linker: Pass fewer search directories to the linker
- The logic for passing `-L` directories to the linker is consolidated in a single function, so the search priorities are immediately clear.
- Only `-Lnative=`, `-Lframework=` `-Lall=` directories are passed to linker, but not `-Lcrate=` and others. That's because only native libraries are looked up by name by linker, all Rust crates are passed using full paths, and their directories should not interfere with linker search paths.
- The main sysroot library directory shouldn't generally be passed because it shouldn't contain native libraries, except for one case which is now marked with a FIXME.
- This also helps with https://github.com/rust-lang/rust/pull/123436, in which we need to walk the same list of directories manually.
The next step is to migrate `find_native_static_library` to exactly the same set and order of search directories (which may be a bit annoying for the `iOSSupport` directories https://github.com/rust-lang/rust/pull/121430#issuecomment-2256372341).
Create COFF archives for non-LLVM backends
`ar_archive_writer` now supports creating COFF archives, so enable them for the non-LLVM backends when requested.
r? ``@bjorn3``
When an archive fails to build, print the path
Currently the output on failure is as follows:
Compiling block-buffer v0.10.4
Compiling crypto-common v0.1.6
Compiling digest v0.10.7
Compiling sha2 v0.10.8
Compiling xz2 v0.1.7
error: failed to build archive: No such file or directory
error: could not compile `bootstrap` (lib) due to 1 previous error
Change this to print which file is being constructed, to give some hint about what is going on.
error: failed to build archive at `path/to/output`: No such file or directory
deps: dedup object, wasmparser, wasm-encoder
* dedups one `object`, additional dupe will be removed, with next `thorin-dwp` update
* `wasmparser` pinned to minor versions, so full merge isn't possible
* same with `wasm-encoder`
Turned off some features for `wasmparser` (see features https://github.com/bytecodealliance/wasm-tools/blob/v1.208.1/crates/wasmparser/Cargo.toml) in `run-make-support`, looks working?
compiler: Never debug_assert in codegen
In the name of Turing and his Hoarey heralds, assert our truths before creating a monster!
The `rustc_codegen_llvm` and `rustc_codegen_ssa` crates are fairly critical for rustc's correctness. Small mistakes here can easily result in undefined behavior, since a "small mistake" can mean something like "link and execute the wrong code". We should probably run any and all asserts in these modules unconditionally on whether this is a "debug build", and damn the costs in performance.
...Especially because the costs in performance seem to be *nothing*. It is not clear how much correctness we gain here, but I'll take free correctness improvements.
rustc_target: add known safe s390x target features
This pull request adds known safe target features for s390x (aka IBM Z systems).
Currently, these features are unstable since stabilizing the target features requires submitting proposals.
The `vector` feature was added in IBM Z13 (`arch11`), and this is a SIMD feature for the newer IBM Z systems.
The `backchain` attribute is the IBM Z way of adding frame pointers like unwinding capabilities (the "frame-pointer" switch on IBM Z and IBM POWER platforms will add _emulated_ frame pointers to the binary, which profilers can't use for unwinding the stack).
Both attributes can be applied at the LLVM module or function levels. However, the `backchain` attribute has to be enabled for all the functions in the call stack to get a successful unwind process.
Add a hook for `should_codegen_locally`
This PR lifts the module-local function `should_codegen_locally` to `TyCtxt` as a hook.
In addition to monomorphization, this function is used for checking the dependency of `compiler_builtins` on other libraries. Moving this function to the hooks also makes overriding it possible for the tools that use the rustc interface.
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
Sync ar_archive_writer to LLVM 18.1.3
From LLVM 15.0.0-rc3. This adds support for COFF archives containing Arm64EC object files and has various fixes for AIX big archive files.
Currently the output on failure is as follows:
Compiling block-buffer v0.10.4
Compiling crypto-common v0.1.6
Compiling digest v0.10.7
Compiling sha2 v0.10.8
Compiling xz2 v0.1.7
error: failed to build archive: No such file or directory
error: could not compile `bootstrap` (lib) due to 1 previous error
Print which file is being constructed to give some hint about what is
going on.
use "bootstrap" instead of "rustbuild" in comments and docs
Let's stick with the single name "bootstrap" to refer to the bootstrap project to avoid confusion. This should make it clearer, especially for new contributors.
linker: Link dylib crates by path
Linkers seem to support linking dynamic libraries by path.
