Improved support of collapse_debuginfo attribute for macros.
Added walk_chain_collapsed function to consider collapse_debuginfo attribute in parent macros in call chain.
Fixed collapse_debuginfo attribute processing for cranelift (there was if/else branches error swap).
cc https://github.com/rust-lang/rust/issues/100758
Remove `DiagCtxt` API duplication
`DiagCtxt` defines the internal API for creating and emitting diagnostics: methods like `struct_err`, `struct_span_warn`, `note`, `create_fatal`, `emit_bug`. There are over 50 methods.
Some of these methods are then duplicated across several other types: `Session`, `ParseSess`, `Parser`, `ExtCtxt`, and `MirBorrowckCtxt`. `Session` duplicates the most, though half the ones it does are unused. Each duplicated method just calls forward to the corresponding method in `DiagCtxt`. So this duplication exists to (in the best case) shorten chains like `ecx.tcx.sess.parse_sess.dcx.emit_err()` to `ecx.emit_err()`.
This API duplication is ugly and has been bugging me for a while. And it's inconsistent: there's no real logic about which methods are duplicated, and the use of `#[rustc_lint_diagnostic]` and `#[track_caller]` attributes vary across the duplicates.
This PR removes the duplicated API methods and makes all diagnostic creation and emission go through `DiagCtxt`. It also adds `dcx` getter methods to several types to shorten chains. This approach scales *much* better than API duplication; indeed, the PR adds `dcx()` to numerous types that didn't have API duplication: `TyCtxt`, `LoweringCtxt`, `ConstCx`, `FnCtxt`, `TypeErrCtxt`, `InferCtxt`, `CrateLoader`, `CheckAttrVisitor`, and `Resolver`. These result in a lot of changes from `foo.tcx.sess.emit_err()` to `foo.dcx().emit_err()`. (You could do this with more types, but it gets into diminishing returns territory for types that don't emit many diagnostics.)
After all these changes, some call sites are more verbose, some are less verbose, and many are the same. The total number of lines is reduced, mostly because of the removed API duplication. And consistency is increased, because calls to `emit_err` and friends are always preceded with `.dcx()` or `.dcx`.
r? `@compiler-errors`
codegen: panic when trying to compute size/align of extern type
The alignment is also computed when accessing a field of extern type at non-zero offset, so we also panic in that case.
Previously `size_of_val` worked because the code path there assumed that "thin pointer" means "sized". But that's not true any more with extern types. The returned size and align are just blatantly wrong, so it seems better to panic than returning wrong results. We use a non-unwinding panic since code probably does not expect size_of_val to panic.
Add lint against ambiguous wide pointer comparisons
This PR is the resolution of https://github.com/rust-lang/rust/issues/106447 decided in https://github.com/rust-lang/rust/issues/117717 by T-lang.
## `ambiguous_wide_pointer_comparisons`
*warn-by-default*
The `ambiguous_wide_pointer_comparisons` lint checks comparison of `*const/*mut ?Sized` as the operands.
### Example
```rust
let ab = (A, B);
let a = &ab.0 as *const dyn T;
let b = &ab.1 as *const dyn T;
let _ = a == b;
```
### Explanation
The comparison includes metadata which may not be expected.
-------
This PR also drops `clippy::vtable_address_comparisons` which is superseded by this one.
~~One thing: is the current naming right? `invalid` seems a bit too much.~~
Fixes https://github.com/rust-lang/rust/issues/117717
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
compile-time evaluation: detect writes through immutable pointers
This has two motivations:
- it unblocks https://github.com/rust-lang/rust/pull/116745 (and therefore takes a big step towards `const_mut_refs` stabilization), because we can now detect if the memory that we find in `const` can be interned as "immutable"
- it would detect the UB that was uncovered in https://github.com/rust-lang/rust/pull/117905, which was caused by accidental stabilization of `copy` functions in `const` that can only be called with UB
When UB is detected, we emit a future-compat warn-by-default lint. This is not a breaking change, so completely in line with [the const-UB RFC](https://rust-lang.github.io/rfcs/3016-const-ub.html), meaning we don't need t-lang FCP here. I made the lint immediately show up for dependencies since it is nearly impossible to even trigger this lint without `const_mut_refs` -- the accidentally stabilized `copy` functions are the only way this can happen, so the crates that popped up in #117905 are the only causes of such UB (in the code that crater covers), and the three cases of UB that we know about have all been fixed in their respective crates already.
