the implementation and have many unimplemented major improvements, such as fast-paths for trivial goals.

### Unstable features

#### Unsupported unstable features

The new solver currently does not support all unstable features, most notably `#![feature(generic_const_exprs)]`, `#![feature(associated_const_equality)]` and `#![feature(adt_const_params)]` are not yet fully supported in the new solver. We are confident that supporting them is possible, but did not consider this to be a priority. This stabilization introduces new ICE when using these features in impl headers.

#### fixes to `#![feature(specialization)]`

- fixes #105782
- fixes #118987

#### fixes to `#![feature(type_alias_impl_trait)]`

- fixes #119272
- https://github.com/rust-lang/rust/issues/105787#issuecomment-1750112388
- fixes #124207

### Important changes since the original FCP

https://github.com/rust-lang/rust/pull/127574 changes the coherence unknowable candidate to only apply if all the super trait bounds may hold. This allows more code to compile and fixes a regression in `pyella`

https://github.com/rust-lang/rust/pull/130617 bails with ambiguity if the query response would contain too many non-region inference variables. This should only be triggered in case the result contains a lot of ambiguous aliases in which case further constraining the goal should resolve this.

https://github.com/rust-lang/rust/pull/130821 adds caching to a lot of type folders, which is necessary to handle exponentially large types and handles the hang in `nalgebra` together with #130617.

## This does not stabilize the whole solver

While this stabilizes the use of the new solver in coherence checking, there are many parts of the solver which will remain fully unstable. We may still adapt these areas while working towards stabilizing the new solver everywhere. We are confident that we are able to do so without negatively impacting coherence.

### goals with a non-empty `ParamEnv`

Coherence always uses an empty environment. We therefore do not depend on the behavior of `AliasBound` and `ParamEnv` candidates. We only stabilizes the behavior of user-defined and builtin implementations of traits. There are still many open questions there.

### opaque types in the defining scope

The handling of opaque types - `impl Trait` - in both the new and old solver is still not fully figured out. Luckily this can be ignored for now. While opaque types are reachable during coherence checking by using `impl_trait_in_associated_types`, the behavior during coherence is separate and self-contained. The old and new solver fully agree here.

### normalization is hard

This stabilizes that we equate associated types involving bound variables using deferred-alias-equality. We also stop eagerly normalizing in coherence, which should not have any user-facing impact.

We do not stabilize the normalization behavior outside of coherence, e.g. we currently deeply normalize all types during writeback with the new solver. This may change going forward

### how to replace `select` from the old solver

We sometimes depend on getting a single `impl` for a given trait bound, e.g. when resolving a concrete method for codegen/CTFE. We do not depend on this during coherence, so the exact approach here can still be freely changed going forward.

## Acknowledgements

This work would not have been possible without `@compiler-errors.` He implemented large chunks of the solver himself but also and did a lot of testing and experimentation, eagerly discovering multiple issues which had a significant impact on our approach. `@BoxyUwU` has also done some amazing work on the solver. Thank you for the endless hours of discussion resulting in the current approach. Especially the way aliases are handled has gone through multiple revisions to get to its current state.

There were also many contributions from - and discussions with - other members of the community and the rest of `@rust-lang/types.` This solver builds upon previous improvements to the compiler, as well as lessons learned from `chalk` and `a-mir-formality`. Getting to this point  would not have been possible without that and I am incredibly thankful to everyone involved. See the [list of relevant PRs](https://github.com/rust-lang/rust/pulls?q=is%3Apr+is%3Amerged+label%3AWG-trait-system-refactor+-label%3Arollup+closed%3A%3C2024-03-22+).
2024-10-15 14:21:34 +00:00
lcnr
1a9d2d82a5 stabilize -Znext-solver=coherence 2024-10-15 13:11:00 +02:00
Matthias Krüger
4d53a28cac
Rollup merge of #131652 - compiler-errors:modifiers, r=Nadrieril,jieyouxu
Move polarity into `PolyTraitRef` rather than storing it on the side

Arguably we could move these modifiers into `TraitRef` instead of `PolyTraitRef`, but I see `TraitRef` as simply the *path* part of the trait ref. It doesn't really matter -- refactoring this further is much easier now.
2024-10-15 05:11:37 +02:00
Michael Goulet
7500e09b8b Move trait bound modifiers into hir::PolyTraitRef 2024-10-14 09:20:38 -04:00
Nicholas Nethercote
e0b83c34c3 Remove Engine::new_gen_kill.
This is an alternative to `Engine::new_generic` for gen/kill analyses.
It's supposed to be an optimization, but it has negligible effect.
The commit merges `Engine::new_generic` into `Engine::new`.

This allows the removal of various other things: `GenKillSet`,
`gen_kill_statement_effects_in_block`, `is_cfg_cyclic`.
2024-10-14 16:35:28 +11:00
Matthias Krüger
cb140dcb00
Rollup merge of #131473 - workingjubilee:move-that-abi-up, r=saethlin
compiler: `{TyAnd,}Layout` comes home

The `Layout` and `TyAndLayout` types are heavily abstract and have no particular target-specific qualities, though we do use them to answer questions particular to targets. We can keep it that way if we simply move them out of `rustc_target` and into `rustc_abi`. They bring a small entourage of connected types with them, but that's fine.

This will allow us to strengthen a few abstraction barriers over time and thus make the notoriously gnarly layout code easier to refactor. For now, we don't need to worry about that and deliberately use reexports to minimize this particular diff.
2024-10-14 06:04:28 +02:00
Trevor Gross
39071fdc58
Rollup merge of #131626 - matthiaskrgr:dont_string, r=lqd
remove a couple of redundant String to String conversion
2024-10-12 21:38:38 -05:00
Trevor Gross
19f6c17df4 Stabilize const_option
This makes the following API stable in const contexts:

    impl<T> Option<T> {
        pub const fn as_mut(&mut self) -> Option<&mut T>;
        pub const fn expect(self, msg: &str) -> T;
        pub const fn unwrap(self) -> T;
        pub const unsafe fn unwrap_unchecked(self) -> T;
        pub const fn take(&mut self) -> Option<T>;
        pub const fn replace(&mut self, value: T) -> Option<T>;
    }

    impl<T> Option<&T> {
        pub const fn copied(self) -> Option<T>
        where T: Copy;
    }

    impl<T> Option<&mut T> {
        pub const fn copied(self) -> Option<T>
        where T: Copy;
    }

    impl<T, E> Option<Result<T, E>> {
        pub const fn transpose(self) -> Result<Option<T>, E>
    }

    impl<T> Option<Option<T>> {
        pub const fn flatten(self) -> Option<T>;
    }

The following functions make use of the unstable
`const_precise_live_drops` feature:

- `expect`
- `unwrap`
- `unwrap_unchecked`
- `transpose`
- `flatten`

Fixes: <https://github.com/rust-lang/rust/issues/67441>
2024-10-12 17:07:13 -04:00
Matthias Krüger
4bc21e318c remove a couple of redundant String to String conversion 2024-10-12 22:07:46 +02:00
GnomedDev
8de8f46f78 Swap PredicateObligation to ThinVec 2024-10-12 15:17:16 +01:00
Ralf Jung
89623439f7 mark InterpResult as must_use 2024-10-12 13:13:50 +02:00
Jubilee Young
10721909f2 compiler: Wire {TyAnd,}Layout into rustc_abi
This finally unites TyAndLayout, Layout, and LayoutS into the same crate,
as one might imagine they would be placed. No functional changes.
2024-10-11 17:41:52 -07:00
bors
f4966590d8 Auto merge of #131045 - compiler-errors:remove-unnamed_fields, r=wesleywiser
Retire the `unnamed_fields` feature for now

`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.

However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.

Fixes #117942
Fixes #121161
Fixes #121263
Fixes #121299
Fixes #121722
Fixes #121799
Fixes #126969
Fixes #131041

Tracking:
* https://github.com/rust-lang/rust/issues/49804

[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
2024-10-11 13:11:13 +00:00
Michael Goulet
a7dc98733d Add variances to RPITITs 2024-10-10 11:46:48 -07:00
Michael Goulet
efb1c23ff6 Introduce SolverRelating 2024-10-10 06:07:51 -04:00
Jubilee Young
8da92b5ce2 compiler: Factor rustc_target::abi::* out of middle::ty::layout 2024-10-08 18:14:48 -07:00
zhuyunxing
6e3e19f714 coverage. Adapt to mcdc mapping formats introduced by llvm 19 2024-10-08 11:15:24 +08:00
zhuyunxing
99bd601df5 coverage. MCDC ConditionId start from 0 to keep with llvm 19 2024-10-08 10:50:18 +08:00
Nadrieril
4107322766 Error on resetted binding mode in edition 2024 2024-10-08 00:23:28 +02:00
bors
0b16baa570 Auto merge of #131235 - codemountains:rename-nestedmetaitem-to-metaitemlnner, r=nnethercote
Rename `NestedMetaItem` to `MetaItemInner`

Fixes #131087

r? `@nnethercote`
2024-10-07 08:59:55 +00:00
bors
8841a3dadd Auto merge of #131226 - nnethercote:rustc_infer-cleanups, r=lcnr
`rustc_infer` cleanups

Various small improvements I found while reading over this code.

r? `@lcnr`
2024-10-07 03:22:04 +00:00
Nicholas Nethercote
e800967478 Simplify two matches.
Matches involving `GenericArgKind` pairs typically use a single `_` for
the impossible case. This commit shortens two verbose matches in this
way.
2024-10-07 09:50:51 +11:00
Folkert de Vries
5fc60d1e52 various fixes for naked_asm! implementation
- fix for divergence
- fix error message
- fix another cranelift test
- fix some cranelift things
- don't set the NORETURN option for naked asm
- fix use of naked_asm! in doc comment
- fix use of naked_asm! in run-make test
- use `span_bug` in unreachable branch
2024-10-06 19:00:09 +02:00
codemountains
6dfc4a0473 Rename NestedMetaItem to MetaItemInner 2024-10-06 23:28:30 +09:00
Ralf Jung
f0ddc7b472 clarify semantics of ConstantIndex MIR projection 2024-10-05 12:19:14 +02:00
bors
5a4ee43c38 Auto merge of #129244 - cjgillot:opaque-hir, r=compiler-errors
Make opaque types regular HIR nodes

Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.

I haven't gone through all the test changes yet, so there may be a few surprises.

Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023

Fixes #129099
Fixes #125843
Fixes #119716
Fixes #121422
2024-10-05 06:19:35 +00:00
Jubilee
68de7d11a9
Rollup merge of #130633 - eholk:pin-reborrow-self, r=compiler-errors
Add support for reborrowing pinned method receivers

This builds on #130526 to add pinned reborrowing for method receivers. This enables the folllowing examples to work:

```rust
#![feature(pin_ergonomics)]
#![allow(incomplete_features)]

use std::pin::Pin;

pub struct Foo;

impl Foo {
    fn foo(self: Pin<&mut Self>) {
    }

    fn baz(self: Pin<&Self>) {
    }
}

pub fn bar(x: Pin<&mut Foo>) {
    x.foo();
    x.foo();

    x.baz(); // Pin<&mut Foo> is downgraded to Pin<&Foo>
}

pub fn baaz(x: Pin<&Foo>) {
    x.baz();
    x.baz();
}
```

This PR includes the original one, which is currently in the commit queue, but the only code changes are in the latest commit (d3c53aaa5c6fcb1018c58d229bc5d92202fa6880).

#130494

r? `@compiler-errors`
2024-10-04 19:19:24 -07:00
Camille GILLOT
6ec58a44e2 Simplify bound var resolution. 2024-10-04 23:44:27 +00:00
Camille GILLOT
68f7ed4495 WfCheck opaques. 2024-10-04 23:28:27 +00:00
Noah Lev
d6f247f3d5 rm ItemKind::OpaqueTy
This introduce an additional collection of opaques on HIR, as they can no
longer be listed using the free item list.
2024-10-04 23:28:22 +00:00
Camille GILLOT
4ec7839afa Make naming more consistent. 2024-10-04 23:02:41 +00:00
Camille GILLOT
99144726a4 Make query backtrace more useful. 2024-10-04 23:01:09 +00:00
Michael Goulet
fd7ee484f9 Elaborate supertrait span correctly to label the error better 2024-10-04 17:15:28 -04:00
Guillaume Gomez
ba94a2ada1
Rollup merge of #131202 - Urgau:wide-ptrs-compiler, r=jieyouxu
Use wide pointers consistenly across the compiler

This PR replace every use of "fat pointer" for the more recent "wide pointer" terminology.

Since some time T-lang as preferred the "wide pointer" terminology, as can be seen on [the last RFCs](https://github.com/search?q=repo%3Arust-lang%2Frfcs+%22wide+pointer%22&type=code), on some [lints](https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#ambiguous-wide-pointer-comparisons), but also in [the reference](https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html?highlight=wide%20pointer#pointer-to-pointer-cast).