Not sure why the previous scheme with splitting the path into a directory (passed with `-L`) and a name (passed with `-l`) was used (upd: likely due to https://github.com/rust-lang/rust/pull/126094#issuecomment-2155063414).
When we split a library path `some/dir/libfoo.so` into `-L some/dir` and `-l foo` we add `some/dir` to search directories for *all* libraries looked up by the linker, not just `foo`, and `foo` is also looked up in *all* search directories not just `some/dir`.
Technically we may find some unintended libraries this way.
Therefore linking dylibs via a full path is both simpler and more reliable.
It also makes the set of search directories more easily reproducible when we need to lookup some native library manually (like in https://github.com/rust-lang/rust/pull/123436).
Re-implement a type-size based limit
r? lcnr
This PR reintroduces the type length limit added in #37789, which was accidentally made practically useless by the caching changes to `Ty::walk` in #72412, which caused the `walk` function to no longer walk over identical elements.
Hitting this length limit is not fatal unless we are in codegen -- so it shouldn't affect passes like the mir inliner which creates potentially very large types (which we observed, for example, when the new trait solver compiles `itertools` in `--release` mode).
This also increases the type length limit from `1048576 == 2 ** 20` to `2 ** 24`, which covers all of the code that can be reached with craterbot-check. Individual crates can increase the length limit further if desired.
Perf regression is mild and I think we should accept it -- reinstating this limit is important for the new trait solver and to make sure we don't accidentally hit more type-size related regressions in the future.
Fixes#125460
Fix `FnMut::call_mut`/`Fn::call` shim for async closures that capture references
I adjusted async closures to be able to implement `Fn` and `FnMut` *even if* they capture references, as long as those references did not need to borrow data from the closure captures themselves. See #125259.
However, when I did this, I didn't actually relax an assertion in the `build_construct_coroutine_by_move_shim` shim code, which builds the `Fn`/`FnMut`/`FnOnce` implementations for async closures. Therefore, if we actually tried to *call* `FnMut`/`Fn` on async closures, it would ICE.
This PR adjusts this assertion to ensure that we only capture immutable references in closures if they implement `Fn`/`FnMut`. It also adds a bunch of tests and makes more of the async-closure tests into `build-pass` since we often care about these tests actually generating the right closure shims and stuff. I think it might be excessive to *always* use build-pass here, but 🤷 it's not that big of a deal.
Fixes#127019Fixes#127012
r? oli-obk
patchable-function-entry: Add unstable compiler flag and attribute
Tracking issue: #123115
Add the -Z patchable-function-entry compiler flag and the #[patchable_function_entry(prefix_nops = m, entry_nops = n)] attribute.
Rebased and adjusted the canditate implementation to match changes in the RFC.
coverage: Make `#[coverage(..)]` apply recursively to nested functions
This PR makes the (currently-unstable) `#[coverage(off)]` and `#[coverage(on)]` attributes apply recursively to all nested functions/closures, instead of just the function they are directly attached to.
Those attributes can now also be applied to modules and to impl/impl-trait blocks, where they have no direct effect, but will be inherited by all enclosed functions/closures/methods that don't override the inherited value.
---
Fixes#126625.
De-duplicate all consecutive native libs regardless of their options
Address https://github.com/rust-lang/rust/pull/126913#issuecomment-2188184011 by no longer de-duplicating based on the "options" but by only looking at the generated link args, as to avoid consecutive libs that originated from different native-lib with different options (like `raw-dylib` on Windows) but isn't relevant for `--print=native-static-libs`.
r? ``@petrochenkov``
coverage: Overhaul validation of the `#[coverage(..)]` attribute
This PR makes sweeping changes to how the (currently-unstable) coverage attribute is validated:
- Multiple coverage attributes on the same item/expression are now treated as an error.
- The attribute must always be `#[coverage(off)]` or `#[coverage(on)]`, and the error messages for this are more consistent.
- A trailing comma is still allowed after off/on, since that's part of the normal attribute syntax.
- Some places that silently ignored a coverage attribute now produce an error instead.
- These cases were all clearly bugs.
- Some places that ignored a coverage attribute (with a warning) now produce an error instead.
- These were originally added as lints, but I don't think it makes much sense to knowingly allow new attributes to be used in meaningless places.
