Tell LLVM that the negation in `<*const T>::sub` cannot overflow
Today it's just `sub` <https://rust.godbolt.org/z/8EzEPnMr5>; with this PR it's `sub nsw`.
make `typeid::typeid_itanium_cxx_abi::transform_ty` evaluate length in array types
the ICE in https://github.com/rust-lang/rust/issues/114275 was caused by `transform_ty`
in compiler/rustc_symbol_mangling/src/typeid/typeid_itanium_cxx_abi.rs encountering an unevaluated const, while expecting it to already be evaluated.
Rollup of 7 pull requests
Successful merges:
- #114599 (Add impl trait declarations to SMIR)
- #114622 (rustc: Move `crate_types` and `stable_crate_id` from `Session` to `GlobalCtxt`)
- #114662 (Unlock trailing where-clauses for lazy type aliases)
- #114693 (Remove myself from the review rotation)
- #114694 (make the provisional cache slightly less broken)
- #114705 (Add spastorino to mailmap)
- #114712 (Fix a couple of bad comments)
r? `@ghost`
`@rustbot` modify labels: rollup
make the provisional cache slightly less broken
It is still broken for the following cycles:
```mermaid
graph LR
R["R: coinductive"] --> A["A: inductive"]
R --> B["B: coinductive"]
A --> B
B --> R
```
the `R -> A -> B -> R` cycle should be considered to not hold, as it is mixed, but because we first put `B` into the cache from the `R -> B -> R` cycle which is coinductive, it does hold.
This issue will also affect our new coinduction approach. Longterm cycles are coinductive as long as one step goes through an impl where-clause, see f4fc5bae36/crates/formality-prove/src/prove/prove_wc.rs (L51-L62). Here we would first have a fully inductive cycle `R -> B -> R` which is then entered by a cycle with a coinductive step `R -> A -coinductive-> B -> R`.
I don't know how to soundly implement a provisional cache for goals not on the stack without tracking all cycles the goal was involved in and whether they were inductive or not. We could then only use goals from the cache if the *inductivity?* of every cycle remained the same. This is a mess to implement. I therefore want to rip out the provisional cache entirely, but will wait with this until I talked about it with `@nikomatsakis.`
r? `@compiler-errors`
Unlock trailing where-clauses for lazy type aliases
Allows trailing where-clauses on lazy type aliases and forbids[^1] leading ones.
Completes #89122 (see section *Top-level type aliases*).
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
[^1]: This is absolutely fine since lazy type aliases are only meant to be stabilized as part of a new edition.
`Expr::can_have_side_effects()` is incorrect for struct/enum/array/tuple literals
It would return 'false' unless *all* sub-expressions had side effects. This would easily allow side effects to slip through, and also wrongly label empty literals as having side effects. Add some tests for the last point
The function is only used for simple lints and error messages, so not a serious bug.
this ICE was caused by `transform_ty`
in compiler/rustc_symbol_mangling/src/typeid/typeid_itanium_cxx_abi.rs
encountering an unevaluated const, while expecting it to already be evaluated.
add a regression test
Update tests/ui/sanitize/issue-114275-cfi-const-expr-in-arry-len.rs
Co-authored-by: Michael Goulet <michael@errs.io>
Update tests/ui/sanitize/issue-114275-cfi-const-expr-in-arry-len.rs
Co-authored-by: Michael Goulet <michael@errs.io>
fix test compiling for targets with -crt-static and failing
this was causign https://github.com/rust-lang/rust/pull/114686 to fail
Don't use `type_of` to determine if item has intrinsic shim
When we're calling `resolve_instance` on an inline const, we were previously looking at the `type_of` for that const, seeing that it was an `extern "intrinsic"` fn def, and treating it as if we were computing the instance of that intrinsic itself. This is incorrect.
Instead, we should be using the def-id of the item we're computing to determine if it's an intrinsic.
Fixes#114660
Detect method not found on arbitrary self type with different mutability
```
error[E0599]: no method named `x` found for struct `Pin<&S>` in the current scope
--> $DIR/arbitrary_self_type_mut_difference.rs:11:18
|
LL | Pin::new(&S).x();
| ^ help: there is a method with a similar name: `y`
|
note: method is available for `Pin<&mut S>`
--> $DIR/arbitrary_self_type_mut_difference.rs:6:5
|
LL | fn x(self: Pin<&mut Self>) {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Related to #57994, as one of the presented cases can lead to code like this.
feat: `riscv-interrupt-{m,s}` calling conventions
Similar to prior support added for the mips430, avr, and x86 targets this change implements the rough equivalent of clang's [`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking visibility into any non-assembly body of the interrupt handler, have to be very conservative and save the [entire CPU state to the stack frame][full-frame-save]. By instead asking LLVM to only save the registers that it uses, we defer the decision to the tool with the best context: it can more accurately account for the cost of spills if it knows that every additional register used is already at the cost of an implicit spill.
