The old Makefile-based infrastructure included support for executing
binaries with remote-test-client if configured, but that didn't get
ported to run_make_support as part of the rmake migration.
This PR re-introduces back that support, with the same implementation
(and limitations) of the original Makefile-based support.
Mangle rustc_std_internal_symbols functions
This reduces the risk of issues when using a staticlib or rust dylib compiled with a different rustc version in a rust program. Currently this will either (in the case of staticlib) cause a linker error due to duplicate symbol definitions, or (in the case of rust dylibs) cause rustc_std_internal_symbols functions to be silently overridden. As rust gets more commonly used inside the implementation of libraries consumed with a C interface (like Spidermonkey, Ruby YJIT (curently has to do partial linking of all rust code to hide all symbols not part of the C api), the Rusticl OpenCL implementation in mesa) this is becoming much more of an issue. With this PR the only symbols remaining with an unmangled name are rust_eh_personality (LLVM doesn't allow renaming it) and `__rust_no_alloc_shim_is_unstable`.
Helps mitigate https://github.com/rust-lang/rust/issues/104707
try-job: aarch64-gnu-debug
try-job: aarch64-apple
try-job: x86_64-apple-1
try-job: x86_64-mingw-1
try-job: i686-mingw-1
try-job: x86_64-msvc-1
try-job: i686-msvc-1
try-job: test-various
try-job: armhf-gnu
change config.toml to bootstrap.toml
Currently, both Bootstrap and Cargo uses same name as their configuration file, which can be confusing. This PR is based on a discussion to rename `config.toml` to `bootstrap.toml` for Bootstrap. Closes: https://github.com/rust-lang/rust/issues/126875.
I have split the PR into atomic commits to make it easier to review. Once the changes are finalized, I will squash them. I am particularly concerned about the changes made to modules that are not part of Bootstrap. How should we handle those changes? Should we ping the respective maintainers?
rustdoc-json: Don't also include `#[deprecated]` in `Item::attrs`
Closes#138378
Not sure if this should bump `FORMAT_VERSION` or not. CC `@Enselic` `@LukeMathWalker` `@obi1kenobi`
r? `@GuillaumeGomez,` best reviewed commit-by-commit
Install licenses into `share/doc/rust/licenses`
This changes the path from "licences" to "licenses" for consistency
across the repo, including the usage directly around this line. This is
a US/UK spelling difference, but I believe the US spelling is also more
common in open source in general.
Emit function declarations for functions with `#[linkage="extern_weak"]`
Currently, when declaring an extern weak function in Rust, we use the following syntax:
```rust
unsafe extern "C" {
#[linkage = "extern_weak"]
static FOO: Option<unsafe extern "C" fn() -> ()>;
}
```
This allows runtime-checking the extern weak symbol through the Option.
When emitting LLVM-IR, the Rust compiler currently emits this static as an i8, and a pointer that is initialized with the value of the global i8 and represents the nullabilty e.g.
```
`@FOO` = extern_weak global i8
`@_rust_extern_with_linkage_FOO` = internal global ptr `@FOO`
```
This approach does not work well with CFI, where we need to attach CFI metadata to a concrete function declaration, which was pointed out in https://github.com/rust-lang/rust/issues/115199.
This change switches to emitting a proper function declaration instead of a global i8. This allows CFI to work for extern_weak functions. Example:
```
`@_rust_extern_with_linkage_FOO` = internal global ptr `@FOO`
...
declare !type !61 !type !62 !type !63 !type !64 extern_weak void `@FOO(double)` unnamed_addr #6
```
We keep initializing the Rust internal symbol with the function declaration, which preserves the correct behavior for runtime checking the Option.
r? `@rcvalle`
cc `@jakos-sec`
try-job: test-various
mir_build: Avoid some useless work when visiting "primary" bindings
While looking over `visit_primary_bindings`, I noticed that it does a bunch of extra work to build up a collection of “user-type projections”, even though 2/3 of its call sites don't even use them. Those callers can get the same result via `thir::Pat::walk_always`.
(And it turns out that doing so also avoids creating some redundant user-type entries in MIR for some binding constructs.)
I also noticed that even when the user-type projections *are* used, the process of building them ends up eagerly cloning some nested vectors at every recursion step, even in cases where they won't be used because the current subpattern has no bindings. To avoid this, the visit method now assembles a linked list on the stack containing the information that *would* be needed to create projections, and only creates the concrete projections as needed when a primary binding is encountered.
Some relevant prior PRs:
- #55274
- 0bfe184b1a in #55937
---
There should be no user-visible change in compiler output.