- Some of these errors might soon disappear, if it's easy to extend recursive coverage attributes to things like modules and impl blocks.
---
One of the goals of this PR is to lay a more solid foundation for making the coverage attribute recursive, so that it applies to all nested functions/closures instead of just the one it is directly attached to.
Fixes#126658.
This PR incorporates #126659, which adds more tests for validation of the coverage attribute.
`@rustbot` label +A-code-coverage
Deprecate no-op codegen option `-Cinline-threshold=...`
This deprecates `-Cinline-threshold` since using it has no effect. This has been the case since the new LLVM pass manager started being used, more than 2 years ago.
Recommend using `-Cllvm-args=--inline-threshold=...` instead.
Closes#89742 which is E-help-wanted.
`PtrMetadata` doesn't care about `*const`/`*mut`/`&`/`&mut`, so GVN away those casts in its argument.
This includes updating MIR to allow calling PtrMetadata on references too, not just raw pointers. That means that `[T]::len` can be just `_0 = PtrMetadata(_1)`, for example.
# Conflicts:
# tests/mir-opt/pre-codegen/slice_index.slice_get_unchecked_mut_range.PreCodegen.after.panic-abort.mir
# tests/mir-opt/pre-codegen/slice_index.slice_get_unchecked_mut_range.PreCodegen.after.panic-unwind.mir
Clean up some comments near `use` declarations
#125443 will reformat all `use` declarations in the repository. There are a few edge cases involving comments on `use` declarations that require care. This PR cleans up some clumsy comment cases, taking us a step closer to #125443 being able to merge.
r? ``@lqd``
Most modules have such a blank line, but some don't. Inserting the blank
line makes it clearer that the `//!` comments are describing the entire
module, rather than the `use` declaration(s) that immediately follows.
We already do this for a number of crates, e.g. `rustc_middle`,
`rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g.
`allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes),
sometimes the order is alphabetical, and sometimes there is no
particular order.
- Sometimes the attributes of a particular kind aren't even grouped
all together, e.g. there might be a `feature`, then an `allow`, then
another `feature`.
This commit extends the existing sorting to all compiler crates,
increasing consistency. If any new attribute line is added there is now
only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`,
because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's
ignored in `rustfmt.toml`).
rustc_codegen_ssa: fix `get_rpath_relative_to_output` panic when lib only contains file name
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
When compiles program with `-C rpath=yes` but with no output filename specified, or with filename ONLY, we will get an ICE for now. Fix it by treat empty `output` path in `get_rpath_relative_to_output` as current dir.
Before this patch:
```bash
rustc -C prefer_dynamic=yes -C rpath=yes -O h.rs # ICE, no output filename specified
rustc -o hello -C prefer_dynamic=yes -C rpath=yes -O h.rs # ICE, output filename has no path
rustc -o ./hello -C prefer_dynamic=yes -C rpath=yes -O h.rs # Works
```
All those examples work after the patch.
Close#119571.
Close#125785.
Align `Term` methods with `GenericArg` methods, add `Term::expect_*`
* `Term::ty` -> `Term::as_type`.
* `Term::ct` -> `Term::as_const`.
* Adds `Term::expect_type` and `Term::expect_const`, and uses them in favor of `.ty().unwrap()`, etc.
I could also shorten these to `as_ty` and then do `GenericArg::as_ty` as well, but I do think the `as_` is important to signal that this is a conversion method, and not a getter, like `Const::ty` is.
r? types
Show files produced by `--emit foo` in json artifact notifications
Right now it is possible to ask `rustc` to save some intermediate representation into one or more files with `--emit=foo`, but figuring out what exactly was produced is difficult. This pull request adds information about `llvm_ir` and `asm` intermediate files into notifications produced by `--json=artifacts`.
Related discussion: https://internals.rust-lang.org/t/easier-access-to-files-generated-by-emit-foo/20477
Motivation - `cargo-show-asm` parses those intermediate files and presents them in a user friendly way, but right now I have to apply some dirty hacks. Hacks make behavior confusing: https://github.com/hintron/computer-enhance/issues/35
This pull request introduces a new behavior: now `rustc` will emit a new artifact notification for every artifact type user asked to `--emit`, for example for `--emit asm` those will include all the `.s` files.