At the LLVM level, this is apparently [implemented by] marking every register as "[callee-save]," matching the semantics of an interrupt handler nicely (it has to leave the CPU state just as it found it after its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes no attempt to e.g. save the state in a user-accessible stack frame. For a full discussion of those challenges and tradeoffs, please refer to [the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM does not expose the "all-saved" function flavor as a calling convention directly, instead preferring to use an attribute that allows for differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be aware of the differences between machine-mode and supervisor-mode interrupts as to why no `riscv-interrupt` calling convention is exposed through rustc, and similarly for why `riscv-interrupt-u` makes no appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
fix: not insert missing lifetime for `ConstParamTy`
Fixes#113462
We should ignore the missing lifetime, as it's illegal to include a lifetime in a const param.
r? ``@compiler-errors``
The change in 07f855d781 introduced a
trailing numeral of some kind after the `extern crate
compiler_builtins`, which appears to have caused at least two false
negatives (654b924 and 657fd24). Instead, this change normalizes the
test output to ignore the number (of symbols rustc recognizes?) to avoid
needing to re-`--bless` these two tests for unrelated changes.
Similar to prior support added for the mips430, avr, and x86 targets
this change implements the rough equivalent of clang's
[`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling
e.g.
```rust
static mut CNT: usize = 0;
pub extern "riscv-interrupt-m" fn isr_m() {
unsafe {
CNT += 1;
}
}
```
to produce highly effective assembly like:
```asm
pub extern "riscv-interrupt-m" fn isr_m() {
420003a0: 1141 addi sp,sp,-16
unsafe {
CNT += 1;
420003a2: c62a sw a0,12(sp)
420003a4: c42e sw a1,8(sp)
420003a6: 3fc80537 lui a0,0x3fc80
420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0>
420003ae: 0585 addi a1,a1,1
420003b0: 62b52e23 sw a1,1596(a0)
}
}
420003b4: 4532 lw a0,12(sp)
420003b6: 45a2 lw a1,8(sp)
420003b8: 0141 addi sp,sp,16
420003ba: 30200073 mret
```
(disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`)
This outcome is superior to hand-coded interrupt routines which, lacking
visibility into any non-assembly body of the interrupt handler, have to
be very conservative and save the [entire CPU state to the stack
frame][full-frame-save]. By instead asking LLVM to only save the
registers that it uses, we defer the decision to the tool with the best
context: it can more accurately account for the cost of spills if it
knows that every additional register used is already at the cost of an
implicit spill.
At the LLVM level, this is apparently [implemented by] marking every
register as "[callee-save]," matching the semantics of an interrupt
handler nicely (it has to leave the CPU state just as it found it after
its `{m|s}ret`).
This approach is not suitable for every interrupt handler, as it makes
no attempt to e.g. save the state in a user-accessible stack frame. For
a full discussion of those challenges and tradeoffs, please refer to
[the interrupt calling conventions RFC][rfc].
Inside rustc, this implementation differs from prior art because LLVM
does not expose the "all-saved" function flavor as a calling convention
directly, instead preferring to use an attribute that allows for
differentiating between "machine-mode" and "superivsor-mode" interrupts.
Finally, some effort has been made to guide those who may not yet be
aware of the differences between machine-mode and supervisor-mode
interrupts as to why no `riscv-interrupt` calling convention is exposed
through rustc, and similarly for why `riscv-interrupt-u` makes no
appearance (as it would complicate future LLVM upgrades).
[clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v
[full-frame-save]: 9281af2ecf/src/lib.rs (L440-L469)
[implemented by]: b7fb2a3fec/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp (L61-L67)
[callee-save]: 973f1fe7a8/llvm/lib/Target/RISCV/RISCVCallingConv.td (L30-L37)
[rfc]: https://github.com/rust-lang/rfcs/pull/3246
Restrict linker version script of proc-macro crates to just its two symbols
Restrict linker version script of proc-macro crates to just the two symbols of each proc-macro crate.
The main known effect of doing this is to stop including `#[no_mangle]` symbols in the linker version script.