The way this is implemented is by making use of the fact that our interpreter is already generic over the notion of provenance. For CTFE we now use the new `CtfeProvenance` type which is conceptually an `AllocId` plus a boolean `immutable` flag (but packed for a more efficient representation). This means we can mark a pointer as immutable when it is created as a shared reference. The flag will be propagated to all pointers derived from this one. We can then check the immutable flag on each write to reject writes through immutable pointers.
I just hope perf works out.
Currently, `Handler::fatal` returns `FatalError`. But `Session::fatal`
returns `!`, because it calls `Handler::fatal` and then calls `raise` on
the result. This inconsistency is unfortunate.
This commit changes `Handler::fatal` to do the `raise` itself, changing
its return type to `!`. This is safe because there are only two calls to
`Handler::fatal`, one in `rustc_session` and one in
`rustc_codegen_cranelift`, and they both call `raise` on the result.
`HandlerInner::fatal` still returns `FatalError`, so I renamed it
`fatal_no_raise` to emphasise the return type difference.
Subtree sync for rustc_codegen_cranelift
The main highlights this time are implementing a bunch of new vendor intrinsics and fixing some existing ones. And fixing polymorphization for coroutines.
r? `@ghost`
`@rustbot` label +A-codegen +A-cranelift +T-compiler
There were three issues previously:
* The self argument was pinned, despite Iterator::next taking an
unpinned mutable reference.
* A resume argument was passed, despite Iterator::next not having one.
* The return value was CoroutineState<Item, ()> rather than Option<Item>
While these things just so happened to work with the LLVM backend,
cg_clif does much stricter checks when trying to assign a value to a
place. In addition it can't handle the mismatch between the amount of
arguments specified by the FnAbi and the FnSig.
They've been deprecated for four years.
This commit includes the following changes.
- It eliminates the `rustc_plugin_impl` crate.
- It changes the language used for lints in
`compiler/rustc_driver_impl/src/lib.rs` and
`compiler/rustc_lint/src/context.rs`. External lints are now called
"loaded" lints, rather than "plugins" to avoid confusion with the old
plugins. This only has a tiny effect on the output of `-W help`.
- E0457 and E0498 are no longer used.
- E0463 is narrowed, now only relating to unfound crates, not plugins.
- The `plugin` feature was moved from "active" to "removed".
- It removes the entire plugins chapter from the unstable book.
- It removes quite a few tests, mostly all of those in
`tests/ui-fulldeps/plugin/`.
Closes#29597.
share some track_caller logic between interpret and codegen
Also move the code that implements the track_caller intrinsics out of the core interpreter engine -- it's just a helper creating a const-allocation, doesn't need to be part of the interpreter core.
Distribute cg_clif as rustup component on the nightly channel
This makes it possible to use cg_clif using:
```bash
$ rustup component add rustc-codegen-cranelift-preview --toolchain nightly
$ RUSTFLAGS="-Zcodegen-backend=cranelift" cargo +nightly build
```
cc https://github.com/rust-lang/compiler-team/issues/405.
r? `@Mark-Simulacrum`
Bump stdarch submodule and remove special handling for LLVM intrinsics that are no longer needed
Bumps stdarch to pull https://github.com/rust-lang/stdarch/pull/1477, which reimplemented some functions with portable SIMD intrinsics instead of arch specific LLVM intrinsics.
Handling of those LLVM intrinsics is removed from cranelift codegen and miri.
cc `@RalfJung` `@bjorn3`
This ensures that cg_clif can be built for targets that aren't natively
supported by Cranelift. It will not be possible to compile for the host
in this case, but cross-compilation will still be possible.
