use c literals in compiler and library
Use c literals #108801 in compiler and library
currently blocked on:
* <strike>rustfmt: don't know how to format c literals</strike> nope, nightly one works.
* <strike>bootstrap</strike>
r? `@ghost`
`@rustbot` blocked
These tend to have special handling in a bunch of places anyway, so the variant helps remember that. And I think it's easier to grok than non-Scalar Aggregates sometimes being `Immediates` (like I got wrong and caused 109992). As a minor bonus, it means we don't need to generate poison LLVM values for them to pass around in `OperandValue::Immediate`s.
Optimize scalar and scalar pair representations loaded from ByRef in llvm
in https://github.com/rust-lang/rust/pull/105653 I noticed that we were generating suboptimal LLVM IR if we had a `ConstValue::ByRef` that could be represented by a `ScalarPair`. Before https://github.com/rust-lang/rust/pull/105653 this is probably rare, but after it, every slice will go down this suboptimal code path that requires LLVM to untangle a bunch of indirections and translate static allocations that are only used once to read a scalar pair from.
Adds support for LLVM [SafeStack] which provides backward edge control
flow protection by separating the stack into two parts: data which is
only accessed in provable safe ways is allocated on the normal stack
(the "safe stack") and all other data is placed in a separate allocation
(the "unsafe stack").
SafeStack support is enabled by passing `-Zsanitizer=safestack`.
[SafeStack]: https://clang.llvm.org/docs/SafeStack.html
Support #[global_allocator] without the allocator shim
This makes it possible to use liballoc/libstd in combination with `--emit obj` if you use `#[global_allocator]`. This is what rust-for-linux uses right now and systemd may use in the future. Currently they have to depend on the exact implementation of the allocator shim to create one themself as `--emit obj` doesn't create an allocator shim.
Note that currently the allocator shim also defines the oom error handler, which is normally required too. Once `#![feature(default_alloc_error_handler)]` becomes the only option, this can be avoided. In addition when using only fallible allocator methods and either `--cfg no_global_oom_handling` for liballoc (like rust-for-linux) or `--gc-sections` no references to the oom error handler will exist.
To avoid this feature being insta-stable, you will have to define `__rust_no_alloc_shim_is_unstable` to avoid linker errors.
(Labeling this with both T-compiler and T-lang as it originally involved both an implementation detail and had an insta-stable user facing change. As noted above, the `__rust_no_alloc_shim_is_unstable` symbol requirement should prevent unintended dependence on this unstable feature.)
Rather than returning an array of features from to_llvm_features, return a structure that contains
the dependencies. This also contains metadata on how the features depend on each other to allow for
the correct enabling and disabling.
Some features that are tied together only make sense to be folded
together when enabling the feature. For example on AArch64 sve and
neon are tied together, however it doesn't make sense to disable neon
when disabling sve.
In #91608 the fp-armv8 feature was removed as it's tied to the neon
feature. However disabling neon didn't actually disable the use of
floating point registers and instructions, for this `-fp-armv8` is
required.
Fix dependency tracking for debugger visualizers
This PR fixes dependency tracking for debugger visualizer files by changing the `debugger_visualizers` query to an `eval_always` query that scans the AST while it is still available. This way the set of visualizer files is already available when dep-info is emitted. Since the query is turned into an `eval_always` query, dependency tracking will now reliably detect changes to the visualizer script files themselves.
TODO:
- [x] perf.rlo
- [x] Needs a bit more documentation in some places
- [x] Needs regression test for the incr. comp. case
Fixes https://github.com/rust-lang/rust/issues/111226
Fixes https://github.com/rust-lang/rust/issues/111227
Fixes https://github.com/rust-lang/rust/issues/111295
r? `@wesleywiser`
cc `@gibbyfree`
Only depend on CFG_VERSION in rustc_interface
This avoids having to rebuild the whole compiler on each commit when `omit-git-hash = false`.
cc https://github.com/rust-lang/rust/issues/76720 - this won't fix it, and I'm not suggesting we turn this on by default, but it will make it less painful for people who do have `omit-git-hash` on as a workaround.
Remove the ThinLTO CU hack
This reverts #46722, commit e0ab5d5feb.
Since #111167, commit 10b69dde3f, we are
generating DWARF subprograms in a way that is meant to be more compatible
with LLVM's expectations, so hopefully we don't need this workaround
rewriting CUs anymore.
Remove misleading target feature aliases
Fixes#100752. This is a follow up to #103750. These aliases could not be completely removed until rust-lang/stdarch#1355 landed.
cc `@Amanieu`
CFI: Fix SIGILL reached via trait objects
Fix#106547 by transforming the concrete self into a reference to a trait object before emitting type metadata identifiers for trait methods.
You will need to add the following as replacement for the old __rust_*
definitions when not using the alloc shim.