Background:
The combination of a proc-macro crate with an import of another crate that itself exports a no_mangle function was broken for a period of time, because:
* In PR #99944 we stopped exporting no_mangle symbols from proc-macro crates; proc-macro crates have a very limited interface and are meant to be treated as a blackbox to everything except rustc itself. However: he constructed linker version script still referred to them, but resolving that discrepancy was left as a FIXME in the code, tagged with issue #99978.
* In PR #108017 we started telling the linker to check (via the`--no-undefined-version` linker invocation flag) that every symbol referenced in the "linker version script" is provided as linker input. So the unresolved discrepancy from #99978 started surfacing as a compile-time error (e.g. #111888).
Fix#111888Fix#99978.
tests: Uncomment now valid GAT code behind FIXME
The code fails to parse with `nightly-2021-02-05`:
$ cargo +nightly-2021-02-05 build
error: generic associated types in trait paths are currently not implemented
--> src/main.rs:9:42
|
9 | fn _bar<T: for<'a> StreamingIterator<Item<'a> = &'a [i32]>>(_iter: T) { /* ... */
| ^^^^
but parses with `nightly-2021-02-06`:
$ cargo +nightly-2021-02-06 build
warning: the feature `generic_associated_types` is incomplete and may not be safe to use and/or cause compiler crashes
warning: 1 warning emitted
because it was (with high probability) fixed by #79554 which was merged within that nightly range.
This PR is part of #44366 which is E-help-wanted.
CFI: Fix error compiling core with LLVM CFI enabled
Fix#90546 by filtering out global value function pointer types from the type tests, and adding the LowerTypeTests pass to the rustc LTO optimization pipelines.
add aarch64-unknown-teeos target
TEEOS is a mini os run in TrustZone, for trusted/security apps. The libc of TEEOS is a part of musl. The kernel of TEEOS is micro kernel.
This MR is to add a target for teeos.
MRs for libc and rust-std are in progress.
Compiler team MCP: [MCP](https://github.com/rust-lang/compiler-team/issues/652)
Add hotness data to LLVM remarks
Slight improvement of https://github.com/rust-lang/rust/pull/113040. This makes sure that if PGO is used, remarks generated using `-Zremark-dir` will include the `Hotness` attribute.
r? `@tmiasko`
The code fails to parse with `nightly-2021-02-05`:
$ cargo +nightly-2021-02-05 build
error: generic associated types in trait paths are currently not implemented
--> src/main.rs:9:42
|
9 | fn _bar<T: for<'a> StreamingIterator<Item<'a> = &'a [i32]>>(_iter: T) { /* ... */
| ^^^^
but parses with `nightly-2021-02-06`:
$ cargo +nightly-2021-02-06 build
warning: the feature `generic_associated_types` is incomplete and may not be safe to use and/or cause compiler crashes
warning: 1 warning emitted
because it was (with high probability) fixed by PR 79554 which was merged
within that nightly range.
Map RPIT duplicated lifetimes back to fn captured lifetimes
Use the [`lifetime_mapping`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/hir/struct.OpaqueTy.html#structfield.lifetime_mapping) to map an RPIT's captured lifetimes back to the early- or late-bound lifetimes from its parent function. We may be going thru several layers of mapping, since opaques can be nested, so we introduce `TyCtxt::map_rpit_lifetime_to_fn_lifetime` to loop through several opaques worth of mapping, and handle turning it into a `ty::Region` as well.
We can then use this instead of the identity substs for RPITs in `check_opaque_meets_bounds` to address #114285.
We can then also use `map_rpit_lifetime_to_fn_lifetime` to properly install bidirectional-outlives predicates for both RPITs and RPITITs. This addresses #114601.
I based this on #114574, but I don't actually know how much of that PR we still need, so some code may be redundant now... 🤷
---
Fixes#114597Fixes#114579Fixes#114285
Also fixes#114601, since it turns out we had other bugs with RPITITs and their duplicated lifetime params 😅.
Supersedes #114574
r? `@oli-obk`
Structurally normalize weak and inherent in new solver
It seems pretty obvious to me that we should be normalizing weak and inherent aliases too, since they can always be normalized. This PR still leaves open the question of what to do with opaques, though 💀
**Also**, we need to structurally resolve the target of a coercion, for the UI test to work.
r? `@lcnr`
Store the laziness of type aliases in their `DefKind`
Previously, we would treat paths referring to type aliases as *lazy* type aliases if the current crate had lazy type aliases enabled independently of whether the crate which the alias was defined in had the feature enabled or not.