Currently we have a [mix of both](https://github.com/search?q=repo%3Arust-lang%2Frust+%22wide+pointer%22&type=code) (including in error messages), which isn't great, but with this PR no more.

r? `@jieyouxu` (feel free to re-roll)
2024-10-04 15:42:54 +02:00
Urgau
018ba0528f Use wide pointers consistenly across the compiler 2024-10-04 14:06:48 +02:00
bors
e1e3cac26d Auto merge of #131215 - matthiaskrgr:rollup-i021ef7, r=matthiaskrgr
Rollup of 7 pull requests

Successful merges:

 - #131024 (Don't give method suggestions when method probe fails due to bad implementation of `Deref`)
 - #131112 (TransmuteFrom: Gracefully handle unnormalized types and normalization errors)
 - #131176 (.gitignore files for nix)
 - #131183 (Refactoring to `OpaqueTyOrigin`)
 - #131187 (Avoid ICE in coverage builds with bad `#[coverage(..)]` attributes)
 - #131192 (Handle `rustc_query_impl` cases of `rustc::potential_query_instability` lint)
 - #131197 (Avoid emptiness check in `PeekMut::pop`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-03 22:32:04 +00:00
Matthias Krüger
da81f64d84
Rollup merge of #131183 - compiler-errors:opaque-ty-origin, r=estebank
Refactoring to `OpaqueTyOrigin`

Pulled out of a larger PR that uses these changes to do cross-crate encoding of opaque origin, so we can use them for edition 2024 migrations. These changes should be self-explanatory on their own, tho 😄
2024-10-03 21:52:46 +02:00
ismailarilik
3d8bd6bbc5 Handle rustc_metadata cases of rustc::potential_query_instability lint 2024-10-03 08:38:51 +03:00
Michael Goulet
7cd466a036 Move in_trait into OpaqueTyOrigin 2024-10-02 22:48:26 -04:00
Michael Goulet
f95bdf453e Remove redundant in_trait from hir::TyKind::OpaqueDef 2024-10-02 21:59:55 -04:00
bors
18b1161ec9 Auto merge of #130821 - lcnr:nalgebra-hang-2, r=compiler-errors
add caching to most type folders, rm region uniquification

Fixes the new minimization of the hang in nalgebra and nalgebra itself :3

this is a bit iffy, especially the cache in `TypeRelating`. I believe all the caches are correct, but it definitely adds some non-local complexity in places. The first commit removes region uniquification, reintroducing the ICE from https://github.com/rust-lang/trait-system-refactor-initiative/issues/27. This does not affect coherence and I would like to fix this by introducing OR-region constraints

r? `@compiler-errors`
2024-10-02 19:21:44 +00:00
Matthias Krüger
b38f7ad9b1
Rollup merge of #131152 - fee1-dead-contrib:fxdiag, r=compiler-errors
Improve const traits diagnostics for new desugaring

r? project-const-traits
2024-10-02 17:10:47 +02:00
Matthias Krüger
2e0db79f0b
Rollup merge of #131150 - bvanjoi:issue-128327, r=chenyukang
only query `params_in_repr` if def kind is adt

Fixes #128327

`params_in_repr` was only stored in `encode_info_for_adt`, so we only query it when the def kind belongs to them.

9e3e517446/compiler/rustc_metadata/src/rmeta/encoder.rs (L1566-L1567)
2024-10-02 17:10:45 +02:00
Matthias Krüger
7e0797c13f
Rollup merge of #131140 - ismailarilik:handle-potential-query-instability-lint-for-rustc-hir-analysis, r=compiler-errors
Handle `rustc_hir_analysis` cases of `potential_query_instability` lint

This PR removes `#![allow(rustc::potential_query_instability)]` line from [`compiler/rustc_hir_analysis/src/lib.rs`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_hir_analysis/src/lib.rs#L61) and converts `FxHash{Map,Set}` types into `FxIndex{Map,Set}` to suppress lint errors.

A somewhat tracking issue: https://github.com/rust-lang/rust/issues/84447
2024-10-02 17:10:44 +02:00
lcnr
1a04a317c4 review 2024-10-02 14:49:36 +02:00
Deadbeef
7f6150b577 Improve const traits diagnostics for new desugaring 2024-10-02 19:45:17 +08:00
bohan
e9b2d09ad7 only query params_in_repr if def kind is adt 2024-10-02 17:36:31 +08:00
Jubilee
ea453bb10b
Rollup merge of #130885 - RalfJung:interp-error-discard, r=oli-obk
panic when an interpreter error gets unintentionally discarded

One important invariant of Miri is that when an interpreter error is raised (*in particular* a UB error), those must not be discarded: it's not okay to just check `foo().is_err()` and then continue executing.

This seems to catch new contributors by surprise fairly regularly, so this PR tries to make it so that *if* this ever happens, we get a panic rather than a silent missed UB bug. The interpreter error type now contains a "guard" that panics on drop, and that is explicitly passed to `mem::forget` when an error is deliberately discarded.

Fixes https://github.com/rust-lang/miri/issues/3855
2024-10-01 23:15:59 -07:00
ismailarilik
807e812077 Handle rustc-hir-analysis cases of rustc::potential_query_instability lint 2024-10-02 08:28:45 +03:00
Ralf Jung
c4ce8c114b make InterpResult a dedicated type to avoid accidentally discarding the error 2024-10-01 21:45:35 +02:00
Michael Goulet
e3a0da1863 Remove unnamed field feature 2024-10-01 13:55:46 -04:00
lcnr
13881f5404 add caches to multiple type folders 2024-10-01 17:20:31 +02:00
David Lattimore
f48194ea55 Replace -Z default-hidden-visibility with -Z default-visibility
MCP: https://github.com/rust-lang/compiler-team/issues/782

Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
2024-10-01 22:32:13 +10:00
Ralf Jung
4b8a5bd511 panic when an interpreter error gets unintentionally discarded 2024-09-30 08:37:00 +02:00
Michael Goulet
2239f1c5cd Validate ExistentialPredicate args 2024-09-30 01:14:03 -04:00
Michael Goulet
9368b9f57e Debug assert that unevaluated consts have the right substs 2024-09-30 00:34:58 -04:00
bors
4e91cedaed Auto merge of #129499 - fee1-dead-contrib:supereffects, r=compiler-errors
properly elaborate effects implied bounds for super traits

Summary: This PR makes it so that we elaborate `<T as Tr>::Fx: EffectsCompat<somebool>` into `<T as SuperTr>::Fx: EffectsCompat<somebool>` when we know that `trait Tr: ~const SuperTr`.

Some discussion at https://github.com/rust-lang/project-const-traits/issues/2.

r? project-const-traits
`@rust-lang/project-const-traits:` how do we feel about this approach?
2024-09-30 00:30:09 +00:00
Matthias Krüger
a0ae32d6a2
Rollup merge of #130990 - RalfJung:mir-const-normalize, r=compiler-errors
try to get rid of mir::Const::normalize

It was easy to make this compile, let's see if anything breaks...

r? `@compiler-errors`
2024-09-29 20:17:37 +02:00
Matthias Krüger
71cd918dc7 cleanup: don't clone types that are Copy 2024-09-29 13:31:30 +02:00
Ralf Jung
c55c4c9f9d tweak Const::identity_unevaluated name and docs 2024-09-28 21:28:08 +02:00
Ralf Jung
921a5ef6d7 try to get rid of mir::Const::normalize 2024-09-28 21:15:18 +02:00
bors
83e4e18896 Auto merge of #130946 - matthiaskrgr:rollup-ia4mf0y, r=matthiaskrgr
Rollup of 6 pull requests

Successful merges:

 - #130718 (Cleanup some known-bug issues)
 - #130730 (Reorganize Test Headers)
 - #130826 (Compiler: Rename "object safe" to "dyn compatible")
 - #130915 (fix typo in triagebot.toml)
 - #130926 (Update cc to 1.1.22 in library/)
 - #130932 (etc: Add sample rust-analyzer configs for eglot & helix)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-09-27 21:23:29 +00:00
Matthias Krüger
a935064fae
Rollup merge of #130826 - fmease:compiler-mv-obj-safe-dyn-compat, r=compiler-errors
Compiler: Rename "object safe" to "dyn compatible"

Completed T-lang FCP: https://github.com/rust-lang/lang-team/issues/286#issuecomment-2338905118.
Tracking issue: https://github.com/rust-lang/rust/issues/130852

Excludes `compiler/rustc_codegen_cranelift` (to be filed separately).
Includes Stable MIR.

Regarding https://github.com/rust-lang/rust/labels/relnotes, I guess I will manually open a https://github.com/rust-lang/rust/labels/relnotes-tracking-issue since this change affects everything (compiler, library, tools, docs, books, everyday language).

r? ghost
2024-09-27 21:35:08 +02:00
Deadbeef
7c2a24b50c properly elaborate effects implied bounds for super traits 2024-09-27 22:36:46 +08:00
Josh Stone
4160a54dc5 Use &raw in the compiler
Like #130865 did for the standard library, we can use `&raw` in the
compiler now that stage0 supports it. Also like the other issue, I did
not make any doc or test changes at this time.
2024-09-26 20:33:26 -07:00
León Orell Valerian Liehr
01a063f9df
Compiler: Rename "object safe" to "dyn compatible" 2024-09-25 13:26:48 +02:00
bors
4c62024cd5 Auto merge of #130803 - cuviper:file-buffered, r=joshtriplett
Add `File` constructors that return files wrapped with a buffer

In addition to the light convenience, these are intended to raise visibility that buffering is something you should consider when opening a file, since unbuffered I/O is a common performance footgun to Rust newcomers.

ACP: https://github.com/rust-lang/libs-team/issues/446
Tracking Issue: #130804
2024-09-25 04:57:12 +00:00
Trevor Gross
3b45f8f310
Rollup merge of #130764 - compiler-errors:inherent, r=estebank
Separate collection of crate-local inherent impls from error tracking

#119895 changed the return type of the `crate_inherent_impls` query from `CrateInherentImpls` to `Result<CrateInherentImpls, ErrorGuaranteed>` to avoid needing to use the non-parallel-friendly `track_errors()` to track if an error was reporting from within the query... This was mostly fine until #121113, which stopped halting compilation when we hit an `Err(ErrorGuaranteed)` in the `crate_inherent_impls` query.

Thus we proceed onwards to typeck, and since a return type of `Result<CrateInherentImpls, ErrorGuaranteed>` means that the query can *either* return one of "the list inherent impls" or "error has been reported", later on when we want to assemble method or associated item candidates for inherent impls, we were just treating any `Err(ErrorGuaranteed)` return value as if Rust had no inherent impls defined anywhere at all! This leads to basically every inherent method call failing with an error, lol, which was reported in #127798.

This PR changes the `crate_inherent_impls` query to return `(CrateInherentImpls, Result<(), ErrorGuaranteed>)`, i.e. returning the inherent impls collected *and* whether an error was reported in the query itself. It firewalls the latter part of that query into a new `crate_inherent_impls_validity_check` just for the `ensure()` call.

This fixes #127798.
2024-09-24 19:47:50 -04:00
Josh Stone
0999b019f8 Dogfood feature(file_buffered) 2024-09-24 14:25:16 -07:00
Lukas Markeffsky
b62e72ce8c update doc comment 2024-09-24 23:12:02 +02:00
Lukas Markeffsky
bd31e3ed70 be even more precise about "cast" vs "coercion" 2024-09-24 23:12:02 +02:00
Lukas Markeffsky
5e60d1f87e replace "cast" with "coercion" where applicable
This changes the remaining span for the cast, because the new `Cast`
category has a higher priority (lower `Ord`) than the old `Coercion`
category, so we no longer report the region error for the "unsizing"
coercion from `*const Trait` to itself.
2024-09-24 22:20:46 +02:00
Lukas Markeffsky
d1e82d438f use more accurate spans for user type ascriptions 2024-09-24 22:20:42 +02:00
Lukas Markeffsky
46ecb23198 unify dyn* coercions with other pointer coercions 2024-09-24 22:17:55 +02:00
Michael Goulet
cfb8419900 Separate collection of crate-local inherent impls from error reporting 2024-09-24 10:12:05 -04:00
Michael Goulet
ec1ccff8ce
Rollup merge of #130727 - compiler-errors:objects, r=RalfJung
Check vtable projections for validity in miri

Currently, miri does not catch when we transmute `dyn Trait<Assoc = A>` to `dyn Trait<Assoc = B>`. This PR implements such a check, and fixes https://github.com/rust-lang/miri/issues/3905.

To do this, we modify `GlobalAlloc::VTable` to contain the *whole* list of `PolyExistentialPredicate`, and then modify `check_vtable_for_type` to validate the `PolyExistentialProjection`s of the vtable, along with the principal trait that was already being validated.

cc ``@RalfJung``
r? ``@lcnr`` or types

I also tweaked the diagnostics a bit.

---

**Open question:** We don't validate the auto traits. You can transmute `dyn Foo` into `dyn Foo + Send`. Should we check that? We currently have a test that *exercises* this as not being UB:

6c6d210089/src/tools/miri/tests/pass/dyn-upcast.rs (L14-L20)

I'm not actually sure if we ever decided that's actually UB or not 🤔

We could perhaps still check that the underlying type of the object (i.e. the concrete type that was unsized) implements the auto traits, to catch UB like:

```rust
fn main() {
    let x: &dyn Trait = &std::ptr::null_mut::<()>();
    let _: &(dyn Trait + Send) = std::mem::transmute(x);
    //~^ this vtable is not allocated for a type that is `Send`!
}
```
2024-09-23 23:49:12 -04:00
Michael Goulet
c0f1a69229
Rollup merge of #130618 - m-ou-se:skip-query, r=compiler-errors
Skip query in get_parent_item when possible.