#[no_mangle]
static __rust_no_alloc_shim_is_unstable: u8 = 0;
This makes it possible to use liballoc/libstd in combination with
`--emit obj` if you use `#[global_allocator]`. Making it work for the
default libstd allocator would require weak functions, which are not
well supported on all systems.
This reverts #46722, commit e0ab5d5feb.
Since #111167, commit 10b69dde3f, we are
generating DWARF subprograms in a way that is meant to be more compatible
with LLVM's expectations, so hopefully we don't need this workaround
rewriting CUs anymore.
Mark s390x condition code register as clobbered in inline assembly
Various s390x instructions (arithmetic operations, logical operations, comparisons, etc. see also "Condition Codes" section in [z/Architecture Reference Summary](https://www.ibm.com/support/pages/zarchitecture-reference-summary)) modify condition code register `cc`, but AFAIK there is currently no way to mark it as clobbered in `asm!`.
`cc` register definition in LLVM:
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L320
This PR also updates asm_experimental_arch docs in the unstable-book to mention s390x registers.
cc `@uweigand`
r? `@Amanieu`
Output LLVM optimization remark kind in `-Cremark` output
Since https://github.com/rust-lang/rust/pull/90833, the optimization remark kind has not been printed. Therefore it wasn't possible to easily determine from the log (in a programmatic way) which remark kind was produced. I think that the most interesting remarks are the missed ones, which can lead users to some code optimization.
Maybe we could also change the format closer to the "old" one:
```
note: optimization remark for tailcallelim at /checkout/src/libcore/num/mod.rs:1:0: marked this call a tail call candidate
```
I wanted to programatically parse the remarks so that they could work e.g. with https://github.com/OfekShilon/optview2. However, now that I think about it, probably the proper solution is to tell rustc to output them to YAML and then use the YAML as input for the opt remark visualization tools. The flag for enabling this does not seem to work though (https://github.com/rust-lang/rust/issues/96705#issuecomment-1117632322).
Still I think that it's good to output the remark kind anyway, it's an important piece of information.
r? ```@tmiasko```
debuginfo: split method declaration and definition
When we're adding a method to a type DIE, we only want a DW_AT_declaration
there, because LLVM LTO can't unify type definitions when a child DIE is a
full subprogram definition. Now the subprogram definition gets added at the
CU level with a specification link back to the abstract declaration.
Both GCC and Clang write debuginfo this way for C++ class methods.
Fixes#109730.
Fixes#109934.
Stabilize raw-dylib, link_ordinal, import_name_type and -Cdlltool
This stabilizes the `raw-dylib` feature (#58713) for all architectures (i.e., `x86` as it is already stable for all other architectures).
Changes:
* Permit the use of the `raw-dylib` link kind for x86, the `link_ordinal` attribute and the `import_name_type` key for the `link` attribute.
* Mark the `raw_dylib` feature as stable.
* Stabilized the `-Zdlltool` argument as `-Cdlltool`.
* Note the path to `dlltool` if invoking it failed (we don't need to do this if `dlltool` returns an error since it prints its path in the error message).
* Adds tests for `-Cdlltool`.
* Adds tests for being unable to find the dlltool executable, and dlltool failing.
* Fixes a bug where we were checking the exit code of dlltool to see if it failed, but dlltool always returns 0 (indicating success), so instead we need to check if anything was written to `stderr`.
NOTE: As previously noted (https://github.com/rust-lang/rust/pull/104218#issuecomment-1315895618) using dlltool within rustc is temporary, but this is not the first time that Rust has added a temporary tool use and argument: https://github.com/rust-lang/rust/pull/104218#issuecomment-1318720482
Big thanks to ``````@tbu-`````` for the first version of this PR (#104218)
Add cross-language LLVM CFI support to the Rust compiler
This PR adds cross-language LLVM Control Flow Integrity (CFI) support to the Rust compiler by adding the `-Zsanitizer-cfi-normalize-integers` option to be used with Clang `-fsanitize-cfi-icall-normalize-integers` for normalizing integer types (see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space). For more information about LLVM CFI and cross-language LLVM CFI support for the Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and -Zsanitizer-cfi-normalize-integers, and requires proper (i.e., non-rustc) LTO (i.e., -Clinker-plugin-lto).
Thank you again, ``@bjorn3,`` ``@nikic,`` ``@samitolvanen,`` and the Rust community for all the help!
When we're adding a method to a type DIE, we only want a DW_AT_declaration
there, because LLVM LTO can't unify type definitions when a child DIE is a
full subprogram definition. Now the subprogram definition gets added at the
CU level with a specification link back to the abstract declaration.
This commit adds cross-language LLVM Control Flow Integrity (CFI)
support to the Rust compiler by adding the
`-Zsanitizer-cfi-normalize-integers` option to be used with Clang
`-fsanitize-cfi-icall-normalize-integers` for normalizing integer types
(see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust
-compiled code "mixed binaries" (i.e., for when C or C++ and Rust
-compiled code share the same virtual address space). For more
information about LLVM CFI and cross-language LLVM CFI support for the
Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and
-Zsanitizer-cfi-normalize-integers, and requires proper (i.e.,
non-rustc) LTO (i.e., -Clinker-plugin-lto).
Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
Support AIX-style archive type
Reading facility of AIX big archive has been supported by `object` since 0.30.0.
Writing facility of AIX big archive has already been supported by `ar_archive_writer`, but we need to bump the version to support the new archive type enum.
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Encode hashes as bytes, not varint
In a few places, we store hashes as `u64` or `u128` and then apply `derive(Decodable, Encodable)` to the enclosing struct/enum. It is more efficient to encode hashes directly than try to apply some varint encoding. This PR adds two new types `Hash64` and `Hash128` which are produced by `StableHasher` and replace every use of storing a `u64` or `u128` that represents a hash.
Distribution of the byte lengths of leb128 encodings, from `x build --stage 2` with `incremental = true`
Before:
```
( 1) 373418203 (53.7%, 53.7%): 1
( 2) 196240113 (28.2%, 81.9%): 3
( 3) 108157958 (15.6%, 97.5%): 2
( 4) 17213120 ( 2.5%, 99.9%): 4
( 5) 223614 ( 0.0%,100.0%): 9
( 6) 216262 ( 0.0%,100.0%): 10
( 7) 15447 ( 0.0%,100.0%): 5
( 8) 3633 ( 0.0%,100.0%): 19
( 9) 3030 ( 0.0%,100.0%): 8
( 10) 1167 ( 0.0%,100.0%): 18
( 11) 1032 ( 0.0%,100.0%): 7
( 12) 1003 ( 0.0%,100.0%): 6
( 13) 10 ( 0.0%,100.0%): 16
( 14) 10 ( 0.0%,100.0%): 17
( 15) 5 ( 0.0%,100.0%): 12
( 16) 4 ( 0.0%,100.0%): 14
```
After:
```
( 1) 372939136 (53.7%, 53.7%): 1
( 2) 196240140 (28.3%, 82.0%): 3
( 3) 108014969 (15.6%, 97.5%): 2
( 4) 17192375 ( 2.5%,100.0%): 4
( 5) 435 ( 0.0%,100.0%): 5
( 6) 83 ( 0.0%,100.0%): 18
( 7) 79 ( 0.0%,100.0%): 10
( 8) 50 ( 0.0%,100.0%): 9
( 9) 6 ( 0.0%,100.0%): 19
```
The remaining 9 or 10 and 18 or 19 are `u64` and `u128` respectively that have the high bits set. As far as I can tell these are coming primarily from `SwitchTargets`.
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
`-Cdebuginfo=1` was never line tables only and
can't be due to backwards compatibility issues.
This was clarified and an option for line tables only
was added. Additionally an option for line info
directives only was added, which is well needed for
some targets. The debug info options should now
behave the same as clang's debug info options.
Update `ty::VariantDef` to use `IndexVec<FieldIdx, FieldDef>`
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
Partial stabilization of `once_cell`
This PR aims to stabilize a portion of the `once_cell` feature:
- `core::cell::OnceCell`
- `std::cell::OnceCell` (re-export of the above)
- `std::sync::OnceLock`
This will leave `LazyCell` and `LazyLock` unstabilized, which have been moved to the `lazy_cell` feature flag.
Tracking issue: https://github.com/rust-lang/rust/issues/74465 (does not fully close, but it may make sense to move to a new issue)
Future steps for separate PRs:
- ~~Add `#[inline]` to many methods~~ #105651
- Update cranelift usage of the `once_cell` crate
- Update rust-analyzer usage of the `once_cell` crate
- Update error messages discussing once_cell
## To be stabilized API summary
```rust
// core::cell (in core/cell/once.rs)
pub struct OnceCell<T> { .. }
impl<T> OnceCell<T> {
pub const fn new() -> OnceCell<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceCell<T>;
impl<T: Debug> Debug for OnceCell<T>
impl<T> Default for OnceCell<T>;
impl<T> From<T> for OnceCell<T>;
impl<T: PartialEq> PartialEq for OnceCell<T>;
impl<T: Eq> Eq for OnceCell<T>;
```
```rust
// std::sync (in std/sync/once_lock.rs)
impl<T> OnceLock<T> {
pub const fn new() -> OnceLock<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceLock<T>;
impl<T: Debug> Debug for OnceLock<T>;
impl<T> Default for OnceLock<T>;
impl<#[may_dangle] T> Drop for OnceLock<T>;
impl<T> From<T> for OnceLock<T>;
impl<T: PartialEq> PartialEq for OnceLock<T>
impl<T: Eq> Eq for OnceLock<T>;
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceLock<T>;
unsafe impl<T: Send> Send for OnceLock<T>;
unsafe impl<T: Sync + Send> Sync for OnceLock<T>;
impl<T: UnwindSafe> UnwindSafe for OnceLock<T>;
```
No longer planned as part of this PR, and moved to the `rust_cell_try` feature gate:
```rust
impl<T> OnceCell<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
impl<T> OnceLock<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
```
I am new to this process so would appreciate mentorship wherever needed.