With this PR, the laziness of a type alias depends on the crate it is defined in. This generally makes more sense to me especially if / once lazy type aliases become the default in a new edition and we need to think about *edition interoperability*:
Consider the hypothetical case where the dependency crate has an older edition (and thus eager type aliases), it exports a type alias with bounds & a where-clause (which are void but technically valid), the dependent crate has the latest edition (and thus lazy type aliases) and it uses that type alias. Arguably, the bounds should *not* be checked since at any time, the dependency crate should be allowed to change the bounds at will with a *non*-major version bump & without negatively affecting downstream crates.
As for the reverse case (dependency: lazy type aliases, dependent: eager type aliases), I guess it rules out anything from slight confusion to mild annoyance from upstream crate authors that would be caused by the compiler ignoring the bounds of their type aliases in downstream crates with older editions.
---
This fixes#114468 since before, my assumption that the type alias associated with a given weak projection was lazy (and therefore had its variances computed) did not necessarily hold in cross-crate scenarios (which [I kinda had a hunch about](https://github.com/rust-lang/rust/pull/114253#discussion_r1278608099)) as outlined above. Now it does hold.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Warn when #[macro_export] is applied on decl macros
The existing code checks if `#[macro_export]` is being applied to an item other than a macro, and warns in that case, but fails to take into account macros 2.0/decl macros, despite the attribute having no effect on these macros.
This PR adds a special case for decl macros with the aforementioned attribute, so that the warning is a bit more precise. Instead of just saying "this attribute has no effect", hint towards the fact that decl macros get exported and resolved like regular items.
It also removes a `#[macro_export]` attribute which was applied on one of `core`'s decl macros.
- core: Remove #[macro_export] from `debug_assert_matches`
- check_attrs: Warn when #[macro_export] is used on macros 2.0
Fix#90546 by filtering out global value function pointer types from the
type tests, and adding the LowerTypeTests pass to the rustc LTO
optimization pipelines.
The compiler should emit a more specific error when the `#[macro_export]`
attribute is present on a decl macro, instead of silently ignoring it.
This commit adds the required error message in rustc_passes/messages.ftl,
as well as a note. A new variant is added to the `errors::MacroExport`
enum, specifically for the case where the attribute is added to a macro
2.0.
Rollup of 9 pull requests
Successful merges:
- #113568 (Fix spurious test failure with `panic=abort`)
- #114196 (Bubble up nested goals from equation in `predicates_for_object_candidate`)
- #114485 (Add trait decls to SMIR)
- #114495 (Set max_atomic_width for AVR to 16)
- #114496 (Set max_atomic_width for sparc-unknown-linux-gnu to 32)
- #114510 (llvm-wrapper: adapt for LLVM API changes)
- #114562 (stabilize abi_thiscall)
- #114570 ([miri][typo] Fix a typo in a vector_block comment.)
- #114573 (CI: do not hide error logs in a group)
r? `@ghost`
`@rustbot` modify labels: rollup
Bubble up nested goals from equation in `predicates_for_object_candidate`
This used to be needed for https://github.com/rust-lang/rust/pull/114036#discussion_r1273987510, but since it's no longer, I'm opening this as a separate PR. This also fixes one ICEing UI test: (`tests/ui/unboxed-closures/issue-53448.rs`)
r? `@lcnr`
Make `unconditional_recursion` warning detect recursive drops
Closes#55388
Also closes#50049 unless we want to keep it for the second example which this PR does not solve, but I think it is better to track that work in #57965.
r? `@oli-obk` since you are the mentor for #55388
Unresolved questions:
- [x] There are two false positives that must be fixed before merging (see diff). I suspect the best way to solve them is to perform analysis after drop elaboration instead of before, as now, but I have not explored that any further yet. Could that be an option? **Answer:** Yes, that solved the problem.
`@rustbot` label +T-compiler +C-enhancement +A-lint
Add a new `compare_bytes` intrinsic instead of calling `memcmp` directly
As discussed in #113435, this lets the backends be the place that can have the "don't call the function if n == 0" logic, if it's needed for the target. (I didn't actually *add* those checks, though, since as I understood it we didn't actually need them on known targets?)
Doing this also let me make it `const` (unstable), which I don't think `extern "C" fn memcmp` can be.
cc `@RalfJung` `@Amanieu`
Nest other codegen test topics
This PR is like rust-lang/rust#114229 in that it mostly pushes codegen tests around, shoving them into their own directories, but because all of the changes are very simple cleanups I pulled them into a separate PR. The other PR might involve actually evaluating the correctness of the test after changes, but here it is mostly a matter of taste. The only "functional" change is deleting a few tests that... hinge on a version of LLVM that we don't support (as of rust-lang/rust#114148 anyways).