For HirIds with a non-zero item local id, `self.parent_owner_iter(hir_id).next()` just returns the same HirId with the item local id set to 0, but also does a query to retrieve the Node which is ignored here, which seems wasteful.
2024-09-23 23:49:11 -04:00
Michael Goulet
702a644b74 Check vtable projections for validity in miri 2024-09-23 19:38:26 -04:00
Eric Holk
3dfb30c70a
Allow reborrowing pinned self methods 2024-09-23 09:12:52 -07:00
Mara Bos
c0c569f99d
Update compiler/rustc_middle/src/hir/map/mod.rs
Co-authored-by: Michael Goulet <michael@errs.io>
2024-09-23 09:36:17 +00:00
Michael Goulet
c682aa162b Reformat using the new identifier sorting from rustfmt 2024-09-22 19:11:29 -04:00
Michael Goulet
2a9525bb90
Rollup merge of #127766 - folkertdev:c-cmse-nonsecure-entry, r=jackh726
add `extern "C-cmse-nonsecure-entry" fn`

tracking issue #75835

in https://github.com/rust-lang/rust/issues/75835#issuecomment-1183517255 it was decided that using an abi, rather than an attribute, was the right way to go for this feature.

This PR adds that ABI and removes the `#[cmse_nonsecure_entry]` attribute. All relevant tests have been updated, some are now obsolete and have been removed.

Error 0775 is no longer generated. It contains the list of targets that support the CMSE feature, and maybe we want to still use this? right now a generic "this abi is not supported on this platform" error is returned when this abi is used on an unsupported platform. On the other hand, users of this abi are likely to be experienced rust users, so maybe the generic error is good enough.
2024-09-21 15:18:55 -04:00
bors
1d68e6dd1d Auto merge of #127546 - workingjubilee:5-level-paging-exists, r=saethlin
Correct outdated object size limit

The comment here about 48 bit addresses being enough was written in 2016 but was made incorrect in 2019 by 5-level paging, and then persisted for another 5 years before being noticed and corrected.

The bolding of the "exclusive" part is merely to call attention to something I missed when reading it and doublechecking the math.

try-job: i686-msvc
try-job: test-various
2024-09-21 16:20:10 +00:00
bors
2836482241 Auto merge of #129283 - saethlin:unreachable-allocas, r=scottmcm
Don't alloca for unused locals

We already have a concept of mono-unreachable basic blocks; this is primarily useful for ensuring that we do not compile code under an `if false`. But since we never gave locals the same analysis, a large local only used under an `if false` will still have stack space allocated for it.

There are 3 places we traverse MIR during monomorphization: Inside the collector, `non_ssa_locals`, and the walk to generate code. Unfortunately, https://github.com/rust-lang/rust/pull/129283#issuecomment-2297925578 indicates that we cannot afford the expense of tracking reachable locals during the collector's traversal, so we do need at least two mono-reachable traversals. And of course caching is of no help here because the benchmarks that regress are incr-unchanged; they don't do any codegen.

This fixes the second problem in https://github.com/rust-lang/rust/issues/129282, and brings us anther step toward `const if` at home.
2024-09-21 13:48:14 +00:00
Folkert
5722a80782 remove #[cmse_nonsecure_entry] 2024-09-21 13:05:21 +02:00
Folkert de Vries
1ddd67a79a add C-cmse-nonsecure-entry ABI 2024-09-21 13:04:14 +02:00
Ben Kimock
523f8f8398 Compute reachable locals as part of non_ssa_locals 2024-09-21 01:07:00 -04:00
Ben Kimock
0ea5dc506f Don't alloca for unused locals 2024-09-21 01:06:59 -04:00
Michael Goulet
c0d1a1305d Only expect mono consts in CFI 2024-09-20 20:38:13 -04:00
Guillaume Gomez
fe5f734e6a
Rollup merge of #130526 - eholk:pin-reborrow, r=compiler-errors
Begin experimental support for pin reborrowing

This commit adds basic support for reborrowing `Pin` types in argument position. At the moment it only supports reborrowing `Pin<&mut T>` as `Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in argument position (not as the receiver in a method call).

This PR makes the following example compile:

```rust
#![feature(pin_ergonomics)]

fn foo(_: Pin<&mut Foo>) {
}

fn bar(mut x: Pin<&mut Foo>) {
    foo(x);
    foo(x);
}
```

Previously, you would have had to write `bar` as:

```rust
fn bar(mut x: Pin<&mut Foo>) {
    foo(x.as_mut());
    foo(x);
}
```

Tracking:

- #130494

r? `@compiler-errors`
2024-09-20 19:46:38 +02:00
Jubilee Young
325af25c94 TL note: current means target 2024-09-20 10:02:14 -07:00
Mara Bos
7a19b17084 Skip query in get_parent_item when possible. 2024-09-20 16:12:44 +02:00
Eric Holk
b2b76fb706
Allow shortening reborrows
Generating a call to `as_mut()` let to more restrictive borrows than
what reborrowing usually gives us. Instead, we change the desugaring to
reborrow the pin internals directly which makes things more expressive.
2024-09-19 15:34:00 -07:00
Eric Holk
a73c8b1171
Apply code review suggestions 2024-09-18 15:37:50 -07:00
Eric Holk
7b7992fbcf
Begin experimental support for pin reborrowing
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
2024-09-18 12:36:31 -07:00
Matthias Krüger
21313d7947
Rollup merge of #130457 - nnethercote:cleanup-codegen-traits, r=bjorn3
Cleanup codegen traits

The traits governing codegen are quite complicated and hard to follow. This PR cleans them up a bit.

r? `@bjorn3`
2024-09-18 17:49:43 +02:00
Jesse Rusak
3cb1f334b8 Fix circular fn_sig queries to return the correct number of arguments for methods 2024-09-17 20:54:04 -04:00
bors
e2dc1a1c0f Auto merge of #129970 - lukas-code:LayoutCalculator, r=compiler-errors
layout computation: gracefully handle unsized types in unexpected locations

This PR reworks the layout computation to eagerly return an error when encountering an unsized field where a sized field was expected, rather than delaying a bug and attempting to recover a layout. This is required, because with trivially false where clauses like `[T]: Sized`, any field can possible be an unsized type, without causing a compile error.

Since this PR removes the `delayed_bug` method from the `LayoutCalculator` trait, it essentially becomes the same as the `HasDataLayout` trait, so I've also refactored the `LayoutCalculator` to be a simple wrapper struct around a type that implements `HasDataLayout`.

The majority of the diff is whitespace changes, so viewing with whitespace ignored is advised.

implements https://github.com/rust-lang/rust/pull/123169#issuecomment-2025788480

r? `@compiler-errors` or compiler

fixes https://github.com/rust-lang/rust/issues/123134
fixes https://github.com/rust-lang/rust/issues/124182
fixes https://github.com/rust-lang/rust/issues/126939
fixes https://github.com/rust-lang/rust/issues/127737
2024-09-17 01:17:48 +00:00
Nicholas Nethercote
acb832d640 Use associative type defaults in {Layout,FnAbi}OfHelpers.
This avoids some repetitive boilerplate code.
2024-09-17 10:25:06 +10:00
Michael Goulet
1e9fa7eb79 Don't ICE when RPITIT captures more method args than trait definition 2024-09-16 10:57:06 -04:00
Lukas Markeffsky
697450151c layout computation: eagerly error for unexpected unsized fields 2024-09-16 15:53:21 +02:00
Lukas Markeffsky
16be6666d4 make LayoutCx not generic 2024-09-16 15:53:17 +02:00
bors
13b5a4e43b Auto merge of #129716 - compiler-errors:closure-debuginfo, r=cjgillot
Don't use `typeck_root_def_id` in codegen for finding closure's root

Generating debuginfo in codegen currently peels off all the closure-specific generics (which presumably is done because they're redundant). This doesn't currently work correctly for the bodies we synthesize for async closures's returned coroutines (#128506), leading to #129702.

Specifically, `typeck_root_def_id` for some `DefKind::SyntheticCoroutineBody` just returns itself (because it loops while `is_typeck_child` is `true`, and that returns `false` for this defkind), which means we don't end up peeling off the coroutine-specific generics, and we end up encountering an otherwise unreachable `CoroutineWitness` type leading to an ICE.

This PR fixes `is_typeck_child` to consider `DefKind::SyntheticCorotuineBody` to be a typeck child, fixing `typeck_root_def_id` and suppressing this debuginfo bug.

Fixes #129702
2024-09-16 10:16:32 +00:00
bors
9b72238eb8 Auto merge of #128543 - RalfJung:const-interior-mut, r=fee1-dead
const-eval interning: accept interior mutable pointers in final value

…but keep rejecting mutable references

This fixes https://github.com/rust-lang/rust/issues/121610 by no longer firing the lint when there is a pointer with interior mutability in the final value of the constant. On stable, such pointers can be created with code like:
```rust
pub enum JsValue {
    Undefined,
    Object(Cell<bool>),
}
impl Drop for JsValue {
    fn drop(&mut self) {}
}
// This does *not* get promoted since `JsValue` has a destructor.
// However, the outer scope rule applies, still giving this 'static lifetime.
const UNDEFINED: &JsValue = &JsValue::Undefined;
```
It's not great to accept such values since people *might* think that it is legal to mutate them with unsafe code. (This is related to how "infectious" `UnsafeCell` is, which is a [wide open question](https://github.com/rust-lang/unsafe-code-guidelines/issues/236).) However, we [explicitly document](https://doc.rust-lang.org/reference/behavior-considered-undefined.html) that things created by `const` are immutable. Furthermore, we also accept the following even more questionable code without any lint today:
```rust
let x: &'static Option<Cell<i32>> = &None;
```
This is even more questionable since it does *not* involve a `const`, and yet still puts the data into immutable memory. We could view this as promotion [potentially introducing UB](https://github.com/rust-lang/unsafe-code-guidelines/issues/493). However, we've accepted this since ~forever and it's [too late to reject this now](https://github.com/rust-lang/rust/pull/122789); the pattern is just too useful.

So basically, if you think that `UnsafeCell` should be tracked fully precisely, then you should want the lint we currently emit to be removed, which this PR does. If you think `UnsafeCell` should "infect" surrounding `enum`s, the big problem is really https://github.com/rust-lang/unsafe-code-guidelines/issues/493 which does not trigger the lint -- the cases the lint triggers on are actually the "harmless" ones as there is an explicit surrounding `const` explaining why things end up being immutable.

What all this goes to show is that the hard error added in https://github.com/rust-lang/rust/pull/118324 (later turned into the future-compat lint that I am now suggesting we remove) was based on some wrong assumptions, at least insofar as it concerns shared references. Furthermore, that lint does not help at all for the most problematic case here where the potential UB is completely implicit. (In fact, the lint is actively in the way of [my preferred long-term strategy](https://github.com/rust-lang/unsafe-code-guidelines/issues/493#issuecomment-2028674105) for dealing with this UB.) So I think we should go back to square one and remove that error/lint for shared references. For mutable references, it does seem to work as intended, so we can keep it. Here it serves as a safety net in case the static checks that try to contain mutable references to the inside of a const initializer are not working as intended; I therefore made the check ICE to encourage users to tell us if that safety net is triggered.

Closes https://github.com/rust-lang/rust/issues/122153 by removing the lint.

Cc `@rust-lang/opsem` `@rust-lang/lang`
2024-09-14 21:11:04 +00:00
Michael Goulet
63405fc2b3 Consider synthetic closure bodies to be typeck children 2024-09-14 16:33:25 -04:00
Stuart Cook
89dd3f91a8
Rollup merge of #130317 - compiler-errors:no-ord, r=jackh726
`ProjectionElem` and `UnOp`/`BinOp` dont need to be `PartialOrd`/`Ord`

These types don't really admit a natural ordering and no code seems to rely on it, so let's remove it.
2024-09-14 11:53:13 +10:00
Stuart Cook
04e744e77d
Rollup merge of #130199 - compiler-errors:by-move, r=cjgillot
Don't call closure_by_move_body_def_id on FnOnce async closures in MIR validation

Refactors the check in #129847 to not unncessarily call the `closure_by_move_body_def_id` query for async closures that don't *need* a by-move body.

Fixes #130167
2024-09-14 11:53:12 +10:00
Michael Goulet
c8233a4c6f ProjectionElem and UnOp/BinOp dont need to be PartialOrd/Ord 2024-09-13 14:17:32 -04:00
bors
a5efa01895 Auto merge of #107251 - dingxiangfei2009:let-chain-rescope, r=jieyouxu
Rescope temp lifetime in if-let into IfElse with migration lint

Tracking issue #124085

This PR shortens the temporary lifetime to cover only the pattern matching and consequent branch of a `if let`.