Denote `ControlFlow` as `#[must_use]`
I've repeatedly hit bugs in the compiler due to `ControlFlow` not being marked `#[must_use]`. There seems to be an accepted ACP to make the type `#[must_use]` (https://github.com/rust-lang/libs-team/issues/444), so this PR implements that part of it.
Most of the usages in the compiler that trigger this new warning are "root" usages (calling into an API that uses control-flow internally, but for which the callee doesn't really care) and have been suppressed by `let _ = ...`, but I did legitimately find one instance of a missing `?` and one for a never-used `ControlFlow` value in #137448.
Presumably this needs an FCP too, so I'm opening this and nominating it for T-libs-api.
This PR also touches the tools (incl. rust-analyzer), but if this went into FCP, I'd split those out into separate PRs which can land before this one does.
r? libs-api
`@rustbot` label: T-libs-api I-libs-api-nominated
Stabilize `asm_goto` feature gate
Stabilize `asm_goto` feature (tracked by #119364). The issue will remain open and be updated to track `asm_goto_with_outputs`.
Reference PR: https://github.com/rust-lang/reference/pull/1693
# Stabilization Report
This feature adds a `label <block>` operand type to `asm!`. `<block>` must be a block expression with type unit or never. The address of the block is substituted and the assembly may jump to the block. When block completes the `asm!` block returns and continues execution.
The block starts a new safety context and unsafe operations within must have additional `unsafe`s; the effect of `unsafe` that surrounds `asm!` block is cancelled. See https://github.com/rust-lang/rust/issues/119364#issuecomment-2316037703 and https://github.com/rust-lang/rust/pull/131544.
It's currently forbidden to use `asm_goto` with output operands; that is still unstable under `asm_goto_with_outputs`.
Example:
```rust
unsafe {
asm!(
"jmp {}",
label {
println!("Jumped from asm!");
}
);
}
```
Tests:
- tests/ui/asm/x86_64/goto.rs
- tests/ui/asm/x86_64/goto-block-safe.stderr
- tests/ui/asm/x86_64/bad-options.rs
- tests/codegen/asm/goto.rs
Update Rust Foundation links in Readme
The Rust Foundation links in the Readme are outdated. I'm not sure if this is the best wording to use in place of the media guide, that can be changed if need be.
Improve upvar analysis for deref of child capture
Two fixes to the heuristic I implemented in #123660. As I noted in the code:
> Luckily, if this function is not correct, then the program is not unsound, since we still borrowck and validate the choices made from this function -- the only side-effect is that the user may receive unnecessary borrowck errors.
This indeed fixes unnecessary borrowck errors.
r? oli-obk
---
The heuristic is only valid if we deref a `&T`, not a `&mut T` or `Box<T>`, so make sure to check the type. This fixes:
```rust
struct Foo { precise: i32 }
fn mut_ref_inside_mut(f: &mut Foo) {
let x: impl AsyncFn() = async move || {
let y = &f.precise;
};
}
```
Since the capture from `f` to `&f.precise` needs to be treated as a lending borrow from the parent coroutine-closure to the child coroutine.
---
The heuristic is also valid if *any* deref projection in the child capture's projections is a `&T`, but we were only looking at the last one. This ensures that this function is considered not to be lending:
```rust
struct Foo { precise: i32 }
fn ref_inside_mut(f: &mut &Foo) {
let x: impl Fn() -> _ = async move || {
let y = &f.precise;
};
}
```
(Specifically, checking that `impl Fn() -> _` is satisfied is exercising that the coroutine is not considered to be lending.)
Currently, when declaring an extern weak function in Rust, we use the
following syntax:
```rust
unsafe extern "C" {
#[linkage = "extern_weak"]
static FOO: Option<unsafe extern "C" fn() -> ()>;
}
```
This allows runtime-checking the extern weak symbol through the Option.
When emitting LLVM-IR, the Rust compiler currently emits this static
as an i8, and a pointer that is initialized with the value of the global
i8 and represents the nullabilty e.g.
```
@FOO = extern_weak global i8
@_rust_extern_with_linkage_FOO = internal global ptr @FOO
```
This approach does not work well with CFI, where we need to attach CFI
metadata to a concrete function declaration, which was pointed out in
https://github.com/rust-lang/rust/issues/115199.
This change switches to emitting a proper function declaration instead
of a global i8. This allows CFI to work for extern_weak functions.
We keep initializing the Rust internal symbol with the function
declaration, which preserves the correct behavior for runtime checking
the Option.
Co-authored-by: Jakob Koschel <jakobkoschel@google.com>
`lower_generic_bound_predicate` calls `lower_ident`, and then passes the
lowered ident into `new_named_lifetime`, which lowers it again. This
commit avoids the first lowering. This requires adding a `lower_ident`
call on a path that doesn't involve `new_named_lifetime`.