Move `mir::Field` → `abi::FieldIdx`
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.
Lint against escape sequences in Fluent files
Fixes#109686 by checking for `\n`, `\"` and `\'` in Fluent files. It might be useful to have a way to opt out of this check, but all messages with violations currently do seem to be incorrect.
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big-and-bitrotty already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.
Update ar_archive_writer to 0.1.3
This updates object to 0.30 and fixes a bug where the symbol table would be omitted for archives where there are object files yet none that export any symbol. This bug could lead to linker errors for crates like rustc_std_workspace_core which don't contain any code of their own but exist solely for their dependencies. This is likely the cause of the linker issues I was experiencing on Webassembly. It has been shown to cause issues on other platforms too.
cc rust-lang/ar_archive_writer#5
debuginfo: Get pointer size/align from tcx.data_layout instead of layout_of
This avoids some type interning and a query execution. It also just makes the code simpler.
Use poison instead of undef
In cases where it is legal, we should prefer poison values over undef values.
This replaces undef with poison for aggregate construction and for uninhabited types. There are more places where we can likely use poison, but I wanted to stay conservative to start with.
In particular the aggregate case is important for newer LLVM versions, which are not able to handle an undef base value during early optimization due to poison-propagation concerns.
r? `@cuviper`
This updates object to 0.30 and fixes a bug where the symbol table
would be omitted for archives where there are object files yet none
that export any symbol. This bug could lead to linker errors for crates
like rustc_std_workspace_core which don't contain any code of their own
but exist solely for their dependencies. This is likely the cause of
the linker issues I was experiencing on Webassembly. It has been shown
to cause issues on other platforms too.
cc rust-lang/ar_archive_writer#5
Add `-Z time-passes-format` to allow specifying a JSON output for `-Z time-passes`
This adds back the `-Z time` option as that is useful for [my rustc benchmark tool](https://github.com/Zoxc/rcb), reverting https://github.com/rust-lang/rust/pull/102725. It now uses nanoseconds and bytes as the units so it is renamed to `time-precise`.
Fix cross-compiling with dlltool for raw-dylib
Fix for #103939
Issue Details:
When attempting to cross-compile using the `raw-dylib` feature and the GNU toolchain, rustc would attempt to find a cross-compiling version of dlltool (e.g., `i686-w64-mingw32-dlltool`). The has two issues 1) on Windows dlltool is always `dlltool` (no cross-compiling named versions exist) and 2) it only supported compiling to i686 and x86_64 resulting in ARM 32 and 64 compiling as x86_64.
Fix Details:
* On Windows always use the normal `dlltool` binary.
* Add the ARM64 cross-compiling dlltool name (support for this is coming: https://sourceware.org/bugzilla/show_bug.cgi?id=29964)
* Provide the `-m` argument to dlltool to indicate the target machine type.
(This is the first of two PRs to fix the remaining issues for the `raw-dylib` feature (#58713) that is blocking stabilization (#104218))
Updates `interpret`, `codegen_ssa`, and `codegen_cranelift` to consume the new cast instead of the intrinsic.
Includes `CastTransmute` for custom MIR building, to be able to test the extra UB.
In cases where it is legal, we should prefer poison values over
undef values.
This replaces undef with poison for aggregate construction and
for uninhabited types. There are more places where we can likely
use poison, but I wanted to stay conservative to start with.
In particular the aggregate case is important for newer LLVM
versions, which are not able to handle an undef base value during
early optimization due to poison-propagation concerns.
tidy: enforce comment blocks to have an even number of backticks
After PR #108694, most unmatched backticks in `compiler/` comments have been eliminated. This PR adds a tidy lint to ensure no new unmatched backticks are added, and either addresses the lint in the remaining instances it found, or allows it.
Very often, backtick containing sections wrap around lines, for example:
```Rust
// This function takes a tuple `(Vec<String>,
// Box<[u8]>)` and transforms it into `Vec<u8>`.
```
The lint is implemented to work on top of blocks, counting each line with a `//` into a block, and counting if there are an odd or even number of backticks in the entire block, instead of looking at just a single line.
This makes it easier to open the messages file while developing on features.
The commit was the result of automatted changes:
for p in compiler/rustc_*; do mv $p/locales/en-US.ftl $p/messages.ftl; rmdir $p/locales; done
for p in compiler/rustc_*; do sed -i "s#\.\./locales/en-US.ftl#../messages.ftl#" $p/src/lib.rs; done
Add `round_ties_even` to `f32` and `f64`
Tracking issue: #96710
Redux of #82273. See also #55107
Adds a new method, `round_ties_even`, to `f32` and `f64`, that rounds the float to the nearest integer , rounding halfway cases to the number with an even least significant bit. Uses the `roundeven` LLVM intrinsic to do this.