Most users won't notice this behavior, to be affected by it all of the following must hold:
- user must use `rustc` binary directly (when `cargo` invokes `rustc` - it consumes artifact notifications and doesn't emit anything)
- user must specify both `--emit xxx` and `--json artifacts`
- user must refuse to handle unknown artifact types
- user must disable incremental compilation (or deal with it better than cargo does, or use a workaround like `save-temps`) in order not to hit #88829 / #89149
This replaces the drop_in_place reference with null in vtables. On
librustc_driver.so, this drops about ~17k dynamic relocations from the
output, since many vtables can now be placed in read-only memory, rather
than having a relocated pointer included.
This makes a tradeoff by adding a null check at vtable call sites.
That's hard to avoid without changing the vtable format (e.g., to use a
pc-relative relocation instead of an absolute address, and avoid the
dynamic relocation that way). But it seems likely that the check is
cheap at runtime.
[perf] Delay the construction of early lint diag structs
Attacks some of the perf regressions from https://github.com/rust-lang/rust/pull/124417#issuecomment-2123700666.
See individual commits for details. The first three commits are not strictly necessary.
However, the 2nd one (06bc4fc671, *Remove `LintDiagnostic::msg`*) makes the main change way nicer to implement.
It's also pretty sweet on its own if I may say so myself.
Run rustfmt on files that need it.
Somehow these files aren't properly formatted. By default `x fmt` and `x tidy` only check files that have changed against master, so if an ill-formatted file somehow slips in it can stay that way as long as it doesn't get modified(?)
I found these when I ran `x fmt` explicitly on every `.rs` file in the repo, while working on
https://github.com/rust-lang/compiler-team/issues/750.
Somehow these files aren't properly formatted. By default `x fmt` and `x
tidy` only check files that have changed against master, so if an
ill-formatted file somehow slips in it can stay that way as long as it
doesn't get modified(?)
I found these when I ran `x fmt` explicitly on every `.rs` file in the
repo, while working on
https://github.com/rust-lang/compiler-team/issues/750.
Rollup of 6 pull requests
Successful merges:
- #125263 (rust-lld: fallback to rustc's sysroot if there's no path to the linker in the target sysroot)
- #125345 (rustc_codegen_llvm: add support for writing summary bitcode)
- #125362 (Actually use TAIT instead of emulating it)
- #125412 (Don't suggest adding the unexpected cfgs to the build-script it-self)
- #125445 (Migrate `run-make/rustdoc-with-short-out-dir-option` to `rmake.rs`)
- #125452 (Cleanup check-cfg handling in core and std)
r? `@ghost`
`@rustbot` modify labels: rollup
rustc_codegen_llvm: add support for writing summary bitcode
Typical uses of ThinLTO don't have any use for this as a standalone file, but distributed ThinLTO uses this to make the linker phase more efficient. With clang you'd do something like `clang -flto=thin -fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o (full of bitcode) and foo.indexing.o (just the summary or index part of the bitcode). That's then usable by a two-stage linking process that's more friendly to distributed build systems like bazel, which is why I'm working on this area.
I talked some to `@teresajohnson` about naming in this area, as things seem to be a little confused between various blog posts and build systems. "bitcode index" and "bitcode summary" tend to be a little too ambiguous, and she tends to use "thin link bitcode" and "minimized bitcode" (which matches the descriptions in LLVM). Since the clang option is thin-link-bitcode, I went with that to try and not add a new spelling in the world.
Per `@dtolnay,` you can work around the lack of this by using `lld --thinlto-index-only` to do the indexing on regular .o files of bitcode, but that is a bit wasteful on actions when we already have all the information in rustc and could just write out the matching minimized bitcode. I didn't test that at all in our infrastructure, because by the time I learned that I already had this patch largely written.
rust-lld: fallback to rustc's sysroot if there's no path to the linker in the target sysroot
As seen in #125246, some sysroots don't expect to contain `rust-lld` and want to keep it that way, so we fallback to the default rustc sysroot if there is no path to the linker in any of the sysroot tools search paths. This is how we locate codegen-backends' dylibs already.
People also have requested an error if none of these search paths contain the self-contained linker directory, so there's also an error in that case.
r? `@petrochenkov` cc `@ehuss` `@RalfJung`
I'm not sure where we check for `rust-lld`'s existence on the targets where we use it by default, and if we just ignore it when missing or emit a warning (as I assume we don't emit an error), so I just checked for the existence of `gcc-ld`, where `cc` will look for the lld-wrapper binaries.