At the expression location, means that the lifetime is shortened from previously the deepest enclosing block or statement in Edition 2021. This warrants an Edition change.

Coming with the Edition change, this patch also implements an edition lint to warn about the change and a safe rewrite suggestion to preserve the 2021 semantics in most cases.

Related to #103108.
Related crater runs: https://github.com/rust-lang/rust/pull/129466.
2024-09-13 03:47:30 +00:00
Noah Lev
e0bd01167e Re-enable ConstArgKind::Path lowering by default
...and remove the `const_arg_path` feature gate as a result. It was only
a stopgap measure to fix the regression that the new lowering introduced
(which should now be fixed by this PR).
2024-09-12 13:56:01 -04:00
bors
394c4060d2 Auto merge of #130269 - Zalathar:rollup-coxzt2t, r=Zalathar
Rollup of 8 pull requests

Successful merges:

 - #125060 (Expand documentation of PathBuf, discussing lack of sanitization)
 - #129367 (Fix default/minimum deployment target for Aarch64 simulator targets)
 - #130156 (Add test for S_OBJNAME & update test for LF_BUILDINFO cl and cmd)
 - #130160 (Fix `slice::first_mut` docs)
 - #130235 (Simplify some nested `if` statements)
 - #130250 (Fix `clippy::useless_conversion`)
 - #130252 (Properly report error on `const gen fn`)
 - #130256 (Re-run coverage tests if `coverage-dump` was modified)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-09-12 12:56:55 +00:00
Stuart Cook
57020e0f8c
Rollup merge of #130250 - compiler-errors:useless-conversion, r=jieyouxu
Fix `clippy::useless_conversion`

Self-explanatory. Probably the last clippy change I'll actually put up since this is the only other one I've actually seen in the wild.
2024-09-12 20:37:17 +10:00
Stuart Cook
3ba12756d3
Rollup merge of #130235 - compiler-errors:nested-if, r=michaelwoerister
Simplify some nested `if` statements

Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`

Review with whitespace disabled please.
2024-09-12 20:37:16 +10:00
bors
f753bc769b Auto merge of #130249 - compiler-errors:sad-new-solver-coherence, r=lcnr
Revert "Stabilize `-Znext-solver=coherence`"

This is a clean revert of #121848, prepared by running:

```
$ git revert 17b322fa69 -m1
```

Which effectively reverts:
* a138a92615, 69fdd1457d, d93e047c9f, 1a893ac648

see: https://rust-lang.zulipchat.com/#narrow/stream/364551-t-types.2Ftrait-system-refactor/topic/nalgebra.20hang

Closes #130056

r? lcnr
2024-09-12 10:17:32 +00:00
Jubilee
a31a8fe0cf
Rollup merge of #130114 - eduardosm:needless-returns, r=compiler-errors
Remove needless returns detected by clippy in the compiler
2024-09-11 15:53:22 -07:00
Michael Goulet
e866f8a97d Revert 'Stabilize -Znext-solver=coherence' 2024-09-11 17:57:04 -04:00
Michael Goulet
6d064295c8 clippy::useless_conversion 2024-09-11 17:52:53 -04:00
Michael Goulet
af8d911d63 Also fix if in else 2024-09-11 17:24:01 -04:00
Michael Goulet
954419aab0 Simplify some nested if statements 2024-09-11 13:45:23 -04:00
bors
6f7229c4da Auto merge of #129403 - scottmcm:only-array-simd, r=compiler-errors
Ban non-array SIMD

Nearing the end of https://github.com/rust-lang/compiler-team/issues/621 !

Currently blocked on ~~https://github.com/rust-lang/compiler-builtins/pull/673~~ ~~https://github.com/rust-lang/compiler-builtins/pull/674~~ ~~https://github.com/rust-lang/rust/pull/129400~~ ~~https://github.com/rust-lang/rust/pull/129481~~ for windows.
2024-09-10 22:47:40 +00:00
Ding Xiang Fei
f93df1f7dc
rescope temp lifetime in let-chain into IfElse
apply rules by span edition
2024-09-11 04:10:00 +08:00
Michael Goulet
5cf117ed05 Don't call closure_by_move_body_def_id on FnOnce async closures in MIR validation 2024-09-10 10:55:05 -04:00
Ralf Jung
f76f128dc9 const-eval interning: accpt interior mutable pointers in final value (but keep rejecting mutable references) 2024-09-10 10:26:16 +02:00
bors
26b2b8d162 Auto merge of #130179 - workingjubilee:rollup-l78cv44, r=workingjubilee
Rollup of 11 pull requests

Successful merges:

 - #128316 (Stabilize most of `io_error_more`)
 - #129473 (use  `download-ci-llvm=true` in the default compiler config)
 - #129529 (Add test to build crates used by r-a on stable)
 - #129981 (Remove `serialized_bitcode` from `LtoModuleCodegen`.)
 - #130094 (Inform the solver if evaluation is concurrent)
 - #130132 ([illumos] enable SIGSEGV handler to detect stack overflows)
 - #130146 (bootstrap `naked_asm!` for `compiler-builtins`)
 - #130149 (Helper function for formatting with `LifetimeSuggestionPosition`)
 - #130152 (adapt a test for llvm 20)
 - #130162 (bump download-ci-llvm-stamp)
 - #130164 (move some const fn out of the const_ptr_as_ref feature)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-09-10 07:26:27 +00:00
Scott McMurray
d2309c2a9d Ban non-array SIMD 2024-09-09 19:39:43 -07:00
bors
304b7f801b Auto merge of #129778 - RalfJung:interp-lossy-typed-copy, r=saethlin
interpret: make typed copies lossy wrt provenance and padding

A "typed copy" in Rust can be a lossy process: when copying at type `usize` (or any other non-pointer type), if the original memory had any provenance, that provenance is lost. When copying at pointer type, if the original memory had partial provenance (i.e., not the same provenance for all bytes), that provenance is lost. When copying any type with padding, the contents of padding are lost.

This PR equips our validity-checking pass with the ability to reset provenance and padding according to those rules. Can be reviewed commit-by-commit. The first three commits are just preparation without any functional change.

Fixes https://github.com/rust-lang/miri/issues/845
Fixes https://github.com/rust-lang/miri/issues/2182
2024-09-10 02:18:51 +00:00
Jubilee Young
d243c8fbc4 compiler: Inform the solver of concurrency
Parallel compilation of a program can cause unexpected event sequencing.
Inform the solver when this is true so it can skip invalid asserts, then
assert replaced solutions are equal if Some
2024-09-09 13:07:48 -07:00
Ralf Jung
65c70900ce union padding computation: add fast-path for ZST
Also avoid even tracking empty ranges, and add fast-path for arrays of scalars
2024-09-09 14:46:26 +02:00
Eduardo Sánchez Muñoz
0b20ffcb63 Remove needless returns detected by clippy in the compiler 2024-09-09 13:32:22 +02:00
bors
085744b7ad Auto merge of #130036 - weiznich:diagnostic_unstable_tracking, r=compiler-errors
Correctly handle stability of `#[diagnostic]` attributes

This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.

r​? `@compiler-errors`
2024-09-08 23:39:00 +00:00
Ralf Jung
cbdcbf0d6a interpret: reset provenance on typed copies 2024-09-08 16:53:23 +02:00
bors
12b26c13fb Auto merge of #129941 - BoxyUwU:bump-boostrap, r=albertlarsan68
Bump boostrap compiler to new beta

Accidentally left some comments on the update cfgs commit directly xd
2024-09-07 20:37:30 +00:00
Michael Goulet
9936179769
Rollup merge of #129987 - compiler-errors:capture-place-region, r=davidtwco
Don't store region in `CapturedPlace`

It's not necessary anymore, since we erase all regions in writeback anyways.
2024-09-07 14:21:23 +03:00
bors
26b5599e4d Auto merge of #128776 - Bryanskiy:deep-reject-ctxt, r=lcnr
Use `DeepRejectCtxt` to quickly reject `ParamEnv` candidates

The description is on the [zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types/topic/.5Basking.20for.20help.5D.20.60DeepRejectCtxt.60.20for.20param.20env.20candidates)

r? `@lcnr`
2024-09-06 19:50:48 +00:00
Georg Semmler
7c9e818f02
Revert ed7bdbb17b 2024-09-06 19:06:59 +02:00
Georg Semmler
717a11788d
Correctly handle stability of #[diagnostic] attributes
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
2024-09-06 19:01:45 +02:00
bors
17b322fa69 Auto merge of #121848 - lcnr:stabilize-next-solver, r=compiler-errors
stabilize `-Znext-solver=coherence`

r? `@compiler-errors`

---

This PR stabilizes the use of the next generation trait solver in coherence checking by enabling `-Znext-solver=coherence` by default. More specifically its use in the *implicit negative overlap check*. The tracking issue for this is https://github.com/rust-lang/rust/issues/114862. Closes #114862.

## Background

### The next generation trait solver

The new solver lives in [`rustc_trait_selection::solve`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/solve/mod.rs) and is intended to replace the existing *evaluate*, *fulfill*, and *project* implementation. It also has a wider impact on the rest of the type system, for example by changing our approach to handling associated types.

For a more detailed explanation of the new trait solver, see the [rustc-dev-guide](https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html). This does not stabilize the current behavior of the new trait solver, only the behavior impacting the implicit negative overlap check. There are many areas in the new solver which are not yet finalized. We are confident that their final design will not conflict with the user-facing behavior observable via coherence. More on that further down.

Please check out [the chapter](https://rustc-dev-guide.rust-lang.org/solve/significant-changes.html) summarizing the most significant changes between the existing and new implementations.

### Coherence and the implicit negative overlap check

Coherence checking detects any overlapping impls. Overlapping trait impls always error while overlapping inherent impls result in an error if they have methods with the same name. Coherence also results in an error if any other impls could exist, even if they are currently unknown. This affects impls which may get added to upstream crates in a backwards compatible way and impls from downstream crates.

Coherence failing to detect overlap is generally considered to be unsound, even if it is difficult to actually get runtime UB this way. It is quite easy to get ICEs due to bugs in coherence.

It currently consists of two checks:

The [orphan check] validates that impls do not overlap with other impls we do not know about: either because they may be defined in a sibling crate, or because an upstream crate is allowed to add it without being considered a breaking change.

The [overlap check] validates that impls do not overlap with other impls we know about. This is done as follows:
- Instantiate the generic parameters of both impls with inference variables
- Equate the `TraitRef`s of both impls. If it fails there is no overlap.
- [implicit negative]: Check whether any of the instantiated `where`-bounds of one of the impls definitely do not hold when using the constraints from the previous step. If a `where`-bound does not hold, there is no overlap.
- *explicit negative (still unstable, ignored going forward)*: Check whether the any negated `where`-bounds can be proven, e.g. a `&mut u32: Clone` bound definitely does not hold as an explicit `impl<T> !Clone for &mut T` exists.

The overlap check has to *prove that unifying the impls does not succeed*. This means that **incorrectly getting a type error during coherence is unsound** as it would allow impls to overlap: coherence has to be *complete*.

Completeness means that we never incorrectly error. This means that during coherence we must only add inference constraints if they are definitely necessary. During ordinary type checking [this does not hold](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=01d93b592bd9036ac96071cbf1d624a9), so the trait solver has to behave differently, depending on whether we're in coherence or not.

The implicit negative check only considers goals to "definitely not hold" if they could not be implemented downstream, by a sibling, or upstream in a backwards compatible way. If the goal is is "unknowable" as it may get added in another crate, we add an ambiguous candidate: [source](bea5bebf3d/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L858-L883)).

[orphan check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L566-L579)
[overlap check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L92-L98)
[implicit negative]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L223-L281)

## Motivation

Replacing the existing solver in coherence fixes soundness bugs by removing sources of incompleteness in the type system. The new solver separately strengthens coherence, resulting in more impls being disjoint and passing the coherence check. The concrete changes will be elaborated further down. We believe the stabilization to reduce the likelihood of future bugs in coherence as the new implementation is easier to understand and reason about.

It allows us to remove the support for coherence and implicit-negative reasoning in the old solver, allowing us to remove some code and simplifying the old trait solver. We will only remove the old solver support once this stabilization has reached stable to make sure we're able to quickly revert in case any unexpected issues are detected before then.

Stabilizing the use of the next-generation trait solver expresses our confidence that its current behavior is intended and our work towards enabling its use everywhere will not require any breaking changes to the areas used by coherence checking. We are also confident that we will be able to replace the existing solver everywhere, as maintaining two separate systems adds a significant maintainance burden.

## User-facing impact and reasoning

### Breakage due to improved handling of associated types

The new solver fixes multiple issues related to associated types. As these issues caused coherence to consider more types distinct, fixing them results in more overlap errors. This is therefore a breaking change.