Of the five IEEE 754 rounding modes, this is the only one that doesn't already have a round-to-integer function exposed by Rust (others are `round`, `floor`, `ceil`, and `trunc`). Ties-to-even is also the rounding mode used for int-to-float and float-to-float `as` casts, as well as float arithmentic operations. So not having an explicit rounding method for it seems like an oversight.
Bikeshed: this PR currently uses `round_ties_even` for the name of the method. But maybe `round_ties_to_even` is better, or `round_even`, or `round_to_even`?
rustc_middle: Remove trait `DefIdTree`
This trait was a way to generalize over both `TyCtxt` and `Resolver`, but now `Resolver` has access to `TyCtxt`, so this trait is no longer necessary.
Remove legacy PM leftovers
This drops two leftovers of legacy PM usage:
* We don't need to initialize passes anymore.
* The pass listing was still using legacy PM passes. Replace it with the corresponding new PM listing.
Name LLVM anonymous constants by a hash of their contents
This makes the names stable between different versions of a crate unlike the `AllocId` naming, making LLVM IR comparisons with `llvm-diff` more practical.
(This is a large commit. The changes to
`compiler/rustc_middle/src/ty/context.rs` are the most important ones.)
The current naming scheme is a mess, with a mix of `_intern_`, `intern_`
and `mk_` prefixes, with little consistency. In particular, in many
cases it's easy to use an iterator interner when a (preferable) slice
interner is available.
The guiding principles of the new naming system:
- No `_intern_` prefixes.
- The `intern_` prefix is for internal operations.
- The `mk_` prefix is for external operations.
- For cases where there is a slice interner and an iterator interner,
the former is `mk_foo` and the latter is `mk_foo_from_iter`.
Also, `slice_interners!` and `direct_interners!` can now be `pub` or
non-`pub`, which helps enforce the internal/external operations
division.
It's not perfect, but I think it's a clear improvement.
The following lists show everything that was renamed.
slice_interners
- const_list
- mk_const_list -> mk_const_list_from_iter
- intern_const_list -> mk_const_list
- substs
- mk_substs -> mk_substs_from_iter
- intern_substs -> mk_substs
- check_substs -> check_and_mk_substs (this is a weird one)
- canonical_var_infos
- intern_canonical_var_infos -> mk_canonical_var_infos
- poly_existential_predicates
- mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter
- intern_poly_existential_predicates -> mk_poly_existential_predicates
- _intern_poly_existential_predicates -> intern_poly_existential_predicates
- predicates
- mk_predicates -> mk_predicates_from_iter
- intern_predicates -> mk_predicates
- _intern_predicates -> intern_predicates
- projs
- intern_projs -> mk_projs
- place_elems
- mk_place_elems -> mk_place_elems_from_iter
- intern_place_elems -> mk_place_elems
- bound_variable_kinds
- mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter
- intern_bound_variable_kinds -> mk_bound_variable_kinds
direct_interners
- region
- intern_region (unchanged)
- const
- mk_const_internal -> intern_const
- const_allocation
- intern_const_alloc -> mk_const_alloc
- layout
- intern_layout -> mk_layout
- adt_def
- intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid)
- alloc_adt_def(!) -> mk_adt_def
- external_constraints
- intern_external_constraints -> mk_external_constraints
Other
- type_list
- mk_type_list -> mk_type_list_from_iter
- intern_type_list -> mk_type_list
- tup
- mk_tup -> mk_tup_from_iter
- intern_tup -> mk_tup
Remove type-traversal trait aliases
#107924 moved the type traversal (folding and visiting) traits into the type library, but created trait aliases in `rustc_middle` to minimise both the API churn for trait consumers and the arising boilerplate. As mentioned in that PR, an alternative approach of defining subtraits with blanket implementations of the respective supertraits was also considered at that time but was ruled out as not adding much value.
Unfortunately, it has since emerged that rust-analyzer has difficulty with these trait aliases at present, resulting in a degraded contributor experience (see the recent [r-a has become useless](https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/r-a.20has.20become.20useless) topic on the #t-compiler/help Zulip stream).
This PR removes the trait aliases, and accordingly the underlying type library traits are now used directly; they are parameterised by `TyCtxt<'tcx>` rather than just the `'tcx` lifetime, and imports have been updated to reflect the fact that the trait aliases' explicitly named traits are no longer automatically brought into scope. These changes also roll-back the (no-longer required) workarounds to #107747 that were made in b409329c62.