We won't distribute cg_clif as rustup component for any targets that
aren't natively supported by Cranelift, but will still build it if
codegen-backends lists "cranelift".
bootstrap major change detection implementation
The use of `changelog-seen` and `bootstrap/CHANGELOG.md` has not been functional in any way for many years. We often do major/breaking changes but never update the changelog file or the `changelog-seen`. This is an alternative method for tracking major or breaking changes and informing developers when such changes occur.
Example output when bootstrap detects a major change:
![image](https://github.com/rust-lang/rust/assets/39852038/ee802dfa-a02b-488b-a433-f853ce079b8a)
Prototype using const generic for simd_shuffle IDX array
cc https://github.com/rust-lang/rust/issues/85229
r? `@workingjubilee` on the design
TLDR: there is now a `fn simd_shuffle_generic<T, U, const IDX: &'static [u32]>(x: T, y: T) -> U;` intrinsic that allows replacing
```rust
simd_shuffle(a, b, const { stuff })
```
with
```rust
simd_shuffle_generic::<_, _, {&stuff}>(a, b)
```
which makes the compiler implementations much simpler, if we manage to at some point eliminate `simd_shuffle`.
There are some issues with this today though (can't do math without bubbling it up in the generic arguments). With this change, we can start porting the simple cases and get better data on the others.
rename mir::Constant -> mir::ConstOperand, mir::ConstKind -> mir::Const
Also, be more consistent with the `to/eval_bits` methods... we had some that take a type and some that take a size, and then sometimes the one that takes a type is called `bits_for_ty`.
Turns out that `ty::Const`/`mir::ConstKind` carry their type with them, so we don't need to even pass the type to those `eval_bits` functions at all.
However this is not properly consistent yet: in `ty` we have most of the methods on `ty::Const`, but in `mir` we have them on `mir::ConstKind`. And indeed those two types are the ones that correspond to each other. So `mir::ConstantKind` should actually be renamed to `mir::Const`. But what to do with `mir::Constant`? It carries around a span, that's really more like a constant operand that appears as a MIR operand... it's more suited for `syntax.rs` than `consts.rs`, but the bigger question is, which name should it get if we want to align the `mir` and `ty` types? `ConstOperand`? `ConstOp`? `Literal`? It's not a literal but it has a field called `literal` so it would at least be consistently wrong-ish...
``@oli-obk`` any ideas?
move required_consts check to general post-mono-check function
This factors some code that is common between the interpreter and the codegen backends into shared helper functions. Also as a side-effect the interpreter now uses the same `eval` functions as everyone else to get the evaluated MIR constants.
Also this is in preparation for another post-mono check that will be needed for (the current hackfix for) https://github.com/rust-lang/rust/issues/115709: ensuring that all locals are dynamically sized.
I didn't expect this to change diagnostics, but it's just cycle errors that change.
r? `@oli-obk`
Remove `verbose_generic_activity_with_arg`
This removes `verbose_generic_activity_with_arg` and changes users to `generic_activity_with_arg`. This keeps the output of `-Z time` readable while these repeated events are still available with the self profiling mechanism.
Use `Freeze` for `SourceFile`
This uses the `Freeze` type in `SourceFile` to let accessing `external_src` and `lines` be lock-free.
Behavior of `add_external_src` is changed to set `ExternalSourceKind::AbsentErr` on a hash mismatch which matches the documentation. `ExternalSourceKind::Unneeded` was removed as it's unused.
Based on https://github.com/rust-lang/rust/pull/115401.
Sync rustc_codegen_cranelift
Not much changed this time. Mostly doing this sync to make it easier to run the entire test suite on the in-tree version.
r? `@ghost`
`@rustbot` label +A-codegen +A-cranelift +T-compiler
Update stdarch submodule and remove special handling in cranelift codegen for some AVX and SSE2 LLVM intrinsics
https://github.com/rust-lang/stdarch/pull/1463 reimplemented some x86 intrinsics to avoid using some x86-specific LLVM intrinsics:
* Store unaligned (`_mm*_storeu_*`) use `<*mut _>::write_unaligned` instead of `llvm.x86.*.storeu.*`.