#### Structurally relating aliases containing bound vars

Fixes https://github.com/rust-lang/rust/issues/102048. In the existing solver relating ambiguous projections containing bound variables is structural. This is *incomplete* and allows overlapping impls. These was mostly not exploitable as the same issue also caused impls to not apply when trying to use them. The new solver defers alias-relating to a nested goal, fixing this issue:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Trait {}

trait Project {
    type Assoc<'a>;
}

impl Project for u32 {
    type Assoc<'a> = &'a u32;
}

// Eagerly normalizing `<?infer as Project>::Assoc<'a>` is ambiguous,
// so the old solver ended up structurally relating
//
//     (?infer, for<'a> fn(<?infer as Project>::Assoc<'a>))
//
// with
//
//     ((u32, fn(&'a u32)))
//
// Equating `&'a u32` with `<u32 as Project>::Assoc<'a>` failed, even
// though these types are equal modulo normalization.
impl<T: Project> Trait for (T, for<'a> fn(<T as Project>::Assoc<'a>)) {}

impl<'a> Trait for (u32, fn(&'a u32)) {}
//[next]~^ ERROR conflicting implementations of trait `Trait` for type `(u32, for<'a> fn(&'a u32))`
```

A crater run did not discover any breakage due to this change.

#### Unknowable candidates for higher ranked trait goals

This avoids an unsoundness by attempting to normalize in `trait_ref_is_knowable`, fixing https://github.com/rust-lang/rust/issues/114061. This is a side-effect of supporting lazy normalization, as that forces us to attempt to normalize when checking whether a `TraitRef` is knowable: [source](47dd709bed/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L754-L764)).

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait IsUnit {}
impl IsUnit for () {}

pub trait WithAssoc<'a> {
    type Assoc;
}

// We considered `for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit`
// to be knowable, even though the projection is ambiguous.
pub trait Trait {}
impl<T> Trait for T
where
    T: 'static,
    for<'a> T: WithAssoc<'a>,
    for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit,
{
}
impl<T> Trait for Box<T> {}
//[next]~^ ERROR conflicting implementations of trait `Trait`
```
The two impls of `Trait` overlap given the following downstream crate:
```rust
use dep::*;
struct Local;
impl WithAssoc<'_> for Box<Local> {
    type Assoc = ();
}
```

There a similar coherence unsoundness caused by our handling of aliases which is fixed separately in https://github.com/rust-lang/rust/pull/117164.

This change breaks the [`derive-visitor`](https://crates.io/crates/derive-visitor) crate. I have opened an issue in that repo: nikis05/derive-visitor#16.

### Evaluating goals to a fixpoint and applying inference constraints

In the old implementation of the implicit-negative check, each obligation is [checked separately without applying its inference constraints](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L323-L338)). The new solver instead [uses a `FulfillmentCtxt`](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L315-L321)) for this, which evaluates all obligations in a loop until there's no further inference progress.

This is necessary for backwards compatibility as we do not eagerly normalize with the new solver, resulting in constraints from normalization to only get applied by evaluating a separate obligation. This also allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Mirror {
    type Assoc;
}
impl<T> Mirror for T {
    type Assoc = T;
}

trait Foo {}
trait Bar {}

// The self type starts out as `?0` but is constrained to `()`
// due to the where-clause below. Because `(): Bar` is known to
// not hold, we can prove the impls disjoint.
impl<T> Foo for T where (): Mirror<Assoc = T> {}
//[current]~^ ERROR conflicting implementations of trait `Foo` for type `()`
impl<T> Foo for T where T: Bar {}

fn main() {}
```
The old solver does not run nested goals to a fixpoint in evaluation. The new solver does do so, strengthening inference and improving the overlap check:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Foo {}
impl<T> Foo for (u8, T, T) {}
trait NotU8 {}
trait Bar {}
impl<T, U: NotU8> Bar for (T, T, U) {}

trait NeedsFixpoint {}
impl<T: Foo + Bar> NeedsFixpoint for T {}
impl NeedsFixpoint for (u8, u8, u8) {}

trait Overlap {}
impl<T: NeedsFixpoint> Overlap for T {}
impl<T, U: NotU8, V> Overlap for (T, U, V) {}
//[current]~^ ERROR conflicting implementations of trait `Foo`
```

### Breakage due to removal of incomplete candidate preference

Fixes #107887. In the old solver we incompletely prefer the builtin trait object impl over user defined impls. This can break inference guidance, inferring `?x` in `dyn Trait<u32>: Trait<?x>` to `u32`, even if an explicit impl of `Trait<u64>` also exists.

This caused coherence to incorrectly allow overlapping impls, resulting in ICEs and a theoretical unsoundness. See https://github.com/rust-lang/rust/issues/107887#issuecomment-1997261676. This compiles on stable but results in an overlap error with `-Znext-solver=coherence`:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
struct W<T: ?Sized>(*const T);

trait Trait<T: ?Sized> {
    type Assoc;
}

// This would trigger the check for overlap between automatic and custom impl.
// They actually don't overlap so an impl like this should remain possible
// forever.
//
// impl Trait<u64> for dyn Trait<u32> {}
trait Indirect {}
impl Indirect for dyn Trait<u32, Assoc = ()> {}
impl<T: Indirect + ?Sized> Trait<u64> for T {
    type Assoc = ();
}

// Incomplete impl where `dyn Trait<u32>: Trait<_>` does not hold, but
// `dyn Trait<u32>: Trait<u64>` does.
trait EvaluateHack<U: ?Sized> {}
impl<T: ?Sized, U: ?Sized> EvaluateHack<W<U>> for T
where
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
    U: IsU64,
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
{
}

trait IsU64 {}
impl IsU64 for u64 {}

trait Overlap<U: ?Sized> {
    type Assoc: Default;
}
impl<T: ?Sized + EvaluateHack<W<U>>, U: ?Sized> Overlap<U> for T {
    type Assoc = Box<u32>;
}
impl<U: ?Sized> Overlap<U> for dyn Trait<u32, Assoc = ()> {
//[next]~^ ERROR conflicting implementations of trait `Overlap<_>`
    type Assoc = usize;
}
```

### Considering region outlives bounds in the `leak_check`

For details on the `leak_check`, see the FCP proposal in #119820.[^leak_check]

[^leak_check]: which should get moved to the dev-guide once that PR lands :3

In both coherence and during candidate selection, the `leak_check` relies on the region constraints added in `evaluate`. It therefore currently does not register outlives obligations: [source](ccb1415eac/compiler/rustc_trait_selection/src/traits/select/mod.rs (L792-L810)). This was likely done as a performance optimization without considering its impact on the `leak_check`. This is the case as in the old solver, *evaluatation* and *fulfillment* are split, with evaluation being responsible for candidate selection and fulfillment actually registering all the constraints.

This split does not exist with the new solver. The `leak_check` can therefore eagerly detect errors caused by region outlives obligations. This improves both coherence itself and candidate selection:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait LeakErr<'a, 'b> {}
// Using this impl adds an `'b: 'a` bound which results
// in a higher-ranked region error. This bound has been
// previously ignored but is now considered.
impl<'a, 'b: 'a> LeakErr<'a, 'b> for () {}

trait NoOverlapDir<'a> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> NoOverlapDir<'a> for T {}
impl<'a> NoOverlapDir<'a> for () {}
//[current]~^ ERROR conflicting implementations of trait `NoOverlapDir<'_>`

// --------------------------------------

// necessary to avoid coherence unknowable candidates
struct W<T>(T);

trait GuidesSelection<'a, U> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> GuidesSelection<'a, W<u32>> for T {}
impl<'a, T> GuidesSelection<'a, W<u8>> for T {}

trait NotImplementedByU8 {}
trait NoOverlapInd<'a, U> {}
impl<'a, T: GuidesSelection<'a, W<U>>, U> NoOverlapInd<'a, U> for T {}
impl<'a, U: NotImplementedByU8> NoOverlapInd<'a, U> for () {}
//[current]~^ conflicting implementations of trait `NoOverlapInd<'_, _>`
```

### Removal of `fn match_fresh_trait_refs`

The old solver tries to [eagerly detect unbounded recursion](b14fd2359f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1196-L1211)), forcing the affected goals to be ambiguous. This check is only an approximation and has not been added to the new solver.

The check is not necessary in the new solver and it would be problematic for caching. As it depends on all goals currently on the stack, using a global cache entry would have to always make sure that doing so does not circumvent this check.

This changes some goals to error - or succeed - instead of failing with ambiguity. This allows more code to compile:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence

// Need to use this local wrapper for the impls to be fully
// knowable as unknowable candidate result in ambiguity.
struct Local<T>(T);

trait Trait<U> {}
// This impl does not hold, but is ambiguous in the old
// solver due to its overflow approximation.
impl<U> Trait<U> for Local<u32> where Local<u16>: Trait<U> {}
// This impl holds.
impl Trait<Local<()>> for Local<u8> {}

// In the old solver, `Local<?t>: Trait<Local<?u>>` is ambiguous,
// resulting in `Local<?u>: NoImpl`, also being ambiguous.
//
// In the new solver the first impl does not apply, constraining
// `?u` to `Local<()>`, causing `Local<()>: NoImpl` to error.
trait Indirect<T> {}
impl<T, U> Indirect<U> for T
where
    T: Trait<U>,
    U: NoImpl
{}

// Not implemented for `Local<()>`
trait NoImpl {}
impl NoImpl for Local<u8> {}
impl NoImpl for Local<u16> {}

// `Local<?t>: Indirect<Local<?u>>` cannot hold, so
// these impls do not overlap.
trait NoOverlap<U> {}
impl<T: Indirect<U>, U> NoOverlap<U> for T {}
impl<T, U> NoOverlap<Local<U>> for Local<T> {}
//~^ ERROR conflicting implementations of trait `NoOverlap<Local<_>>`
```

### Non-fatal overflow

The old solver immediately emits a fatal error when hitting the recursion limit. The new solver instead returns overflow. This both allows more code to compile and is results in performance and potential future compatability issues.

Non-fatal overflow is generally desirable. With fatal overflow, changing the order in which we evaluate nested goals easily causes breakage if we have goal which errors and one which overflows. It is also required to prevent breakage due to the removal of `fn match_fresh_trait_refs`, e.g. [in `typenum`](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

#### Enabling more code to compile

In the below example, the old solver first tried to prove an overflowing goal, resulting in a fatal error. The new solver instead returns ambiguity due to overflow for that goal, causing the implicit negative overlap check to succeed as `Box<u32>: NotImplemented` does not hold.
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
//[current] ERROR overflow evaluating the requirement

trait Indirect<T> {}
impl<T: Overflow<()>> Indirect<T> for () {}

trait Overflow<U> {}
impl<T, U> Overflow<U> for Box<T>
where
    U: Indirect<Box<Box<T>>>,
{}

trait NotImplemented {}

trait Trait<U> {}
impl<T, U> Trait<U> for T
where
    // T: NotImplemented, // causes old solver to succeed
    U: Indirect<T>,
    T: NotImplemented,
{}

impl Trait<()> for Box<u32> {}
```

#### Avoiding hangs with non-fatal overflow

Simply returning ambiguity when reaching the recursion limit can very easily result in hangs, e.g.
```rust
trait Recur {}
impl<T, U> Recur for ((T, U), (U, T))
where
    (T, U): Recur,
    (U, T): Recur,
{}

trait NotImplemented {}
impl<T: NotImplemented> Recur for T {}
```
This can happen quite frequently as it's easy to have exponential blowup due to multiple nested goals at each step. As the trait solver is depth-first, this immediately caused a fatal overflow error in the old solver. In the new solver we have to handle the whole proof tree instead, which can very easily hang.

To avoid this we restrict the recursion depth after hitting the recursion limit for the first time. We also **ignore all inference constraints from goals resulting in overflow**. This is mostly backwards compatible as any overflow in the old solver resulted in a fatal error.

### sidenote about normalization

We return ambiguous nested goals of `NormalizesTo` goals to the caller and ignore their impact when computing the `Certainty` of the current goal. See the [normalization chapter](https://rustc-dev-guide.rust-lang.org/solve/normalization.html) for more details.This means we apply constraints resulting from other nested goals and from equating the impl header when normalizing, even if a nested goal results in overflow. This is necessary to avoid breaking the following example:
```rust
trait Trait {
    type Assoc;
}

struct W<T: ?Sized>(*mut T);
impl<T: ?Sized> Trait for W<W<T>>
where
    W<T>: Trait,
{
    type Assoc = ();
}

// `W<?t>: Trait<Assoc = u32>` does not hold as
// `Assoc` gets normalized to `()`. However, proving
// the where-bounds of the impl results in overflow.
//
// For this to continue to compile we must not discard
// constraints from normalizing associated types.
trait NoOverlap {}
impl<T: Trait<Assoc = u32>> NoOverlap for T {}
impl<T: ?Sized> NoOverlap for W<T> {}
```

#### Future compatability concerns

Non-fatal overflow results in some unfortunate future compatability concerns. Changing the approach to avoid more hangs by more strongly penalizing overflow can cause breakage as we either drop constraints or ignore candidates necessary to successfully compile. Weakening the overflow penalities instead allows more code to compile and strengthens inference while potentially causing more code to hang.

While the current approach is not perfect, we believe it to be good enough. We believe it to apply the necessary inference constraints to avoid breakage and expect there to not be any desirable patterns broken by our current penalities. Similarly we believe the current constraints to avoid most accidental hangs. Ignoring constraints of overflowing goals is especially useful, as it may allow major future optimizations to our overflow handling. See [this summary](https://hackmd.io/ATf4hN0NRY-w2LIVgeFsVg) and the linked documents in case you want to know more.