Since this PR is just a find+replace together with the changes necessary for compilation & tidy to pass, it's currently just one mega-commit. Let me know if you'd like it broken up.
r? `@oli-obk`
Extend `CodegenBackend` trait with a function returning the translation
resources from the codegen backend, which can be added to the complete
list of resources provided to the emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
Add `kernel-address` sanitizer support for freestanding targets
This PR adds support for KASan (kernel address sanitizer) instrumentation in freestanding targets. I included the minimal set of `x86_64-unknown-none`, `riscv64{imac, gc}-unknown-none-elf`, and `aarch64-unknown-none` but there's likely other targets it can be added to. (`linux_kernel_base.rs`?) KASan uses the address sanitizer attributes but has the `CompileKernel` parameter set to `true` in the pass creation.
Add the attributes to functions according to the settings.
"xray-always" overrides "xray-never", and they both override
"xray-ignore-loops" and "xray-instruction-threshold", but we'll
let lints deal with warnings about silly attribute combinations.
Rollup of 8 pull requests
Successful merges:
- #107022 (Implement `SpecOptionPartialEq` for `cmp::Ordering`)
- #107100 (Use proper `InferCtxt` when probing for associated types in astconv)
- #107103 (Use new solver in `evaluate_obligation` query (when new solver is enabled))
- #107190 (Recover from more const arguments that are not wrapped in curly braces)
- #107306 (Correct suggestions for closure arguments that need a borrow)
- #107339 (internally change regions to be covariant)
- #107344 (Minor tweaks in the new solver)
- #107373 (Don't merge vtables when full debuginfo is enabled.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Don't merge vtables when full debuginfo is enabled.
This PR makes the compiler not emit the `unnamed_addr` attribute for vtables when full debuginfo is enabled, so that they don't get merged even if they have the same contents. This allows debuggers to more reliably map from a dyn pointer to the self-type of a trait object by looking at the vtable's debuginfo.
The PR only changes the behavior of the LLVM backend as other backends don't emit vtable debuginfo (as far as I can tell).
The performance impact of this change should be small as [measured](https://github.com/rust-lang/rust/pull/103514#issuecomment-1290833854) in a previous PR.
...and remove it from `PointeeInfo`, which isn't meant for this.
There are still various places (marked with FIXMEs) that assume all pointers
have the same size and alignment. Fixing this requires parsing non-default
address spaces in the data layout string, which will be done in a followup.
Various cleanups around pre-TyCtxt queries and functions
part of #105462
based on https://github.com/rust-lang/rust/pull/106776 (everything starting at [0e2b39f](0e2b39fd1f) is new in this PR)
r? `@petrochenkov`
I think this should be most of the uncontroversial part of #105462.
Rollup of 7 pull requests
Successful merges:
- #104505 (Remove double spaces after dots in comments)
- #106784 (prevent E0512 from emitting [type error] by checking the references_error)
- #106834 (new trait solver: only consider goal changed if response is not identity)
- #106889 (Mention the lack of `windows_mut` in `windows`)
- #106963 (Use `scope_expr_id` from `ProbeCtxt`)
- #106970 (Switch to `EarlyBinder` for `item_bounds` query)
- #106980 (Hide `_use_mk_alias_ty_instead` in `<AliasTy as Debug>::fmt`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Previously, it was only put on scalars with range validity invariants
like bool, was uninit was obviously invalid for those.
Since then, we have normatively declared all uninit primitives to be
undefined behavior and can therefore put `noundef` on them.
The remaining concern was the `mem::uninitialized` function, which cause
quite a lot of UB in the older parts of the ecosystem. This function now
doesn't return uninit values anymore, making users of it safe from this
change.
The only real sources of UB where people could encounter uninit
primitives are `MaybeUninit::uninit().assume_init()`, which has always
be clear in the docs about being UB and from heap allocations (like
reading from the spare capacity of a vec. This is hopefully rare enough
to not break anything.
Fix aarch64-unknown-linux-gnu_ilp32 target
This was broken because the synthetic object files produced by rustc were for 64-bit AArch64, which caused link failures when combined with 32-bit ILP32 object files.
This PR updates the object crate to 0.30.1 which adds support for generating ILP32 AArch64 object files.
This was broken because the synthetic object files produced by rustc
were for 64-bit AArch64, which caused link failures when combined with
32-bit ILP32 object files.
This PR updates the object crate to 0.30.1 which adds support for
generating ILP32 AArch64 object files.
Migrate `codegen_ssa` to diagnostics structs - [Part 3]
Completes migrating `codegen_ssa` module except 2 outstanding errors that depend on other crates:
1. [`rustc_middle::mir::interpret::InterpError`](b6097f2e1b/compiler/rustc_middle/src/mir/interpret/error.rs (L475)): I saw `rustc_middle` is unassigned, I am open to take this work.
2. `codegen_llvm`'s use of `fn span_invalid_monomorphization_error`, which I started to replace in the [last commit](9a31b3cdda) of this PR, but would like to know the team's preference on how we should keep replacing the other macros:
2.1. Update macros to expect a `Diagnostic`
2.2. Remove macros and expand the code on each use.
See [some examples of the different options in this experimental commit](64aee83e80)
_Part 2 - https://github.com/rust-lang/rust/pull/103792_
r? ``@davidtwco``
Cc ``@compiler-errors``
Remove wrapper functions for some unstable options
They are trivial and just forward to the option. Like most other options, we can just access it directly.