<sub>*Feel free to point out better ways to do this, it's the middle of the night here.*</sub>
Fixes#125246
Remove more `#[macro_use] extern crate tracing`
Because explicit importing of macros via use items is nicer (more standard and readable) than implicit importing via `#[macro_use]`. Continuing the work from #124511 and #124914.
r? `@jackh726`
If we don't do this, some versions of LLVM (at least 17, experimentally)
will double-emit some error messages, which is how I noticed this. Given
that it seems to be costing some extra work, let's only request the
summary bitcode production if we'll actually bother writing it down,
otherwise skip it.
self-contained linker: retry linking without `-fuse-ld=lld` on CCs that don't support it
For the self-contained linker, this PR applies [the strategy](https://github.com/rust-lang/rust/issues/125330#issuecomment-2125119838) of retrying the linking step when the driver doesn't support `-fuse-ld=lld`, but with the option removed. This is the same strategy we already use of retrying when e.g. `-no-pie` is not supported.
Fixes#125330
r? `@petrochenkov`
I have no idea how we could add a test here, much like we don't have one for `-no-pie` or `-static-pie` -- let me know if you have ideas -- but I tested on a CentOS7 image:
```console
[root@d25b38376ede tmp]# ../build/host/stage1/bin/rustc helloworld.rs
WARN rustc_codegen_ssa:🔙:link The linker driver does not support `-fuse-ld=lld`. Retrying without it.
[root@d25b38376ede tmp]# readelf -p .comment helloworld
String dump of section '.comment':
[ 0] GCC: (GNU) 4.8.5 20150623 (Red Hat 4.8.5-44)
[ 2d] rustc version 1.80.0-dev
```
I wasn't able to test with `cross` as the issue describes: I wasn't able to reproduce that behavior locally.
* instead simply set the primary message inside the lint decorator functions
* it used to be this way before [#]101986 which introduced `msg` to prevent
good path delayed bugs (which no longer exist) from firing under certain
circumstances when lints were suppressed / silenced
* this is no longer necessary for various reasons I presume
* it shaves off complexity and makes further changes easier to implement
Stop using `to_hir_binop` in codegen
This came up in https://github.com/rust-lang/rust/pull/125359#discussion_r1609401311 , and looking into it we can just use the `mir::BinOp`s directly instead of `hir::BinOpKind`s.
(AKA rather than going `mir::BinOp` → `hir::BinOpKind` → `IntPredicate`, just go `mir::BinOp` → `IntPredicate`.)
Typical uses of ThinLTO don't have any use for this as a standalone
file, but distributed ThinLTO uses this to make the linker phase more
efficient. With clang you'd do something like `clang -flto=thin
-fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o
(full of bitcode) and foo.indexing.o (just the summary or index part of
the bitcode). That's then usable by a two-stage linking process that's
more friendly to distributed build systems like bazel, which is why I'm
working on this area.
I talked some to @teresajohnson about naming in this area, as things
seem to be a little confused between various blog posts and build
systems. "bitcode index" and "bitcode summary" tend to be a little too
ambiguous, and she tends to use "thin link bitcode" and "minimized
bitcode" (which matches the descriptions in LLVM). Since the clang
option is thin-link-bitcode, I went with that to try and not add a new
spelling in the world.
Per @dtolnay, you can work around the lack of this by using `lld
--thinlto-index-only` to do the indexing on regular .o files of
bitcode, but that is a bit wasteful on actions when we already have all
the information in rustc and could just write out the matching minimized
bitcode. I didn't test that at all in our infrastructure, because by the
time I learned that I already had this patch largely written.
Relax restrictions on multiple sanitizers
Most combinations of LLVM sanitizers are legal-enough to enable simultaneously. This change will allow simultaneously enabling ASAN and shadow call stacks on supported platforms.