### changes to performance

In general, trait solving during coherence checking is not significant for performance. Enabling the next-generation trait solver in coherence does not impact our compile time benchmarks. We are still unable to compile the benchmark suite when fully enabling the new trait solver.

There are rare cases where the new solver has significantly worse performance due to non-fatal overflow, its reliance on fixpoint algorithms and the removal of the `fn match_fresh_trait_refs` approximation. We encountered such issues in [`typenum`](https://crates.io/crates/typenum) and believe it should be [pretty much as bad as it can get](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

Due to an improved structure and far better caching, we believe that there is a lot of room for improvement and that the new solver will outperform the existing implementation in nearly all cases, sometimes significantly. We have not yet spent any time micro-optimizing the implementation and have many unimplemented major improvements, such as fast-paths for trivial goals.

TODO: get some rough results here and put them in a table

### Unstable features

#### Unsupported unstable features

The new solver currently does not support all unstable features, most notably `#![feature(generic_const_exprs)]`, `#![feature(associated_const_equality)]` and `#![feature(adt_const_params)]` are not yet fully supported in the new solver. We are confident that supporting them is possible, but did not consider this to be a priority. This stabilization introduces new ICE when using these features in impl headers.

#### fixes to `#![feature(specialization)]`

- fixes #105782
- fixes #118987

#### fixes to `#![feature(type_alias_impl_trait)]`

- fixes #119272
- https://github.com/rust-lang/rust/issues/105787#issuecomment-1750112388
- fixes #124207

## This does not stabilize the whole solver

While this stabilizes the use of the new solver in coherence checking, there are many parts of the solver which will remain fully unstable. We may still adapt these areas while working towards stabilizing the new solver everywhere. We are confident that we are able to do so without negatively impacting coherence.

### goals with a non-empty `ParamEnv`

Coherence always uses an empty environment. We therefore do not depend on the behavior of `AliasBound` and `ParamEnv` candidates. We only stabilizes the behavior of user-defined and builtin implementations of traits. There are still many open questions there.

### opaque types in the defining scope

The handling of opaque types - `impl Trait` - in both the new and old solver is still not fully figured out. Luckily this can be ignored for now. While opaque types are reachable during coherence checking by using `impl_trait_in_associated_types`, the behavior during coherence is separate and self-contained. The old and new solver fully agree here.

### normalization is hard

This stabilizes that we equate associated types involving bound variables using deferred-alias-equality. We also stop eagerly normalizing in coherence, which should not have any user-facing impact.

We do not stabilize the normalization behavior outside of coherence, e.g. we currently deeply normalize all types during writeback with the new solver. This may change going forward

### how to replace `select` from the old solver

We sometimes depend on getting a single `impl` for a given trait bound, e.g. when resolving a concrete method for codegen/CTFE. We do not depend on this during coherence, so the exact approach here can still be freely changed going forward.

## Acknowledgements

This work would not have been possible without `@compiler-errors.` He implemented large chunks of the solver himself but also and did a lot of testing and experimentation, eagerly discovering multiple issues which had a significant impact on our approach. `@BoxyUwU` has also done some amazing work on the solver. Thank you for the endless hours of discussion resulting in the current approach. Especially the way aliases are handled has gone through multiple revisions to get to its current state.

There were also many contributions from - and discussions with - other members of the community and the rest of `@rust-lang/types.` This solver builds upon previous improvements to the compiler, as well as lessons learned from `chalk` and `a-mir-formality`. Getting to this point  would not have been possible without that and I am incredibly thankful to everyone involved. See the [list of relevant PRs](https://github.com/rust-lang/rust/pulls?q=is%3Apr+is%3Amerged+label%3AWG-trait-system-refactor+-label%3Arollup+closed%3A%3C2024-03-22+).
2024-09-06 13:12:14 +00:00
Matthias Krüger
0180b8fff0
Rollup merge of #129969 - GrigorenkoPV:boxed-ty, r=compiler-errors
Make `Ty::boxed_ty` return an `Option`

Looks like a good place to use Rust's type system.

---

Most of 4ac7bcbaad/compiler/rustc_middle/src/ty/sty.rs (L971-L1963) looks like it could be moved to `TyKind` (then I guess  `Ty` should be made to deref to `TyKind`).
2024-09-06 07:33:58 +02:00
bors
d678b81485 Auto merge of #129999 - matthiaskrgr:rollup-pzr9c8p, r=matthiaskrgr
Rollup of 11 pull requests

Successful merges:

 - #128919 (Add an internal lint that warns when accessing untracked data)
 - #129472 (fix ICE when `asm_const` and `const_refs_to_static` are combined)
 - #129653 (clarify that addr_of creates read-only pointers)
 - #129775 (bootstrap: Try to track down why `initial_libdir` sometimes fails)
 - #129939 (explain why Rvalue::Len still exists)
 - #129942 (copy rustc rustlib artifacts from ci-rustc)
 - #129943 (use the bootstrapped compiler for `test-float-parse` test)
 - #129944 (Add compat note for trait solver change)
 - #129947 (Add digit separators in `Duration` examples)
 - #129955 (Temporarily remove fmease from the review rotation)
 - #129957 (forward linker option to lint-docs)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-09-06 03:06:52 +00:00
Pavel Grigorenko
f6e8a84eea Make Ty::boxed_ty return an Option 2024-09-06 00:30:36 +03:00
Matthias Krüger
2efefe68b2
Rollup merge of #129939 - RalfJung:rvalue-len, r=compiler-errors
explain why Rvalue::Len still exists

I just spent a bit of time trying to remove this until I realized why that's non-trivial. Let's document that for the next person. :)
2024-09-05 19:43:48 +02:00
Matthias Krüger
11085aa73a
Rollup merge of #129706 - compiler-errors:scratch, r=estebank
Rename dump of coroutine by-move-body to be more consistent, fix ICE in dump_mir

First, we add a missing match for `DefKind::SyntheticCoroutineBody` in `dump_mir`. Fixes #129703. The second commit (directly below) serves as a test.

Second, we reorder the `dump_mir` in `coroutine_by_move_body_def_id` to be *after* we adjust the body source, and change the disambiguator so it reads more like any other MIR body. This also serves as a test for the ICE, since we're dumping the MIR of a body with `DefKind::SyntheticCoroutineBody`.

Third, we change the parenting of the synthetic MIR body to have the *coroutine-closure* (i.e. async closure) as its parent, so we don't have long strings of `{closure#0}-{closure#0}-{closure#0}`.

try-job: test-various
2024-09-05 18:58:55 +02:00
Boxy
0091b8ab2a update cfgs 2024-09-05 17:24:01 +01:00
Michael Goulet
e04ede46bb Don't store region in CapturedPlace 2024-09-05 08:42:50 -04:00
lcnr
1a893ac648 stabilize -Znext-solver=coherence 2024-09-05 07:57:16 +00:00
Matthias Krüger
8a60d0a5ec
Rollup merge of #101339 - the8472:ci-randomize-debug, r=Mark-Simulacrum
enable -Zrandomize-layout in debug CI builds

This builds rustc/libs/tools with `-Zrandomize-layout` on *-debug CI runners.

Only a handful of tests and asserts break with that enabled, which is promising. One test was fixable, the rest is dealt with by disabling them through new cargo features or compiletest directives.

The config.toml flag `rust.randomize-layout` defaults to false, so it has to be explicitly enabled for now.
2024-09-05 03:47:39 +02:00
Michael Goulet
a4f2a311db Don't ICE when dumping MIR of a synthetic coroutine body 2024-09-03 16:22:28 -04:00
Ralf Jung
98f74b4d04 explain why Rvalue::Len still exists 2024-09-03 21:50:08 +02:00
Matthias Krüger
4ed0f0d384
Rollup merge of #129926 - nnethercote:mv-SanityCheck-and-MirPass, r=cjgillot
Move `SanityCheck` and `MirPass`

They are currently in `rustc_middle`. This PR moves them to `rustc_mir_transform`, which makes more sense.

r? ``@cjgillot``
2024-09-03 19:13:27 +02:00
Matthias Krüger
e7504ac704
Rollup merge of #128934 - Nadrieril:fix-empty-non-exhaustive, r=compiler-errors
Non-exhaustive structs may be empty

This is a follow-up to a discrepancy noticed in https://github.com/rust-lang/rust/pull/122792: today, the following struct is considered inhabited (non-empty) outside its defining crate:
```rust
#[non_exhaustive]
pub struct UninhabitedStruct {
    pub never: !,
    // other fields
}
```

`#[non_exhaustive]` on a struct should mean that adding fields to it isn't a breaking change. There is no way that adding fields to this struct could make it non-empty since the `never` field must stay and is inconstructible. I suspect this was implemented this way due to confusion with `#[non_exhaustive]` enums, which indeed should be considered non-empty outside their defining crate.

I propose that we consider such a struct uninhabited (empty), just like it would be without the `#[non_exhaustive]` annotation.

Code that doesn't pass today and will pass after this:
```rust
// In a different crate
fn empty_match_on_empty_struct<T>(x: UninhabitedStruct) -> T {
    match x {}
}
```

This is not a breaking change.

r? ``@compiler-errors``
2024-09-03 19:13:24 +02:00
Nicholas Nethercote
2aae619edb Move MirPass to rustc_mir_transform.
Because that's now the only crate that uses it.

Moving stuff out of `rustc_middle` is always welcome.

I chose to use `impl crate::MirPass`/`impl crate::MirLint` (with
explicit `crate::`) everywhere because that's the only mention of
`MirPass`/`MirLint` used in all of these files. (Prior to this change,
`MirPass` was mostly imported via `use rustc_middle::mir::*` items.)
2024-09-03 16:03:46 +10:00
Matthias Krüger
1d9eb9df7f
Rollup merge of #129877 - Sajjon:sajjon_fix_typos_batch_2, r=fee1-dead
chore: Fix typos in 'compiler' (batch 2)

Batch 2/3: Fixes typos in `compiler`

(See [issue](https://github.com/rust-lang/rust/issues/129874) tracking all PRs with typos fixes)
2024-09-02 22:35:21 +02:00
Nadrieril
6f6a6bc710 Non-exhaustive structs may be empty 2024-09-02 21:16:37 +02:00
Bryanskiy
c51953f4d8 Use DeepRejectCtxt to quickly reject ParamEnv candidates 2024-09-02 19:59:18 +03:00
Alexander Cyon
00de006f22
chore: Fix typos in 'compiler' (batch 2) 2024-09-02 07:50:22 +02:00
bors
94885bc699 Auto merge of #129854 - Kobzol:revert-127537, r=lqd
Revert "Auto merge of #127537 - veluca93:struct_tf, r=BoxyUwU"

This reverts https://github.com/rust-lang/rust/pull/127537 (commit acb4e8b625), reversing changes made to 100fde5246.

Opening to see if this can help resolve the recent perf. results [instability](https://rust-lang.zulipchat.com/#narrow/stream/247081-t-compiler.2Fperformance/topic/Weird.20perf.20results).
2024-09-01 19:46:46 +00:00
bors
a48861a627 Auto merge of #127313 - cjgillot:single-expect, r=jieyouxu
Rewrite lint_expectations in a single pass.

This PR aims at reducing the perf regression from https://github.com/rust-lang/rust/pull/120924#issuecomment-2202486203 with drive-by simplifications.

Basically, instead of using the lint level builder, which is slow, this PR splits `lint_expectations` logic in 2:
- listing the `LintExpectations` is done in `shallow_lint_levels_on`, on a per-owner basis;
- building the unstable->stable expectation id map is done by iterating on attributes.

r? ghost for perf
2024-09-01 15:50:48 +00:00
Jakub Beránek
47e6b5deed Revert "Auto merge of #127537 - veluca93:struct_tf, r=BoxyUwU"
This reverts commit acb4e8b625, reversing
changes made to 100fde5246.
2024-09-01 16:35:53 +02:00
The 8472
df20808f4d inhibit layout randomization for Box 2024-08-31 23:56:45 +02:00
The 8472
5bf8eeb9f3 disable size asserts in the compiler when randomizing layouts 2024-08-31 23:56:45 +02:00
bors
a7399ba69d Auto merge of #129831 - matthiaskrgr:rollup-befq6zx, r=matthiaskrgr
Rollup of 11 pull requests

Successful merges:

 - #128523 (Add release notes for 1.81.0)
 - #129605 (Add missing `needs-llvm-components` directives for run-make tests that need target-specific codegen)
 - #129650 (Clean up `library/profiler_builtins/build.rs`)
 - #129651 (skip stage 0 target check if `BOOTSTRAP_SKIP_TARGET_SANITY` is set)
 - #129684 (Enable Miri to pass pointers through FFI)
 - #129762 (Update the `wasm-component-ld` binary dependency)
 - #129782 (couple more crash tests)
 - #129816 (tidy: say which feature gate has a stability issue mismatch)
 - #129818 (make the const-unstable-in-stable error more clear)
 - #129824 (Fix code examples buttons not appearing on click on mobile)
 - #129826 (library: Fix typo in `core::mem`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-08-31 20:59:27 +00:00
Matthias Krüger
a5fb8b90bf
Rollup merge of #129684 - Strophox:miri-pass-pointer-to-ffi, r=RalfJung
Enable Miri to pass pointers through FFI

Following https://github.com/rust-lang/rust/pull/126787, the purpose of this PR is to now enable Miri to execute native calls that make use of pointers.