* Shift by immediate (`_mm*_s{ll,rl,ra}i_epi*`) use `if` (srl, sll) or `min` (sra) to simulate the behaviour when the RHS is out of range. RHS is constant, so the `if`/`min` will be optimized away.
This PR updates the stdarch submodule to pull these changes and removes special handling for those LLVM intrinsics from cranelift codegen. I left gcc codegen untouched because there are some autogenerated lists.
As experimentation in 115242 has shown looks better than `coldcc`.
And *don't* use a different convention for cold on Windows, because that actually ends up making things worse.
cc tracking issue 97544
Rollup of 6 pull requests
Successful merges:
- #110435 (rustdoc-json: Add test for field ordering.)
- #111891 (feat: `riscv-interrupt-{m,s}` calling conventions)
- #114377 (test_get_dbpath_for_term(): handle non-utf8 paths (fix FIXME))
- #114469 (Detect method not found on arbitrary self type with different mutability)
- #114587 (Convert Const to Allocation in smir)
- #114670 (Don't use `type_of` to determine if item has intrinsic shim)
Failed merges:
- #114599 (Add impl trait declarations to SMIR)
r? `@ghost`
`@rustbot` modify labels: rollup
Similar to prior support added for the mips430, avr, and x86 targets
this change implements the rough equivalent of clang's
[`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling
e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking
visibility into any non-assembly body of the interrupt handler, have to
be very conservative and save the [entire CPU state to the stack
frame][full-frame-save]. By instead asking LLVM to only save the
registers that it uses, we defer the decision to the tool with the best
context: it can more accurately account for the cost of spills if it
knows that every additional register used is already at the cost of an
implicit spill.
At the LLVM level, this is apparently [implemented by] marking every
register as "[callee-save]," matching the semantics of an interrupt
handler nicely (it has to leave the CPU state just as it found it after
its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes
no attempt to e.g. save the state in a user-accessible stack frame. For
a full discussion of those challenges and tradeoffs, please refer to
[the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM
does not expose the "all-saved" function flavor as a calling convention
directly, instead preferring to use an attribute that allows for
differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be
aware of the differences between machine-mode and supervisor-mode
interrupts as to why no `riscv-interrupt` calling convention is exposed
through rustc, and similarly for why `riscv-interrupt-u` makes no
appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
Add a new `compare_bytes` intrinsic instead of calling `memcmp` directly
As discussed in #113435, this lets the backends be the place that can have the "don't call the function if n == 0" logic, if it's needed for the target. (I didn't actually *add* those checks, though, since as I understood it we didn't actually need them on known targets?)
Doing this also let me make it `const` (unstable), which I don't think `extern "C" fn memcmp` can be.
cc `@RalfJung` `@Amanieu`
Resurrect: rustc_target: Add alignment to indirectly-passed by-value types, correcting the alignment of byval on x86 in the process.
Same as #111551, which I [accidentally closed](https://github.com/rust-lang/rust/pull/111551#issuecomment-1571222612) :/
---
This resurrects PR #103830, which has sat idle for a while.
Beyond #103830, this also:
- fixes byval alignment for types containing vectors on Darwin (see `tests/codegen/align-byval-vector.rs`)
- fixes byval alignment for overaligned types on x86 Windows (see `tests/codegen/align-byval.rs`)
- fixes ABI for types with 128bit requested alignment on ARM64 Linux (see `tests/codegen/aarch64-struct-align-128.rs`)
r? `@nikic`
---
`@pcwalton's` original PR description is reproduced below:
Commit 88e4d2c from five years ago removed
support for alignment on indirectly-passed arguments because of problems with
the `i686-pc-windows-msvc` target. Unfortunately, the `memcpy` optimizations I
recently added to LLVM 16 depend on this to forward `memcpy`s. This commit
attempts to fix the problems with `byval` parameters on that target and now
correctly adds the `align` attribute.