I used this python script to generate the mutually-exclusive sanitizer combinations:
```python
#!/usr/bin/python3
import subprocess
flags = [
["-fsanitize=address"],
["-fsanitize=leak"],
["-fsanitize=memory"],
["-fsanitize=thread"],
["-fsanitize=hwaddress"],
["-fsanitize=cfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=memtag", "--target=aarch64-linux-android", "-march=armv8a+memtag"],
["-fsanitize=shadow-call-stack"],
["-fsanitize=kcfi", "-flto", "-fvisibility=hidden"],
["-fsanitize=kernel-address"],
["-fsanitize=safe-stack"],
["-fsanitize=dataflow"],
]
for i in range(len(flags)):
for j in range(i):
command = ["clang++"] + flags[i] + flags[j] + ["-o", "main.o", "-c", "main.cpp"]
completed = subprocess.run(command, stderr=subprocess.DEVNULL)
if completed.returncode != 0:
first = flags[i][0][11:].replace('-', '').upper()
second = flags[j][0][11:].replace('-', '').upper()
print(f"(SanitizerSet::{first}, SanitizerSet::{second}),")
```
Rename Unsafe to Safety
Alternative to #124455, which is to just have one Safety enum to use everywhere, this opens the posibility of adding `ast::Safety::Safe` that's useful for unsafe extern blocks.
This leaves us today with:
```rust
enum ast::Safety {
Unsafe(Span),
Default,
// Safe (going to be added for unsafe extern blocks)
}
enum hir::Safety {
Unsafe,
Safe,
}
```
We would convert from `ast::Safety::Default` into the right Safety level according the context.
These types are currently rejected for `as` casts by the compiler.
Remove this incorrect check and add codegen tests for all conversions
involving these types.
I added `PlaceValue` in 123775, but kept that one line-by-line simple because it touched so many places.
This goes through to add more helpers & docs, and change some `PlaceRef` to `PlaceValue` where the type didn't need to be included.
No behaviour changes.
Avoid `alloca`s in codegen for simple `mir::Aggregate` statements
The core idea here is to remove the abstraction penalty of simple newtypes in codegen.
Even something simple like constructing a
```rust
#[repr(transparent)] struct Foo(u32);
```
forces an `alloca` to be generated in nightly right now.
Certainly LLVM can optimize that away, but it would be nice if it didn't have to.
Quick example:
```rust
#[repr(transparent)]
pub struct Transparent32(u32);
#[no_mangle]
pub fn make_transparent(x: u32) -> Transparent32 {
let a = Transparent32(x);
a
}
```
on nightly we produce <https://rust.godbolt.org/z/zcvoM79ae>
```llvm
define noundef i32 `@make_transparent(i32` noundef %x) unnamed_addr #0 {
%a = alloca i32, align 4
store i32 %x, ptr %a, align 4
%0 = load i32, ptr %a, align 4, !noundef !3
ret i32 %0
}
```
but after this PR we produce
```llvm
define noundef i32 `@make_transparent(i32` noundef %x) unnamed_addr #0 {
start:
ret i32 %x
}
```
(even before the optimizer runs).
Refactor float `Primitive`s to a separate `Float` type
Now there are 4 of them, it makes sense to refactor `F16`, `F32`, `F64` and `F128` out of `Primitive` and into a separate `Float` type (like integers already are). This allows patterns like `F16 | F32 | F64 | F128` to be simplified into `Float(_)`, and is consistent with `ty::FloatTy`.
As a side effect, this PR also makes the `Ty::primitive_size` method work with `f16` and `f128`.
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
rustc: Some small changes for the wasm32-wasip2 target
This commit has a few changes for the wasm32-wasip2 target. The first two are aimed at improving the compatibility of using `clang` as an external linker driver on this target. The default target to LLVM is updated to match the Rust target and additionally the `-fuse-ld=lld` argument is dropped since that otherwise interferes with clang's own linker detection. The only linker on wasm targets is LLD but on the wasip2 target a wrapper around LLD, `wasm-component-ld`, is used to drive the process and perform steps necessary for componentization.
The final commit changes the output of all objects on the wasip2 target to being PIC by default. This improves compatibilty with shared libaries but notably does not mean that there's a turnkey solution for shared libraries. The hope is that by having the standard libray work both with and without dynamic libraries will make experimentation easier.
Stop `llvm.expect`ing assert terminators
We're putting `llvm.expect` calls before the <https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.TerminatorKind.html#variant.Assert> terminators.
But we don't need them. One of the arms is always to a panic function that's marked `#[cold]`, which is `cold` <https://llvm.org/docs/LangRef.html#function-attributes> in LLVM, which
> When computing edge weights, basic blocks post-dominated by a cold function call are also considered to be cold; and, thus, given low weight.