I considered a few different ways to group other topics but I feel the question of whether `tests/codegen/{vec,array,slice}` should exist is more subtle than these choices, as it might be better to group such related tests by other topics like bounds check elision, thus I avoided making it.
Nest tests/codegen/sanitizer*.rs tests in sanitizer dir
The sanitizer tests are the largest and most meticulously tested set of tests in tests/codegen. That's good! They all clearly belong to a subject and thus could go in a directory, but are not, instead being placed simply in tests/codegen. That's bad! Fix this by placing them in their own directory and renaming them to be less repetitive after that move.
A few tests are brittle, and embed their filename in the test's checks. This is acceptable for the ones where it is used only two times, but one test embeds the test's mangled filename in the test *over 50 times*! This may have been one of the things discouraging anyone from moving it, and thus from moving the set. Fortunately, I have some knowledge of Itanium mangling (involuntarily), regex, and the FileCheck syntax. With a capturing variable, FileCheck allows us to now move this test around again without diffing it on ~50 lines, while still guaranteeing that the mangled substring is the same each time.
This also clarifies why the substring is repeated a zillion times, instead of being cryptic. They don't call it mangling because the result is pretty and easy to understand, but now it is slightly easier! Yay descriptive variables!
Remove FIXME about NLL diagnostic that is already improved
The FIXME was added in #46984 when the diagnostic message looked like this:
// FIXME(#46983): error message should be better
&s.0 //~ ERROR free region `` does not outlive free region `'static`
The message was improved in #90667 and now looks like this:
&s.0 //~ ERROR lifetime may not live long enough
but the FIXME was not removed. The issue #46983 about that diagnostics should be improved has been closed. We can remove the FIXME now.
(This PR was made for #44366.)
The FIXME was added in 46984 when the diagnostic message looked like
this:
// FIXME(#46983): error message should be better
&s.0 //~ ERROR free region `` does not outlive free region `'static`
The message was improved in 90667 and now looks like this:
&s.0 //~ ERROR lifetime may not live long enough
but the FIXME was not removed. The issue 46983 about that diagnostics
should be improved has been closed. We can remove the FIXME now.
Avoid invalid NaN lint machine-applicable suggestion in const context
This PR removes the machine-applicable suggestion in const context for the `invalid_nan_comparision` lint ~~and replace it with a simple help~~.
Fixes https://github.com/rust-lang/rust/issues/114471
Fix missing dependency file with `-Zunpretty`
This PR force the `output_filenames` to be run ~~in every early exits like~~ when using `-Zunpretty`, so to respect the `dep-info` flag.
Fixes https://github.com/rust-lang/rust/issues/112898
r? `@oli-obk`
Rename tests/ui/issues/issue-100605.rs to ../type/option-ref-advice.rs
The test is a regression test for a [bug ](https://github.com/rust-lang/rust/issues/100605) where the compiler gave bad advice for an `Option<&String>`. Rename the file appropriately.
Part of #73494
Resolve visibility paths as modules not as types.
Asking for a resolution with `opt_ns = Some(TypeNS)` allows path resolution to look for type-relative paths, leaving unresolved segments behind. However, for visibility paths we really need to look for a module, so we need to pass `opt_ns = None`.
Fixes https://github.com/rust-lang/rust/issues/109146
r? `@petrochenkov`
Convert builtin "global" late lints to run per module
The compiler currently has 4 non-incremental lints:
1. `clashing_extern_declarations`;
2. `missing_debug_implementations`;
3. ~`unnameable_test_items`;~ changed by https://github.com/rust-lang/rust/pull/114414
4. `missing_docs`.
Non-incremental lints get reexecuted for each compilation, which is slow. Moreover, those lints are allow-by-default, so run for nothing most of the time. This PR attempts to make them more incremental-friendly.
`clashing_extern_declarations` is moved to a standalone query.
`missing_debug_implementation` can use `non_blanket_impls_for_ty` instead of recomputing it.