The problem is summarized in [this comment] by `@eddyb.` Briefly, 32-bit x86 has
special alignment rules for `byval` parameters: for the most part, their
alignment is forced to 4. This is not well-documented anywhere but in the Clang
source. I looked at the logic in Clang `TargetInfo.cpp` and tried to replicate
it here. The relevant methods in that file are
`X86_32ABIInfo::getIndirectResult()` and
`X86_32ABIInfo::getTypeStackAlignInBytes()`. The `align` parameter attribute
for `byval` parameters in LLVM must match the platform ABI, or miscompilations
will occur. Note that this doesn't use the approach suggested by eddyb, because
I felt it was overkill to store the alignment in `on_stack` when special
handling is really only needed for 32-bit x86.
As a side effect, this should fix#80127, because it will make the `align`
parameter attribute for `byval` parameters match the platform ABI on LLVM
x86-64.
[this comment]: #80822 (comment)
It makes it sound like the `ExprKind` and `Rvalue` are supposed to represent all pointer related
casts, when in reality their just used to share a some enum variants. Make it clear there these
are only coercion to make it clear why only some pointer related "casts" are in the enum.
`lookup_debug_loc` calls `SourceMap::lookup_line`, which does a binary
search over the files, and then a binary search over the lines within
the found file. It then calls `SourceFile::line_begin_pos`, which redoes
the binary search over the lines within the found file.
This commit removes the second binary search over the lines, instead
getting the line starting pos directly using the result of the first
binary search over the lines.
(And likewise for `get_span_loc`, in the cranelift backend.)
Ignore `core`, `alloc` and `test` tests that require unwinding on `-C panic=abort`
Some of the tests for `core` and `alloc` require unwinding through their use of `catch_unwind`. These tests fail when testing using `-C panic=abort` (in my case through a target without unwinding support, and `-Z panic-abort-tests`), while they should be ignored as they don't indicate a failure.
This PR marks all of these tests with this attribute:
```rust
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
```
I'm not aware of a way to test this on rust-lang/rust's CI, as we don't test any target with `-C panic=abort`, but I tested this locally on a Ferrocene target and it does indeed make the test suite pass.
`EarlyBinder::new` -> `EarlyBinder::bind`
for consistency with `Binder::bind`. it may make sense to also add `EarlyBinder::dummy` in places where we know that no parameters exist, but I left that out of this PR.
r? `@jackh726` `@kylematsuda`
Add build instructions for cranelift backend as part of Rust repo
All other instructions assume that user works with separate repository than Rust compiler repository. When one follows default instructions, cranelift codegen tries to use different sys-root and compiler internal crates which leads to compiler errors when building it.
I needed to do all this steps while adding new intrinsic to rustc.
r? bjorn3
All other instructions assume that user works with separate repository than Rust compiler repository. When one follows default instructions, cranelift codegen tries to use different sys-root and compiler internal crates which leads to compiler errors when building it.
I needed to do all this steps while adding new intrinsic to rustc.
Support #[global_allocator] without the allocator shim
This makes it possible to use liballoc/libstd in combination with `--emit obj` if you use `#[global_allocator]`. This is what rust-for-linux uses right now and systemd may use in the future. Currently they have to depend on the exact implementation of the allocator shim to create one themself as `--emit obj` doesn't create an allocator shim.
Note that currently the allocator shim also defines the oom error handler, which is normally required too. Once `#![feature(default_alloc_error_handler)]` becomes the only option, this can be avoided. In addition when using only fallible allocator methods and either `--cfg no_global_oom_handling` for liballoc (like rust-for-linux) or `--gc-sections` no references to the oom error handler will exist.
To avoid this feature being insta-stable, you will have to define `__rust_no_alloc_shim_is_unstable` to avoid linker errors.
(Labeling this with both T-compiler and T-lang as it originally involved both an implementation detail and had an insta-stable user facing change. As noted above, the `__rust_no_alloc_shim_is_unstable` symbol requirement should prevent unintended dependence on this unstable feature.)