So even without us emitting the extra intrinsic call, LLVM knows what to expect for the `br`. Thus we can save the (small) effort of emitting it and then LLVM optimizing it out.
r? compiler
This argument isn't necessary for WebAssembly targets since `wasm-ld` is
the only linker for the targets. Passing it otherwise interferes with
Clang's linker selection on `wasm32-wasip2` so avoid it altogether.
coverage: Clean up creation of MC/DC condition bitmaps
This PR improves the code for creating and initializing [MC/DC](https://en.wikipedia.org/wiki/Modified_condition/decision_coverage) condition bitmap variables, as introduced by #123409 and modified by #124255.
- The condition bitmap variables are now created eagerly at the start of per-function codegen, via a new `init_coverage` method in `CoverageInfoBuilderMethods`. This avoids having to retroactively create the bitmaps while doing codegen for an individual coverage statement.
- As a result, we can now create and initialize those bitmaps using existing safe APIs, instead of having to perform our own unsafe call to `llvm::LLVMBuildAlloca`.
- This PR also tweaks the way we count the number of condition bitmaps needed, by tracking the total number of bitmaps needed (max depth + 1), instead of only tracking the maximum depth. This reduces the potential for subtle off-by-one confusion.
remove extraneous note on `UnableToRunDsymutil` diagnostic
If I understand [this FIXME](1367827eac/compiler/rustc_macros/src/diagnostics/diagnostic.rs (L205)) correctly, it seems we don't yet validate subdiagnostics, so `#[note]` and co in the `#[derive(Diagnostic]` item could be out-of-sync with the fluent message, without causing compile errors.
It was the case for `rustc_codegen_ssa::errors::UnableToRunDsymutil`, causing the ICE in #124392.
I've grepped and scripted my way through most of our diagnostics structs and fluent bundles and the above was the only such extraneous `#[note]`/`#[note(name)]`/`#[help]`/`#[warning]` I could find, so hopefully there aren't many others like it.
I haven't checked if the opposite can happen, a `.note = ` in a fluent message that is lacking a corresponding `#[note]` on the struct and not causing an error, but maybe it's possible?
r? ``@davidtwco``
fixes#124392
`-Z debug-macros` is "stabilized" by enabling it by default and removing.
`-Z collapse-macro-debuginfo` is stabilized as `-C collapse-macro-debuginfo`.
It now supports all typical boolean values (`parse_opt_bool`) in addition to just yes/no.
Default value of `collapse_debuginfo` was changed from `false` to `external` (i.e. collapsed if external, not collapsed if local).
`#[collapse_debuginfo]` attribute without a value is no longer supported to avoid guessing the default.
It's a highly misleading name, because it's completely different to
`MetaItem::name_value_literal`. Specifically, it doesn't match
`MetaItemKind::NameValue` (e.g. `#[foo = 3]`), it matches
`MetaItemKind::List` (e.g. `#[foo(3)]`).
Stop using LLVM struct types for alloca
The alloca type has no semantic meaning, only the size (and alignment, but we specify it explicitly) matter. Using `[N x i8]` is a more direct way to specify that we want `N` bytes, and avoids relying on LLVM's struct layout. It is likely that a future LLVM version will change to an untyped alloca representation.
Split out from #121577.
r? `@ghost`
Add simple async drop glue generation
This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work).
This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit).
Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work.
Feature completeness:
- [x] `AsyncDrop` trait
- [ ] `async_drop_in_place_raw`/async drop glue generation support for
- [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.)
- [x] Arrays and slices (array pointer is unsized into slice pointer)
- [x] ADTs (enums, structs, unions)
- [x] tuple-like types (tuples, closures)
- [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait))
- [ ] coroutines (https://github.com/rust-lang/rust/pull/123948)
- [x] Async drop glue includes sync drop glue code
- [x] Cleanup branch generation for `async_drop_in_place_raw`
- [ ] Union rejects non-trivially async destructible fields
- [ ] `AsyncDrop` implementation requires same bounds as type definition
- [ ] Skip trivially destructible fields (optimization)
- [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators
- [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop)
- [ ] Automatic async drop at the end of the scope in async context
Ignore `-C strip` on MSVC
tl;dr - Define `-Cstrip` to only ever affect the binary; no other build artifacts.
