Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
Fix false positive with `missing_docs` and `#[test]`
Since #130025, the compiler don't ignore missing_docs when compiling the tests. But there is now a false positive warning for every `#[test]`
For example, this code
```rust
//! Crate docs
fn just_a_test() {}
```
Would emit this warning when running `cargo test`
```
warning: missing documentation for a constant
--> src/lib.rs:5:1
|
4 | #[test]
| ------- in this procedural macro expansion
5 | fn just_a_test() {}
| ^^^^^^^^^^^^^^^^^^^
```
Since #130025, the compiler don't ignore missing_docs when compiling the tests.
But there is now a false positive warning for every `#[test]`
For example, this code
```rust
//! Crate docs
fn just_a_test() {}
```
Would emit this warning when running `cargo test`
```
warning: missing documentation for a constant
--> src/lib.rs:5:1
|
4 | #[test]
| ------- in this procedural macro expansion
5 | fn just_a_test() {}
| ^^^^^^^^^^^^^^^^^^^
```
Also emit `missing_docs` lint with `--test` to fulfil expectations
This PR removes the "test harness" suppression of the `missing_docs` lint to be able to fulfil `#[expect]` (expectations) as it is now "relevant".
I think the goal was to maybe avoid false-positive while linting on public items under `#[cfg(test)]` but with effective visibility we should no longer have any false-positive.
Another possibility would be to query the lint level and only emit the lint if it's of expect level, but that is even more hacky.
Fixes https://github.com/rust-lang/rust/issues/130021
try-job: x86_64-gnu-aux
in this commit, `naked_asm!` is an alias for `asm!` with one difference: `options(noreturn)` is always enabled by `naked_asm!`. That makes it future-compatible for when `naked_asm!` starts disallowing `options(noreturn)` later.
debug-fmt-detail option
I'd like to propose a new option that makes `#[derive(Debug)]` generate no-op implementations that don't print anything, and makes `{:?}` in format strings a no-op.
There are a couple of motivations for this:
1. A more thorough stripping of debug symbols. Binaries stripped of debug symbols still retain some of them through `Debug` implementations. It's hard to avoid that without compiler's help, because debug formatting can be used in many places, including dependencies, and their loggers, asserts, panics, etc.
* In my testing it gives about 2% binary size reduction on top of all other binary-minimizing best practices (including `panic_immediate_abort`). There are targets like Web WASM or embedded where users pay attention to binary sizes.
* Users distributing closed-source binaries may not want to "leak" any symbol names as a matter of principle.
2. Adds ability to test whether code depends on specifics of the `Debug` format implementation in unwise ways (e.g. trying to get data unavailable via public interface, or using it as a serialization format). Because current Rust's debug implementation doesn't change, there's a risk of it becoming a fragile de-facto API that [won't be possible to change in the future](https://www.hyrumslaw.com/). An option that "breaks" it can act as a [grease](https://www.rfc-editor.org/rfc/rfc8701.html).
This implementation is a `-Z fmt-debug=opt` flag that takes:
* `full` — the default, current state.
* `none` — makes derived `Debug` and `{:?}` no-ops. Explicit `impl Debug for T` implementations are left unharmed, but `{:?}` format won't use them, so they may get dead-code eliminated if they aren't invoked directly.
* `shallow` — makes derived `Debug` print only the type's name, without recursing into fields. Fieldless enums print their variant names. `{:?}` works.
The `shallow` option is a compromise between minimizing the `Debug` code, and compatibility. There are popular proc-macro crates that use `Debug::fmt` as a way to convert enum values into their Rust source code.
There's a corresponding `cfg` flag: `#[cfg(fmt_debug = "none")]` that can be used in user code to react to this setting to minimize custom `Debug` implementations or remove unnecessary formatting helper functions.
derive(SmartPointer): assume pointee from the single generic and better error messages
Fix#129465
Actually RFC says that `#[pointee]` can be inferred when there is no ambiguity, or there is only one generic type parameter so to say.
cc ```@Darksonn```
r? ```@compiler-errors```
Add `#[warn(unreachable_pub)]` to a bunch of compiler crates
By default `unreachable_pub` identifies things that need not be `pub` and tells you to make them `pub(crate)`. But sometimes those things don't need any kind of visibility. So they way I did these was to remove the visibility entirely for each thing the lint identifies, and then add `pub(crate)` back in everywhere the compiler said it was necessary. (Or occasionally `pub(super)` when context suggested that was appropriate.) Tedious, but results in more `pub` removal.
There are plenty more crates to do but this seems like enough for a first PR.
r? `@compiler-errors`
Stabilize `unsafe_attributes`
# Stabilization report
## Summary
This is a tracking issue for the RFC 3325: unsafe attributes
We are stabilizing `#![feature(unsafe_attributes)]`, which makes certain attributes considered 'unsafe', meaning that they must be surrounded by an `unsafe(...)`, as in `#[unsafe(no_mangle)]`.
RFC: rust-lang/rfcs#3325
Tracking issue: #123757
## What is stabilized
### Summary of stabilization
Certain attributes will now be designated as unsafe attributes, namely, `no_mangle`, `export_name`, and `link_section` (stable only), and these attributes will need to be called by surrounding them in `unsafe(...)` syntax. On editions prior to 2024, this is simply an edition lint, but it will become a hard error in 2024. This also works in `cfg_attr`, but `unsafe` is not allowed for any other attributes, including proc-macros ones.