> <details>
>
> <summary> Simple example </summary>
>
> ```rust
> extern "C" {
>     fn ptr_printer(ptr: *mut i32);
> }
>
> fn main() {
>     let ptr = &mut 42 as *mut i32;
>     unsafe {
>         ptr_printer(ptr);
>     }
> }
> ```
> ```c
> void ptr_printer(int *ptr) {
>   printf("printing pointer dereference from C: %d\n", *ptr);
> }
> ```
> should now show `printing pointer dereference from C: 42`.
>
> </details>

Note that this PR does not yet implement any logic involved in updating Miri's "analysis" state (byte initialization, provenance) upon such a native call.

r? ``@RalfJung``
2024-08-31 20:36:25 +02:00
Camille GILLOT
111b0a97b4 Rewrite lint_expectations in a single pass. 2024-08-31 14:00:54 +00:00
Matthias Krüger
830b1deaee
Rollup merge of #129812 - RalfJung:box-custom-alloc, r=compiler-errors
interpret, codegen: tweak some comments and checks regarding Box with custom allocator

Cc https://github.com/rust-lang/rust/issues/95453
2024-08-31 14:46:14 +02:00
Matthias Krüger
1c51e5b110
Rollup merge of #129711 - lqd:nll-mir-dumps, r=compiler-errors
Expand NLL MIR dumps

This PR is a first step to clean up and expand NLL MIR dumps:
- by restoring the "mir-include-spans" comments which are useful for `-Zdump-mir=nll`
- by adding the list of borrows to NLL MIR dumps, where they are introduced in the CFG and in which region

Comments in MIR dumps were turned off in #112346, but as shown in #114652 they were still useful for us working with NLL MIR dumps. So this PR pulls `-Z mir-include-spans` into its own options struct, so that passes dumping MIR can override them if need be. The rest of the compiler is not affected, only the "nll" pass dumps have these comments enabled again. The CLI still has priority when specifying the flag, so that we can explicitly turn them off in the `mir-opt` tests to keep blessed dumps easier to work with (which was one of the points of #112346).

Then, as part of a couple steps to improve NLL/polonius MIR dumps and `.dot` visualizations, I've also added the list of borrows and where they're introduced. I'm doing all this to help debug some polonius scope issues in my prototype location-sensitive analysis :3. I'll probably add member constraints soon.
2024-08-31 14:46:07 +02:00
Matthias Krüger
ea5bb99c0f
Rollup merge of #129659 - RalfJung:const-fn-lang-feat, r=fee1-dead
const fn stability checking: also check declared language features

Fixes https://github.com/rust-lang/rust/issues/129656

`@oli-obk` I assume it is just an oversight that this didn't use `features().declared()`? Or is there a deep reason that this must only check `declared_lib_features`?
2024-08-31 14:46:06 +02:00
Ralf Jung
c2984179d9 const fn stability checking: also check declared language features 2024-08-31 12:14:05 +02:00
Ralf Jung
d0aedfbb90 interpret, codegen: tweak some comments and checks regarding Box with custom allocator 2024-08-31 11:29:02 +02:00
Matthias Krüger
5f10a99c7a
Rollup merge of #129725 - compiler-errors:predicates-of, r=fmease
Stop using `ty::GenericPredicates` for non-predicates_of queries

`GenericPredicates` is a struct of several parts: A list of of an item's own predicates, and a parent def id (and some effects related stuff, but ignore that since it's kinda irrelevant). When instantiating these generic predicates, it calls `predicates_of` on the parent and instantiates its predicates, and appends the item's own instantiated predicates too:

acb4e8b625/compiler/rustc_middle/src/ty/generics.rs (L407-L413)

Notice how this should result in a recursive set of calls to `predicates_of`... However, `GenericPredicates` is *also* misused by a bunch of *other* queries as a convenient way of passing around a list of predicates. For these queries, we don't ever set the parent def id of the `GenericPredicates`, but if we did, then this would be very easy to mistakenly call `predicates_of` instead of some other intended parent query.

Given that footgun, and the fact that we don't ever even *use* the parent def id in the `GenericPredicates` returned from queries like `explicit_super_predicates_of`, It really has no benefit over just returning `&'tcx [(Clause<'tcx>, Span)]`.

This PR additionally opts to wrap the results of `EarlyBinder`, as we've tended to use that in the return type of these kinds of queries to properly convey that the user has params to deal with, and it also gives a convenient way of iterating over a slice of things after instantiating.
2024-08-31 10:08:57 +02:00
Matthias Krüger
2a321e14a5
Rollup merge of #129527 - compiler-errors:lint-nit, r=Nadrieril
Don't use `TyKind` in a lint

Allows us to remove an inherent method from `TyKind` from the type ir crate.
2024-08-31 10:08:53 +02:00
Strophox
7fde02ea53 enable Miri to pass const pointers through FFI
Co-authored-by: Ralf Jung <post@ralfj.de>
2024-08-30 16:05:53 +02:00
Rémy Rakic
e0bb1c7291 make -Z mir-include-spans a dedicated enum
We want to allow setting this on the CLI, override it only in MIR
passes, and disable it altogether in mir-opt tests.

The default value is "only for NLL MIR dumps", which is considered off
for all intents and purposes, except for `rustc_borrowck` when an NLL
MIR dump is requested.
2024-08-30 07:14:19 +00:00
Rémy Rakic
c646b46b52 introduce PrettyPrintMirOptions for cosmetic MIR dump options
initially starting with `-Z mir-include-spans` because we want them in
the NLL mir dump pass
2024-08-30 07:07:28 +00:00
Nicholas Nethercote
938daf6033 Add warn(unreachable_pub) to rustc_middle.
I am surprised the diff is so small for this enormous crate.
2024-08-29 20:13:06 +10:00
Michael Goulet
92004523db Stop using ty::GenericPredicates for non-predicates_of queries 2024-08-29 00:17:40 -04:00
Jubilee
9d5f794312
Rollup merge of #129401 - workingjubilee:partial-initialization-of-stabilization, r=dtolnay,joboet
Partially stabilize `feature(new_uninit)`

Finished comment period: https://github.com/rust-lang/rust/issues/63291#issuecomment-2183022955

The following API has been stabilized from https://github.com/rust-lang/rust/issues/63291

```rust
impl<T> Box<T> { pub fn new_uninit() -> Box<MaybeUninit<T>> {…} }
impl<T> Rc<T> { pub fn new_uninit() -> Rc<MaybeUninit<T>> {…} }
impl<T> Arc<T> { pub fn new_uninit() -> Arc<MaybeUninit<T>> {…} }

impl<T> Box<[T]> { pub fn new_uninit_slice(len: usize) -> Box<[MaybeUninit<T>]> {…} }
impl<T> Rc<[T]> { pub fn new_uninit_slice(len: usize) -> Rc<[MaybeUninit<T>]> {…} }
impl<T> Arc<[T]> { pub fn new_uninit_slice(len: usize) -> Arc<[MaybeUninit<T>]> {…} }

impl<T> Box<MaybeUninit<T>> { pub unsafe fn assume_init(self) -> Box<T> {…} }
impl<T> Box<[MaybeUninit<T>]> { pub unsafe fn assume_init(self) -> Box<[T]> {…} }
impl<T> Rc<MaybeUninit<T>> { pub unsafe fn assume_init(self) -> Rc<T> {…} }
impl<T> Rc<[MaybeUninit<T>]> { pub unsafe fn assume_init(self) -> Rc<[T]> {…} }
impl<T> Arc<MaybeUninit<T>> { pub unsafe fn assume_init(self) -> Arc<T> {…} }
impl<T> Arc<[MaybeUninit<T>]> { pub unsafe fn assume_init(self) -> Arc<[T]> {…} }
```

The remaining API is split between new issues
- `new_zeroed_alloc`: https://github.com/rust-lang/rust/issues/129396
- `box_uninit_write`: https://github.com/rust-lang/rust/issues/129397

All relevant code is thus either stabilized or split out of that issue, so this closes #63291 as, with the FCP concluded, that issue has served its purpose.

try-job: x86_64-rust-for-linux
2024-08-28 19:12:52 -07:00
bors
acb4e8b625 Auto merge of #127537 - veluca93:struct_tf, r=BoxyUwU
Implement a first version of RFC 3525: struct target features

This PR is an attempt at implementing https://github.com/rust-lang/rfcs/pull/3525, behind a feature gate `struct_target_features`.

There's obviously a few tasks that ought to be done before this is merged; in no particular order:
- add proper error messages
- add tests
- create a tracking issue for the RFC
- properly serialize/deserialize the new target_features field in `rmeta` (assuming I even understood that correctly :-))

That said, as I am definitely not a `rustc` expert, I'd like to get some early feedback on the overall approach before fixing those things (and perhaps some pointers for `rmeta`...), hence this early PR :-)

Here's an example piece of code that I have been using for testing - with the new code, the calls to intrinsics get correctly inlined:
```rust
#![feature(struct_target_features)]

use std::arch::x86_64::*;

/*
// fails to compile
#[target_feature(enable = "avx")]
struct Invalid(u32);
*/

#[target_feature(enable = "avx")]
struct Avx {}

#[target_feature(enable = "sse")]
struct Sse();

/*
// fails to compile
extern "C" fn bad_fun(_: Avx) {}
*/

/*
// fails to compile
#[inline(always)]
fn inline_fun(_: Avx) {}
*/

trait Simd {
    fn do_something(&self);
}

impl Simd for Avx {
    fn do_something(&self) {
        unsafe {
            println!("{:?}", _mm256_setzero_ps());
        }
    }
}

impl Simd for Sse {
    fn do_something(&self) {
        unsafe {
            println!("{:?}", _mm_setzero_ps());
        }
    }
}

struct WithAvx {
    #[allow(dead_code)]
    avx: Avx,
}

impl Simd for WithAvx {
    fn do_something(&self) {
        unsafe {
            println!("{:?}", _mm256_setzero_ps());
        }
    }
}

#[inline(never)]
fn dosomething<S: Simd>(simd: &S) {
    simd.do_something();
}

fn main() {
    /*
    // fails to compile
    Avx {};
    */

    if is_x86_feature_detected!("avx") {
        let avx = unsafe { Avx {} };
        dosomething(&avx);
        dosomething(&WithAvx { avx });
    }
    if is_x86_feature_detected!("sse") {
        dosomething(&unsafe { Sse {} })
    }
}
```

Tracking:

- https://github.com/rust-lang/rust/issues/129107
2024-08-28 22:54:55 +00:00
Zalathar
46e1b5b6dd coverage: Rename CodeRegion to SourceRegion
LLVM uses the word "code" to refer to a particular kind of coverage mapping.
This unrelated usage of the word is confusing, and makes it harder to introduce
types whose names correspond to the LLVM classification of coverage kinds.
2024-08-28 22:17:42 +10:00
Zalathar
f61f34f4b8 coverage: CodeRegion is never stored in an arena
This might have been left over when coverage regions were stored in individual
MIR statements, instead of a separate table attached to the MIR body.
2024-08-28 22:03:48 +10:00
Luca Versari
7eb4cfeace Implement RFC 3525. 2024-08-28 09:54:23 +02:00
bors
748c54848d Auto merge of #129546 - compiler-errors:no-pred-on, r=fee1-dead
Get rid of `predicates_defined_on`

This is the uncontroversial part of #129532. This simply inlines the `predicates_defined_on` into into `predicates_of`. Nothing should change here logically.
2024-08-28 04:41:43 +00:00
bors
d9a2cc4dae Auto merge of #128506 - compiler-errors:by-move-body, r=cjgillot
Stop storing a special inner body for the coroutine by-move body for async closures

...and instead, just synthesize an item which is treated mostly normally by the MIR pipeline.

This PR does a few things:
* We synthesize a new `DefId` for the by-move body of a closure, which has its `mir_built` fed with the output of the `ByMoveBody` MIR transformation, and some other relevant queries.
* This has the `DefKind::ByMoveBody`, which we use to distinguish it from "real" bodies (that come from HIR) which need to be borrowck'd. Introduce `TyCtxt::is_synthetic_mir` to skip over `mir_borrowck` which is called by `mir_promoted`; borrowck isn't really possible to make work ATM since it heavily relies being called on a body generated from HIR, and is redundant by the construction of the by-move-body.
* Remove the special `PassManager` hacks for handling the inner `by_move_body` stored within the coroutine's mir body. Instead, this body is fed like a regular MIR body, so it's goes through all of the `tcx.*_mir` stages normally (build -> promoted -> ...etc... -> optimized) .
* Remove the `InstanceKind::ByMoveBody` shim, since now we have a "regular" def id, we can just use `InstanceKind::Item`. This also allows us to remove the corresponding hacks from codegen, such as in `fn_sig_for_fn_abi` .