`missing_docs` is harder as it needs to track if there is a `doc(hidden)` module surrounding. I hack around this using the lint level engine. That's easy to implement and allows to re-enable the lint for a re-exported module, while a more proper solution would reuse the same device as `unnameable_test_items`.
update overflow handling in the new trait solver
implements https://hackmd.io/QY0dfEOgSNWwU4oiGnVRLw?view. I want to clean up this doc and add it to the rustc-dev-guide, but I think this PR is ready for merge as is, even without the dev-guide entry.
r? `@compiler-errors`
Add separate feature gate for async fn track caller
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Improve spans for indexing expressions
fixes#114388
Indexing is similar to method calls in having an arbitrary left-hand-side and then something on the right, which is the main part of the expression. Method calls already have a span for that right part, but indexing does not. This means that long method chains that use indexing have really bad spans, especially when the indexing panics and that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an extra span which is then put into the `fn_span` field in THIR.
r? compiler-errors
```
error[E0599]: no method named `x` found for struct `Pin<&S>` in the current scope
--> $DIR/arbitrary_self_type_mut_difference.rs:11:18
|
LL | Pin::new(&S).x();
| ^ help: there is a method with a similar name: `y`
|
note: method is available for `Pin<&mut S>`
--> $DIR/arbitrary_self_type_mut_difference.rs:6:5
|
LL | fn x(self: Pin<&mut Self>) {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Related to #57994, as one of the presented cases can lead to code like
this.
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
Rework upcasting confirmation to support upcasting to fewer projections in target bounds
This PR implements a modified trait upcasting algorithm that is resilient to changes in the number of associated types in the bounds of the source and target trait objects.
It does this by equating each bound of the target trait ref individually against the bounds of the source trait ref, rather than doing them all together by constructing a new trait object.
#### The new way we do trait upcasting confirmation
1. Equate the target trait object's principal trait ref with one of the supertraits of the source trait object's principal.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2509-L2525)
2. Make sure that every auto trait in the *target* trait object is present in the source trait ref's bounds.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2559-L2562)
3. For each projection in the *target* trait object, make sure there is exactly one projection that equates with it in the source trait ref's bound. If there is more than one, bail with ambiguity.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2526-L2557)
* Since there may be more than one that applies, we probe first to check that there is exactly one, then we equate it outside of a probe once we know that it's unique.
4. Make sure the lifetime of the source trait object outlives the lifetime of the target.
<details>
<summary>Meanwhile, this is how we used to do upcasting:</summary>
1. For each supertrait of the source trait object, take that supertrait, append the source object's projection bounds, and the *target* trait object's auto trait bounds, and make this into a new object type:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L915-L929)
2. Then equate it with the target trait object:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L936)
This will be a type mismatch if the target trait object has fewer projection bounds, since we compare the bounds structurally in relate:
d12c6e947c/compiler/rustc_middle/src/ty/relate.rs (L696-L698)
</details>
Fixes#114035
Also fixes#114113, because I added a normalize call in the old solver.
r? types
Perform OpaqueCast field projection on HIR, too.
fixes#105819
This is necessary for closure captures in 2021 edition, as they capture individual fields, not the full mentioned variables. So it may try to capture a field of an opaque (because the hidden type is known to be something with a field).
See https://github.com/rust-lang/rust/pull/99806 for when and why we added OpaqueCast to MIR.
Forbid old-style `simd_shuffleN` intrinsics
Don't merge before https://github.com/rust-lang/packed_simd/pull/350 has made its way to crates.io
We used to support specifying the lane length of simd_shuffle ops by attaching the lane length to the name of the intrinsic (like `simd_shuffle16`). After this PR, you cannot do that anymore, and need to instead either rely on inference of the `idx` argument type or specify it as `simd_shuffle::<_, [u32; 16], _>`.
r? `@workingjubilee`
Only unpack tupled args in inliner if we expect args to be unpacked
`"rust-call"` is a strange function abi. sometimes, it expects the arguments to be unpacked by the caller and passed as individual args (closure bodies), and sometimes it does not (user functions annotated with the `"rust-call"` abi).
make sure the mir inliner respects this difference when checking that arguments are compatible, and doesn't try to ICE when we call a `extern "rust-call"` function in a generic context.
fixes#110829
Add `internal_features` lint
Implements https://github.com/rust-lang/compiler-team/issues/596
Also requires some more test blessing for codegen tests etc
`@jyn514` had the idea of just `allow`ing the lint by default in the test suite. I'm not sure whether this is a good idea, but it's definitely one worth considering. Additional input encouraged.
const validation: point at where we found a pointer but expected an integer
Instead of validation just printing "unable to turn pointer into bytes", make this a regular validation error that says where in the value the bad pointer was found. Also distinguish "expected integer, got pointer" from "expected pointer, got partial pointer or mix of pointers".
To avoid duplicating things too much I refactored the diagnostics for validity a bit, so that "got uninit, expected X" and "got pointer, expected X" can share the "X" part. Also all the errors emitted for validation are now grouped under `const_eval_validation` so that they are in a single group in the ftl file.
r? `@oli-obk`
parser: more friendly hints for handling `async move` in the 2015 edition
Fixes#114219
An error is emitted when encountering an async move block in the 2015 edition.