Error message all end up passing into a function as an `impl
Into<{D,Subd}iagnosticMessage>`. If an error message is creatd as
`&format("...")` that means we allocate a string (in the `format!`
call), then take a reference, and then clone (allocating again) the
reference to produce the `{D,Subd}iagnosticMessage`, which is silly.
This commit removes the leading `&` from a lot of these cases. This
means the original `String` is moved into the
`{D,Subd}iagnosticMessage`, avoiding the double allocations. This
requires changing some function argument types from `&str` to `String`
(when all arguments are `String`) or `impl
Into<{D,Subd}iagnosticMessage>` (when some arguments are `String` and
some are `&str`).
You will need to add the following as replacement for the old __rust_*
definitions when not using the alloc shim.
#[no_mangle]
static __rust_no_alloc_shim_is_unstable: u8 = 0;
This makes it possible to use liballoc/libstd in combination with
`--emit obj` if you use `#[global_allocator]`. Making it work for the
default libstd allocator would require weak functions, which are not
well supported on all systems.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
They're semantically the same, so this means the backends don't need to handle the intrinsic and means fewer MIR basic blocks in pointer arithmetic code.
Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
Add offset_of! macro (RFC 3308)
Implements https://github.com/rust-lang/rfcs/pull/3308 (tracking issue #106655) by adding the built in macro `core::mem::offset_of`. Two of the future possibilities are also implemented:
* Nested field accesses (without array indexing)
* DST support (for `Sized` fields)
I wrote this a few months ago, before the RFC merged. Now that it's merged, I decided to rebase and finish it.
cc `@thomcc` (RFC author)
Unify terminology used in unwind action and terminator, and reflect
the fact that a nounwind panic is triggered instead of an immediate
abort is triggered for this terminator.
Insert alignment checks for pointer dereferences when debug assertions are enabled
Closes https://github.com/rust-lang/rust/issues/54915
- [x] Jake tells me this sounds like a place to use `MirPatch`, but I can't figure out how to insert a new basic block with a new terminator in the middle of an existing basic block, using `MirPatch`. (if nobody else backs up this point I'm checking this as "not actually a good idea" because the code looks pretty clean to me after rearranging it a bit)
- [x] Using `CastKind::PointerExposeAddress` is definitely wrong, we don't want to expose. Calling a function to get the pointer address seems quite excessive. ~I'll see if I can add a new `CastKind`.~ `CastKind::Transmute` to the rescue!
- [x] Implement a more helpful panic message like slice bounds checking.
r? `@oli-obk`
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
Move `mir::Field` → `abi::FieldIdx`
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big-and-bitrotty already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.
Use Rayon's TLV directly
This accesses Rayon's `TLV` thread local directly avoiding wrapper functions. This makes rustc work with https://github.com/rust-lang/rustc-rayon/pull/10.
r? `@cuviper`
Since structs are always `VariantIdx(0)`, there's a bunch of files where the only reason they had `VariantIdx` or `vec::Idx` imported at all was to get the first variant.
So this uses a constant for that, and adds some doc-comments to `VariantIdx` while I'm there, since it doesn't have any today.
Updates `interpret`, `codegen_ssa`, and `codegen_cranelift` to consume the new cast instead of the intrinsic.
Includes `CastTransmute` for custom MIR building, to be able to test the extra UB.
Implement checked Shl/Shr at MIR building.
This does not require any special handling by codegen backends,
as the overflow behaviour is entirely determined by the rhs (shift amount).
This allows MIR ConstProp to remove the overflow check for constant shifts.
~There is an existing different behaviour between cg_llvm and cg_clif (cc `@bjorn3).`
I took cg_llvm's one as reference: overflow if `rhs < 0 || rhs > number_of_bits_in_lhs_ty`.~
EDIT: `cg_llvm` and `cg_clif` implement the overflow check differently. This PR uses `cg_llvm`'s implementation based on a `BitAnd` instead of `cg_clif`'s one based on an unsigned comparison.