Notable remarks:
* ~~I know it's kind of weird to be using `DefKind::Closure` here, since it's not a distinct closure but just a new MIR body. I don't believe it really matters, but I could also use a different `DefKind`... maybe one that we could use for synthetic MIR bodies in general?~~ edit: We're doing this now.
2024-08-27 23:30:24 +00:00
Jubilee Young
2535a0f776 compiler: Remove feature(new_uninit) 2024-08-27 10:17:05 -07:00
Michael Goulet
38e62b9841 Use unsafe extern blocks throughout the compiler 2024-08-26 19:51:05 -04:00
Michael Goulet
4609841c07 Stop using a special inner body for the coroutine by-move body for async closures 2024-08-26 18:44:19 -04:00
Matthias Krüger
d6a3aa4fc4
Rollup merge of #129590 - compiler-errors:ref-tykind, r=fmease
Avoid taking reference of &TyKind

It's already a ref anyways. Just a tiny cleanup here.
2024-08-26 01:49:04 +02:00
Michael Goulet
48f43fa0ed Avoid taking reference of &TyKind 2024-08-25 16:02:29 -04:00
Matthias Krüger
7edbd6353b
Rollup merge of #129091 - RalfJung:box_as_ptr, r=Amanieu
add Box::as_ptr and Box::as_mut_ptr methods

Unstably implements https://github.com/rust-lang/libs-team/issues/355. Tracking issue: https://github.com/rust-lang/rust/issues/129090.

r? libs-api
2024-08-25 16:51:03 +02:00
bors
717aec0f8e Auto merge of #129521 - matthiaskrgr:rollup-uigv77m, r=matthiaskrgr
Rollup of 9 pull requests

Successful merges:

 - #128596 (stabilize const_fn_floating_point_arithmetic)
 - #129199 (make writes_through_immutable_pointer a hard error)
 - #129246 (Retroactively feature gate `ConstArgKind::Path`)
 - #129290 (Pin `cc` to 1.0.105)
 - #129323 (Implement `ptr::fn_addr_eq`)
 - #129500 (remove invalid `TyCompat` relation for effects)
 - #129501 (panicking: improve hint for Miri's RUST_BACKTRACE behavior)
 - #129505 (interpret: ImmTy: tighten sanity checks in offset logic)
 - #129510 (Fix `elided_named_lifetimes` in code)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-08-25 08:12:16 +00:00
Trevor Gross
00308920ae
Rollup merge of #128467 - estebank:unsized-args, r=cjgillot
Detect `*` operator on `!Sized` expression

The suggestion is new:

```
error[E0277]: the size for values of type `str` cannot be known at compilation time
  --> $DIR/unsized-str-in-return-expr-arg-and-local.rs:15:9
   |
LL |     let x = *"";
   |         ^ doesn't have a size known at compile-time
   |
   = help: the trait `Sized` is not implemented for `str`
   = note: all local variables must have a statically known size
   = help: unsized locals are gated as an unstable feature
help: references to `!Sized` types like `&str` are `Sized`; consider not dereferencing the expression
   |
LL -     let x = *"";
LL +     let x = "";
   |
```

Fix #128199.
2024-08-24 21:03:30 -05:00
Michael Goulet
dbf06d2170 Get rid of predicates_defined_on 2024-08-24 18:25:41 -04:00
Michael Goulet
42a901acd9 Don't use TyKind in lint 2024-08-24 17:16:39 -04:00
Matthias Krüger
e664ff5d8c
Rollup merge of #129510 - GrigorenkoPV:fix-elided-named-lifetimes, r=cjgillot
Fix `elided_named_lifetimes` in code

https://github.com/rust-lang/rust/pull/129207#issuecomment-2308428671

r? cjgillot
2024-08-24 22:14:15 +02:00
Matthias Krüger
c0bedb9e5e
Rollup merge of #129246 - BoxyUwU:feature_gate_const_arg_path, r=cjgillot
Retroactively feature gate `ConstArgKind::Path`

This puts the lowering introduced by #125915 under a feature gate until we fix the regressions introduced by it. Alternative to whole sale reverting the PR since it didn't seem like a very clean revert and I think this is generally a step in the right direction and don't want to get stuck landing and reverting the PR over and over :)

cc #129137 ``@camelid,`` tests taken from there. beta is branching soon so I think it makes sense to not try and rush that fix through since it wont have much time to bake and if it has issues we can't simply revert it on beta.

Fixes #128016
2024-08-24 22:14:12 +02:00
Pavel Grigorenko
53ce92770d Fix elided_named_lifetimes in code 2024-08-24 19:21:32 +03:00
Matthias Krüger
487b3d92cf
Rollup merge of #129386 - cjgillot:local-resolved-arg, r=compiler-errors
Use a LocalDefId in ResolvedArg.
2024-08-23 06:26:53 +02:00
Matthias Krüger
9d39b59862
Rollup merge of #129395 - fmease:pp-dyn-w-gat, r=compiler-errors
Pretty-print own args of existential projections (dyn-Trait w/ GAT constraints)

Previously we would just drop them. This bug isn't that significant as it can only be triggered by user code that constrains GATs inside trait object types which is currently gated under the interim feature `generic_associated_types_extended` (whose future is questionable) or on stable if the GATs are 'disabled' in dyn-Trait via `where Self: Sized` (in which case the assoc type bindings get ignored anyway (and trigger the warn-by-default lint `unused_associated_type_bounds`)), so yeah.

Affects diagnostic output and output of `std::any::type_name{_of_val}`.
2024-08-22 08:17:23 +02:00
León Orell Valerian Liehr
080c2ca2dc
Pretty-print own args of existential projections 2024-08-22 06:22:36 +02:00
Camille GILLOT
c51f2d24d1 Use a LocalDefId in ResolvedArg. 2024-08-22 01:17:01 +00:00
Matthias Krüger
9fd2832a7e
Rollup merge of #129355 - RalfJung:PlaceMention, r=compiler-errors
fix comment on PlaceMention semantics

It seems this was simply missed in https://github.com/rust-lang/rust/pull/114330.
2024-08-21 18:15:06 +02:00
Matthias Krüger
937a18daf9
Rollup merge of #129344 - compiler-errors:less-option-unit-diagnostics, r=jieyouxu
Use `bool` in favor of `Option<()>` for diagnostics

We originally only supported `Option<()>` for optional notes/labels, but we now support `bool`. Let's use that, since it usually leads to more readable code.

I'm not removing the support from the derive macro, though I guess we could error on it... 🤔
2024-08-21 18:15:05 +02:00
Ralf Jung
9010708d9f fix comment on PlaceMention semantics 2024-08-21 15:52:06 +02:00
Michael Goulet
25ff9b6bcb Use bool in favor of Option<()> for diagnostics 2024-08-21 01:31:11 -04:00
kyoto7250
df568af244 fix link in mir/mod
change url path when rewrite those code
2024-08-21 00:14:04 +09:00
bors
79611d90b6 Auto merge of #122551 - RayMuir:copy_fmt, r=saethlin
Added "copy" to Debug fmt for copy operands

In MIR's debug mode (--emit mir) the printing for Operands is slightly inconsistent.

The RValues - values on the right side of an Assign - are usually printed with their Operand when they are Places.

Example:
_2 = move _3

But for arguments, the operand is omitted.

_2 = _1

I propose a change be made, to display the place with the operand.

_2 = copy _1

Move and copy have different semantics, meaning this difference is important and helpful to the user. It also adds consistency to the pretty printing.

-- EDIT --

 Consider this example Rust program and its MIR output with the **updated pretty printer.**

This was generated with the arguments --emit mir --crate-type lib -Zmir-opt-level=0 (Otherwise, it's optimised away since it's a junk program).

```rust
fn main(foo: i32) {
    let v = 10;

    if v == 20 {
        foo;
    }
    else {
        v;
    }
}
```

```MIR
// WARNING: This output format is intended for human consumers only
// and is subject to change without notice. Knock yourself out.
fn main(_1: i32) -> () {
    debug foo => _1;
    let mut _0: ();
    let _2: i32;
    let mut _3: bool;
    let mut _4: i32;
    let _5: i32;
    let _6: i32;
    scope 1 {
        debug v => _2;
    }

    bb0: {
        StorageLive(_2);
        _2 = const 10_i32;
        StorageLive(_3);
        StorageLive(_4);
        _4 = copy _2;
        _3 = Eq(move _4, const 20_i32);
        switchInt(move _3) -> [0: bb2, otherwise: bb1];
    }

    bb1: {
        StorageDead(_4);
        StorageLive(_5);
        _5 = copy _1;
        StorageDead(_5);
        _0 = const ();
        goto -> bb3;
    }

    bb2: {
        StorageDead(_4);
        StorageLive(_6);
        _6 = copy _2;
        StorageDead(_6);
        _0 = const ();
        goto -> bb3;
    }

    bb3: {
        StorageDead(_3);
        StorageDead(_2);
        return;
    }
}
```

In this example program, we can see that when we move a place, it is preceded by "move". e.g. ``` _3 = Eq(move _4, const 20_i32);```. However, when we copy a place such as ```_5 = _1;```, it is not preceded by the operand in the original printout. I propose to change the print to include the copy ```_5 = copy _1``` as in this example.

Regarding the arguments part. When I originally submitted this PR, I was under the impression this only affected the print for arguments to a function, but actually, it affects anything that uses a copy. This is preferable anyway with regard to consistency. The PR is about making ```copy``` explicit.
2024-08-19 23:10:46 +00:00
Boxy
b8eedfa3d2 Retroactively feature gate ConstArgKind::Path 2024-08-19 01:14:22 +01:00
RayMuir
32185decd6 Added "copy" to Debug fmt for copy operands 2024-08-18 14:05:47 -07:00
Ralf Jung
35709be02d rename AddressOf -> RawBorrow inside the compiler 2024-08-18 19:46:53 +02:00
许杰友 Jieyou Xu (Joe)
130cb9e30c
Rollup merge of #129203 - compiler-errors:extern_crate_data, r=jieyouxu
Use cnum for extern crate data key

Noticed this when fixing #129184. I still have yet to put up a fix for that (mostly because I'm too lazy to minimize a test, that will come soon though).
2024-08-18 14:55:23 +08:00
bors
feeba198f2 Auto merge of #128792 - compiler-errors:foreign-sig, r=spastorino
Use `FnSig` instead of raw `FnDecl` for `ForeignItemKind::Fn`, fix ICE for `Fn` trait error on safe foreign fn

Let's use `hir::FnSig` instead of `hir::FnDecl + hir::Safety` for `ForeignItemKind::Fn`. This consolidates some handling code between normal fns and foreign fns.

Separetly, fix an ICE where we weren't handling `Fn` trait errors for safe foreign fns.

If perf is bad for the first commit, I can rework the ICE fix to not rely on it. But if perf is good, I prefer we fix and clean up things all at once 👍

r? spastorino

Fixes #128764
2024-08-17 19:35:01 +00:00
Michael Goulet
b2dd943d4b Use cnum for extern crate data 2024-08-17 12:50:18 -04:00
Matthias Krüger
ddbbda47eb
Rollup merge of #129168 - BoxyUwU:mismatched_ty_correct_id, r=compiler-errors
Return correct HirId when finding body owner in diagnostics

Fixes #129145
Fixes #128810

r? ```@compiler-errors```

```rust
fn generic<const N: u32>() {}

trait Collate<const A: u32> {
    type Pass;
    fn collate(self) -> Self::Pass;
}

impl<const B: u32> Collate<B> for i32 {
    type Pass = ();
    fn collate(self) -> Self::Pass {
        generic::<{ true }>()
        //~^ ERROR: mismatched types
    }
}
```

When type checking the `{ true }` anon const we would error with a type mismatch. This then results in diagnostics code attempting to check whether its due to a type mismatch with the return type. That logic was implemented by walking up the hir until we reached the body owner, except instead of using the `enclosing_body_owner` function it special cased various hir nodes incorrectly resulting in us walking out of the anon const and stopping at `fn collate` instead.

This then resulted in diagnostics logic inside of the anon consts `ParamEnv` attempting to do trait solving involving the `<i32 as Collate<B>>::Pass` type which ICEs because it is in the wrong environment.

I have rewritten this function to just walk up until it hits the `enclosing_body_owner` and made some other changes since I found this pretty hard to read/understand. Hopefully it's easier to understand now, it also makes it more obvious that this is not implemented in a very principled way and is definitely missing cases :)
2024-08-17 18:18:19 +02:00
Matthias Krüger
9c910ae7ee
Rollup merge of #129167 - cuviper:either-once-empty, r=Nadrieril
mir/pretty: use `Option` instead of `Either<Once, Empty>`

`Either` is wasteful for a one-or-none iterator, especially since `Once`
is already an `option::IntoIter` internally. We don't really need any of
the iterator mechanisms in this case, just a single conditional insert.
2024-08-17 18:18:18 +02:00
Boxy
ed6315b3fe Rewrite get_fn_id_for_return_block 2024-08-16 20:53:13 +01:00