Another appropriate location to raise an error is after executing [let path = this.parse_path(PathStyle::Expr)?](https://github.com/rust-lang/rust/blob/master/compiler/rustc_parse/src/parser/stmt.rs#L152), but it seems somewhat premature to invoke `create_err` at that stage.
Expand, rename and improve `incorrect_fn_null_checks` lint
This PR,
- firstly, expand the lint by now linting on references
- secondly, it renames the lint `incorrect_fn_null_checks` -> `useless_ptr_null_checks`
- and thirdly it improves the lint by catching `ptr::from_mut`, `ptr::from_ref`, as well as `<*mut _>::cast` and `<*const _>::cast_mut`
Fixes https://github.com/rust-lang/rust/issues/113601
cc ```@est31```
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
Infer type in irrefutable slice patterns with fixed length as array
Fixes https://github.com/rust-lang/rust/issues/76342
In irrefutable slice patterns with a fixed length, we can infer the type as an array type. We now choose to prefer some implementations over others, e.g. in:
```
struct Zeroes;
const ARR: [usize; 2] = [0; 2];
const ARR2: [usize; 2] = [2; 2];
impl Into<&'static [usize; 2]> for Zeroes {
fn into(self) -> &'static [usize; 2] {
&ARR
}
}
impl Into<&'static [usize]> for Zeroes {
fn into(self) -> &'static [usize] {
&ARR2
}
}
fn main() {
let &[a, b] = Zeroes.into();
}
```
We now prefer the impl candidate `impl Into<&'static [usize; 2]> for Zeroes`, it's not entirely clear to me that this is correct, but given that the slice impl would require a type annotation anyway, this doesn't seem unreasonable.
r? `@lcnr`
Fix suggestion spans for expr from macro expansions
### Issue #112007: rustc shows expanded `writeln!` macro in code suggestion
#### Before This PR
```
help: consider using a semicolon here
|
6 | };
| +
help: you might have meant to return this value
--> C:\Users\hayle\.rustup\toolchains\nightly-x86_64-pc-windows-msvc\lib/rustlib/src/rust\library\core\src\macros\mod.rs:557:9
|
55| return $dst.write_fmt($crate::format_args_nl!($($arg)*));
| ++++++ +
```
#### After This PR
```
help: consider using a semicolon here
|
LL | };
| +
help: you might have meant to return this value
|
LL | return writeln!(w, "but not here");
| ++++++ +
```
### Issue #110017: `format!` `.into()` suggestion deletes the `format` macro
#### Before This PR
```
help: call `Into::into` on this expression to convert `String` into `Box<dyn std::error::Error>`
--> /Users/eric/.rustup/toolchains/nightly-aarch64-apple-darwin/lib/rustlib/src/rust/library/alloc/src/macros.rs:121:12
|
12| res.into()
| +++++++
```
#### After This PR
```
help: call `Into::into` on this expression to convert `String` into `Box<dyn std::error::Error>`
|
LL | Err(format!("error: {x}").into())
| +++++++
```
---
Fixes#112007.
Fixes#110017.
This patch adds a feature gate `async_fn_track_caller` that is separate from `closure_track_caller`. This is to allow enabling `async_fn_track_caller` separately.
Fixes#110009
Rollup of 5 pull requests
Successful merges:
- #114079 (Use `upvar_tys` in more places, make it return a list)
- #114166 (Add regression test for resolving `--extern libc=test.rlib`)
- #114321 (get auto traits for parallel rustc)
- #114335 (fix and extend ptr_comparison test)
- #114347 (x.py print more detailed format files and untracked files count)
r? `@ghost`
`@rustbot` modify labels: rollup
Improve `invalid_reference_casting` lint
This PR is a follow-up to https://github.com/rust-lang/rust/pull/111567 and https://github.com/rust-lang/rust/pull/113422.
This PR does multiple things:
- First it adds support for deferred de-reference, the goal is to support code like this, where the casting and de-reference are not done on the same expression
```rust
let myself = self as *const Self as *mut Self;
*myself = Self::Ready(value);
```
- Second it does not lint anymore on SB/TB UB code by only checking assignments (`=`, `+=`, ...) and creation of mutable references `&mut *`
- Thirdly it greatly improves the diagnostics in particular for cast from `&mut` to `&mut` or assignments
- ~~And lastly it renames the lint from `cast_ref_to_mut` to `invalid_reference_casting` which is more consistent with the ["rules"](https://github.com/rust-lang/rust-clippy/issues/2845) and also more consistent with what the lint checks~~ *https://github.com/rust-lang/rust/pull/113422*
This PR is best reviewed commit by commit.
r? compiler
Miri: fix error on dangling pointer inbounds offset
We used to claim that the pointer was "dereferenced", but that is just not true.