This is necessary to improve cross-platform behavior consistency: if someone wanted debug information to be contained only in separate files on all platforms, they would set `-Cstrip=symbols` and `-Csplit-debuginfo=packed`, but this would result in no PDB files on MSVC.
Resolves#114215
Allow workproducts without object files.
This pull request partially reverts changes from e16c3b4a44
Original motivation for this assert was described with "A WorkProduct without a saved file is useless"
which was true at the time but now it is possible to have work products with other types of files
(llvm-ir, asm, etc) and there are bugreports for this failure:
For example: https://github.com/rust-lang/rust/issues/123695
Fixes https://github.com/rust-lang/rust/issues/123234
Now existing `assert` and `.unwrap_or_else` are unified into a single
check that emits slightly more user friendly error message if an object
files was meant to be produced but it's missing
This pull request partially reverts changes from e16c3b4a44
Original motivation for this assert was described with "A WorkProduct without a saved file is useless"
which was true at the time but now it is possible to have work products with other types of files
(llvm-ir, asm, etc) and there are bugreports for this failure:
For example: https://github.com/rust-lang/rust/issues/123695
Fixes https://github.com/rust-lang/rust/issues/123234
Now existing `assert` and `.unwrap_or_else` are unified into a single
check that emits slightly more user friendly error message if an object
files was meant to be produced but it's missing
Update ar_archive_writer to 0.2.0
This adds a whole bunch of tests checking for any difference with llvm's archive writer. It also fixes two mistakes in the porting from C++ to Rust. The first one causes a divergence for Mach-O archives which may or may not be harmless. The second will definitively cause issues, but only applies to thin archives, which rustc currently doesn't create.
Linker flavors next steps: linker features
This is my understanding of the first step towards `@petrochenkov's` vision for the future of linker flavors, described in https://github.com/rust-lang/rust/pull/119906#issuecomment-1895693162 and the discussion that followed.
To summarize: having `Cc` and `Lld` embedded in linker flavors creates tension about naming, and a combinatorial explosion of flavors for each new linker feature we'd want to use. Linker features are an extension mechanism that is complementary to principal flavors, with benefits described in #119906.
The most immediate use of this flag would be to turn self-contained linking on and off via features instead of flavors. For example, `-Clinker-features=+/-lld` would toggle using lld instead of selecting a precise flavor, and would be "generic" and work cross-platform (whereas linker flavors are currently more tied to targets). Under this scheme, MCP510 is expected to be `-Clink-self-contained=+linker -Zlinker-features=+lld -Zunstable-options` (though for the time being, the original flags using lld-cc flavors still work).
I purposefully didn't add or document CLI support for `+/-cc`, as it would be a noop right now. I only expect that we'd initially want to stabilize `+/-lld` to begin with.
r? `@petrochenkov`
You had requested that minimal churn would be done to the 230 target specs and this does none yet: the linker features are inferred from the flavor since they're currently isomorphic. We of course expect this to change sooner rather than later.
In the future, we can allow targets to define linker features independently from their flavor, and remove the cc and lld components from the flavors to use the features instead, this actually doesn't need to block stabilization, as we discussed.
(Best reviewed per commit)
Add `/System/iOSSupport` to the library search path on Mac Catalyst
On macOS, `/System/iOSSupport` contains iOS frameworks like UIKit, which is the whole idea of Mac Catalyst.
To link to these, we need to explicitly tell the linker about the support library stubs provided in the macOS SDK under the same path.
Concretely, when building a binary for Mac Catalyst, Xcode passes the following flags to the linker:
```
-iframework /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX14.2.sdk/System/iOSSupport/System/Library/Frameworks
-L/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX14.2.sdk/System/iOSSupport/usr/lib
```
This is not something that can be disabled (it's enabled as soon as you enable `SUPPORTS_MACCATALYST`), so I think it's pretty safe to say that we don't need an option to turn these off.
I've chosen to slightly deviate from what Xcode does and use `-F` instead of `-iframework`, since we don't need to change the header search path, and this way the flags nicely match on all the linkers. From what I could tell by reading Clang sources, there shouldn't be a difference when just running the linker.
CC `@BlackHoleFox,` `@shepmaster` (I accidentally let rustbot choose the reviewer).
While they're isomorphic, we can flip the lld component where
applicable, so that downstream doesn't have to check both the flavor and
the linker features.