Allow building std with cranelift
- Don't pass llvm-specific args when using cranelift
- Don't use `asm` in compiler_builtins when using cranelift
r? `@bjorn3` cc `@Mark-Simulacrum`
Correct branch-protection ModFlagBehavior for Aarch64 on LLVM-15
When building with Fat LTO and BTI enabled on aarch64, the BTI is set to `Module::Min` for alloc shim but is set to `Module::Error` for the crate. This was fine when we were using LLVM-14 but LLVM-15 changes it's behaviour to support for compiling with different `mbranch-protection` flags.
Refer:
b0343a38a5
fixes https://github.com/rust-lang/rust/issues/102162
When building with Fat LTO and BTI enabled on aarch64, the BTI is set to
`Module::Min` for alloc shim but is set to `Module::Error` for the
crate. This was fine when we were using LLVM-14 but LLVM-15 changes it's
behaviour to support for compiling with different `mbranch-protection`
flags.
Refer:
b0343a38a5
Following the s390x ELF ABI and based on the clang implementation,
provide appropriate definitions of va_list in library/core/src/ffi/mod.rs
and va_arg handling in compiler/rustc_codegen_llvm/src/va_arg.rs.
Fixes the following test cases on s390x:
src/test/run-make-fulldeps/c-link-to-rust-va-list-fn
src/test/ui/abi/variadic-ffi.rs
Fixes https://github.com/rust-lang/rust/issues/84628.
Use struct types during codegen in less places
This makes it easier to use cg_ssa from a backend like Cranelift that doesn't have any struct types at all. After this PR struct types are still used for function arguments and return values. Removing those usages is harder but should still be doable.
Don't internalize __llvm_profile_counter_bias
Currently, LLVM profiling runtime counter relocation cannot be used by rust during LTO because symbols are being internalized before all symbol information is known.
This mode makes LLVM emit a __llvm_profile_counter_bias symbol which is referenced by the profiling initialization, which itself is pulled in by the rust driver here [1].
It is enabled with -Cllvm-args=-runtime-counter-relocation for platforms which are opt-in to this mode like Linux. On these platforms there will be no link error, rather just surprising behavior for a user which request runtime counter relocation. The profiling runtime will not see that symbol go on as if it were never there. On Fuchsia, the profiling runtime must have this symbol which will cause a hard link error.
As an aside, I don't have enough context as to why rust's LTO model is how it is. AFAICT, the internalize pass is only safe to run at link time when all symbol information is actually known, this being an example as to why. I think special casing this symbol as a known one that LLVM can emit which should not have it's visbility de-escalated should be fine given how seldom this pattern of defining an undefined symbol to get initilization code pulled in is. From a quick grep, __llvm_profile_runtime is the only symbol that rustc does this for.
[1] 0265a3e93b/compiler/rustc_codegen_ssa/src/back/linker.rs (L598)
Add LLVM KCFI support to the Rust compiler
This PR adds LLVM Kernel Control Flow Integrity (KCFI) support to the Rust compiler. It initially provides forward-edge control flow protection for operating systems kernels for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Thank you again, `@bjorn3,` `@eddyb,` `@nagisa,` and `@ojeda,` for all the help!
This commit adds LLVM Kernel Control Flow Integrity (KCFI) support to
the Rust compiler. It initially provides forward-edge control flow
protection for operating systems kernels for Rust-compiled code only by
aggregating function pointers in groups identified by their return and
parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
Currently, LLVM profiling runtime counter relocation cannot be
used by rust during LTO because symbols are being internalized
before all symbol information is known.
This mode makes LLVM emit a __llvm_profile_counter_bias symbol
which is referenced by the profiling initialization, which itself
is pulled in by the rust driver here [1].
It is enabled with -Cllvm-args=-runtime-counter-relocation for
platforms which are opt-in to this mode like Linux. On these
platforms there will be no link error, rather just surprising
behavior for a user which request runtime counter relocation.
The profiling runtime will not see that symbol go on as if it
were never there. On Fuchsia, the profiling runtime must have
this symbol which will cause a hard link error.
As an aside, I don't have enough context as to why rust's LTO
model is how it is. AFAICT, the internalize pass is only safe
to run at link time when all symbol information is actually
known, this being an example as to why. I think special casing
this symbol as a known one that LLVM can emit which should not
have it's visbility de-escalated should be fine given how
seldom this pattern of defining an undefined symbol to get
initilization code pulled in is. From a quick grep,
__llvm_profile_runtime is the only symbol that rustc does this
for.
[1] 0265a3e93b/compiler/rustc_codegen_ssa/src/back/linker.rs (L598)
This ensures that the error is printed even for unused variables,
as well as unifying the handling between the LLVM and GCC backends.