```rust
#[unsafe(no_mangle)]
fn a() {}
#[cfg_attr(any(), unsafe(export_name = "c"))]
fn b() {}
```
For a table showing the attributes that were considered to be included in the list to require unsafe, and subsequent reasoning about why each such attribute was or was not included, see [this comment here](https://github.com/rust-lang/rust/pull/124214#issuecomment-2124753464)
## Tests
The relevant tests are in `tests/ui/rust-2024/unsafe-attributes` and `tests/ui/attributes/unsafe`.
Use more slice patterns inside the compiler
Nothing super noteworthy. Just replacing the common 'fragile' pattern of "length check followed by indexing or unwrap" with slice patterns for legibility and 'robustness'.
r? ghost
improve error message when `global_asm!` uses `asm!` operands
follow-up to https://github.com/rust-lang/rust/pull/128207
what was
```
error: expected expression, found keyword `in`
--> src/lib.rs:1:31
|
1 | core::arch::global_asm!("{}", in(reg));
| ^^ expected expression
```
becomes
```
error: the `in` operand cannot be used with `global_asm!`
--> $DIR/parse-error.rs:150:19
|
LL | global_asm!("{}", in(reg));
| ^^ the `in` operand is not meaningful for global-scoped inline assembly, remove it
```
the span of the error is just the keyword, which means that we can't create a machine-applicable suggestion here. The alternative would be to attempt to parse the full operand, but then if there are syntax errors in the operand those would be presented to the user, even though the parser already knows that the output won't be valid. Also that would require more complexity in the parser.
So I think this is a nice improvement at very low cost.
More unsafe attr verification
This code denies unsafe on attributes such as `#[test]` and `#[ignore]`, while also changing the `MetaItem` parsing so `unsafe` in args like `#[allow(unsafe(dead_code))]` is not accidentally allowed.
Tracking:
- https://github.com/rust-lang/rust/issues/123757
When collecting tokens there are two kinds of range:
- a range relative to the parser's full token stream (which we get when
we are parsing);
- a range relative to a single AST node's token stream (which we use
within `LazyAttrTokenStreamImpl` when replacing tokens).
These are currently both represented with `Range<u32>` and it's easy to
mix them up -- until now I hadn't properly understood the difference.
This commit introduces `ParserRange` and `NodeRange` to distinguish
them. This also requires splitting `ReplaceRange` in two, giving the new
types `ParserReplacement` and `NodeReplacement`. (These latter two names
reduce the overloading of the word "range".)
The commit also rewrites some comments to be clearer.
The end result is a little more verbose, but much clearer.
derive(SmartPointer): rewrite bounds in where and generic bounds
Fix#127647
Due to the `Unsize` bounds, we need to commute the bounds on the pointee type to the new self type.
cc ```@Darksonn```
This makes it possible for the `unsafe(...)` syntax to only be
valid at the top level, and the `NestedMetaItem`s will automatically
reject `unsafe(...)`.
Mark `Parser::eat`/`check` methods as `#[must_use]`
These methods return a `bool`, but we probably should either use these values or explicitly throw them away (e.g. when we just want to unconditionally eat a token if it exists).
I changed a few places from `eat` to `expect`, but otherwise I tried to leave a comment explaining why the `eat` was okay.
This also adds a test for the `pattern_type!` macro, which used to silently accept a missing `is` token.
`#[naked]`: report incompatible attributes
tracking issue: https://github.com/rust-lang/rust/issues/90957
this is a re-implementation of https://github.com/rust-lang/rust/pull/93809 by ``@bstrie`` which was closed 2 years ago due to inactivity.
This PR takes some of the final comments into account, specifically providing a little more context in error messages, and using an allow list to determine which attributes are compatible with `#[naked]`.
Notable attributes that are incompatible with `#[naked]` are:
* `#[inline]`
* `#[track_caller]`
* ~~`#[target_feature]`~~ (this is now allowed, see PR discussion)
* `#[test]`, `#[ignore]`, `#[should_panic]`
These attributes just directly conflict with what `#[naked]` should do.
Naked functions are still important for systems programming, embedded, and operating systems, so I'd like to move them forward.
improve error message when `global_asm!` uses `asm!` options
specifically, what was
error: expected one of `)`, `att_syntax`, or `raw`, found `preserves_flags`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ expected one of `)`, `att_syntax`, or `raw`
is now
error: the `preserves_flags` option cannot be used with `global_asm!`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ the `preserves_flags` option is not meaningful for global-scoped inline assembly
mirroring the phrasing of the [reference](https://doc.rust-lang.org/reference/inline-assembly.html#options).
This is also a bit of a refactor for a future `naked_asm!` macro (for use in `#[naked]` functions). Currently this sort of error can come up when switching from inline to global asm, or when a user just isn't that experienced with assembly. With `naked_asm!` added to the mix hitting this error is more likely.
- merge error codes
- use attribute name that is incompatible in error message
- add test for conditional incompatible attribute
- add `linkage` to the allowlist