This also fixes unusual behavior around exported Rust-defined variables
with linkage attributes. With the previous behavior, it appears to be
impossible to define such a variable such that it can actually be imported
and used by another crate. This is because on the importing side, the
variable is required to be a pointer, but on the exporting side, the
type checker rejects static variables of pointer type because they do
not implement `Sync`. Even if it were possible to import such a type, it
appears that code generation on the importing side would add an unexpected
additional level of pointer indirection, which would break type safety.
This highlighted that the semantics of linkage on Rust-defined variables
is different to linkage on foreign items. As such, we now model the
difference with two different codegen attributes: linkage for Rust-defined
variables, and import_linkage for foreign items.
This change gives semantics to the test
src/test/ui/linkage-attr/auxiliary/def_illtyped_external.rs which was
previously expected to fail to compile. Therefore, convert it into a
test that is expected to successfully compile.
The update to the GCC backend is speculative and untested.
Rollup of 9 pull requests
Successful merges:
- #104199 (Keep track of the start of the argument block of a closure)
- #105050 (Remove useless borrows and derefs)
- #105153 (Create a hacky fail-fast mode that stops tests at the first failure)
- #105164 (Restore `use` suggestion for `dyn` method call requiring `Sized`)
- #105193 (Disable coverage instrumentation for naked functions)
- #105200 (Remove useless filter in unused extern crate check.)
- #105201 (Do not call fn_sig on non-functions.)
- #105208 (Add AmbiguityError for inconsistent resolution for an import)
- #105214 (update Miri)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
codegen-llvm: never combine DSOLocal and DllImport
Prevent DllImport from being attached to DSOLocal definitions in the LLVM IR. The combination makes no sense, since definitions local to the compilation unit will never be imported from external objects.
Additionally, LLVM will refuse the IR if it encounters the combination (introduced in [1]):
```
if (GV.hasDLLImportStorageClass())
Assert(!GV.isDSOLocal(),
"GlobalValue with DLLImport Storage is dso_local!", &GV);
```
Right now, codegen-llvm will only apply DllImport to constants and rely on call-stubs for functions. Hence, we simply extend the codegen of constants to skip DllImport for any local definitions.
This was discovered when switching the EFI targets to the static relocation model [2]. With this fixed, we can start another attempt at this.
[1] 509132b368
[2] https://github.com/rust-lang/rust/issues/101656
Print all features with --print target-features
This fixes `rustc --print target-features` with respect to aliases and tied features.
Before this change, the print command assumed that each LLVM feature corresponds exactly to one rustc feature. In the case of aliases and tied features, this assumption failed and some features (such as aarch64's "pacg") were missing. With this change, every target feature is listed.
Prevent DllImport from being attached to DSOLocal definitions in the
LLVM IR. The combination makes no sense, since definitions local to the
compilation unit will never be imported from external objects.
Additionally, LLVM will refuse the IR if it encounters the
combination (introduced in [1]):
if (GV.hasDLLImportStorageClass())
Assert(!GV.isDSOLocal(),
"GlobalValue with DLLImport Storage is dso_local!", &GV);
Right now, codegen-llvm will only apply DllImport to constants and rely
on call-stubs for functions. Hence, we simply extend the codegen of
constants to skip DllImport for any local definitions.
This was discovered when switching the EFI targets to the static
relocation model [2]. With this fixed, we can start another attempt at
this.
[1] 509132b368
[2] https://github.com/rust-lang/rust/issues/101656
After https://github.com/llvm/llvm-project/commit/8689f5e landed, LLVM takes the intersection of v8a and v8r as default.
This commit brings back v8a support by explicitly specifying v8a in the feature list.
This should solve #97724.
Use `as_deref` in compiler (but only where it makes sense)
This simplifies some code :3
(there are some changes that are not exacly `as_deref`, but more like "clever `Option`/`Result` method use")
Mark functions created for `raw-dylib` on x86 with DllImport storage class
Fix for #104453
## Issue Details
On x86 Windows, LLVM uses 'L' as the prefix for any private global symbols (`PrivateGlobalPrefix`), so when the `raw-dylib` feature creates an undecorated function symbol that begins with an 'L' LLVM misinterprets that as a private global symbol that it created and so fails the compilation at a later stage since such a symbol must have a definition.
## Fix Details
Mark the function we are creating for `raw-dylib` with `DllImport` storage class (this was already being done for MSVC at a later point for `callee::get_fn` but not for GNU (due to "backwards compatibility")): this will cause LLVM to prefix the name with `__imp_` and so it won't mistake it for a private global symbol.
Pass 128-bit C-style enum enumerator values to LLVM
Pass the full 128 bits of C-style enum enumerators through to LLVM. This means that debuginfo for C-style repr128 enums is now emitted correctly for DWARF platforms (as compared to not being correctly emitted on any platform).
Tracking issue: #56071