Can be reviewed commit-by-commit. The first commit is an unrelated rename that didn't seem worth splitting into its own PR.
r? `@oli-obk`
Fix invalid slice coercion suggestion reported in turbofish
This PR fixes the invalid slice coercion suggestion reported in turbofish and inferred generics by not emitting them.
Fixes https://github.com/rust-lang/rust/issues/110063
Don't check unnecessarily that impl trait is RPIT
We have this random `return_type_impl_trait` function to detect if a function returns an RPIT which is used in outlives suggestions, but removing it doesn't actually change any diagnostics. Let's just remove it.
Also, suppress a spurious outlives error from a ReError.
Fixes#114274
Account for macros when suggesting a new let binding
Provide a structured suggestion when the expression comes from a macro expansion:
```
error[E0716]: temporary value dropped while borrowed
--> $DIR/borrowck-let-suggestion.rs:2:17
|
LL | let mut x = vec![1].iter();
| ^^^^^^^ - temporary value is freed at the end of this statement
| |
| creates a temporary value which is freed while still in use
LL |
LL | x.use_mut();
| - borrow later used here
|
= note: this error originates in the macro `vec` (in Nightly builds, run with -Z macro-backtrace for more info)
help: consider using a `let` binding to create a longer lived value
|
LL ~ let binding = vec![1];
LL ~ let mut x = binding.iter();
|
```
WASI threads, implementation of wasm32-wasi-preview1-threads target
This PR adds a target proposed in https://github.com/rust-lang/compiler-team/issues/574 by `@abrown` and implementation of `std:🧵:spawn` for the target `wasm32-wasi-preview1-threads`
### Tier 3 Target Policy
As tier 3 targets, the new targets are required to adhere to [the tier 3 target policy](https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-3-target-policy) requirements. This section quotes each requirement in entirety and describes how they are met.
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
See [src/doc/rustc/src/platform-support/wasm32-wasi-preview1-threads.md](https://github.com/rust-lang/rust/pull/112922/files#diff-a48ee9d94f13e12be24eadd08eb47b479c153c340eeea4ef22276d876dfd4f3e).
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
The target is using the same name for $ARCH=wasm32 and $OS=wasi as existing Rust targets. The suffix `preview1` introduced to accurately set expectations because eventually this target will be deprecated and follows [MCP 607](https://github.com/rust-lang/compiler-team/issues/607). The suffix `threads` indicates that it’s an extension that enables threads to the existing target and it follows [MCP 574](https://github.com/rust-lang/compiler-team/issues/574) which describes the rationale behind introducing a separate target.
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
This PR does not introduce any new dependency.
The new target doesn’t support building host tools.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
The full standard library is available for this target as it’s an extension to an existing target that has already supported it.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Only manual test running is supported at the moment with some tweaks in the test runner codebase. For build and running tests see [src/doc/rustc/src/platform-support/wasm32-wasi-preview1-threads.md](https://github.com/rust-lang/rust/pull/112922/files#diff-a48ee9d94f13e12be24eadd08eb47b479c153c340eeea4ef22276d876dfd4f3e).
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> - This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I acknowledge these requirements and intend to ensure they are met.
cleanup: remove pointee types
This can't be merged until the oldest LLVM version we support uses opaque pointers, which will be the case after #114148. (Also note `-Cllvm-args="-opaque-pointers=0"` can technically be used in LLVM 15, though I don't think we should support that configuration.)
I initially hoped this would provide some minor perf win, but in https://github.com/rust-lang/rust/pull/105412#issuecomment-1341224450 it had very little impact, so this is only valuable as a cleanup.
As a followup, this will enable #96242 to be resolved.
r? `@ghost`
`@rustbot` label S-blocked
Improve diagnostic for wrong borrow on binary operations
This PR improves the diagnostic for wrong borrow on binary operations by suggesting to reborrow on appropriate expressions.
```diff
+ = note: an implementation for `&Foo * &Foo` exist
+ help: consider reborrowing both sides
+ |
+ LL | let _ = &*ref_mut_foo * &*ref_mut_foo;
+ | ++ ++
```
Fixes https://github.com/rust-lang/rust/issues/109352
coverage: Replace `ExpressionOperandId` with enum `Operand`
*This is one step in my larger coverage refactoring ambitions described at <https://github.com/rust-lang/compiler-team/issues/645>.*
LLVM coverage has a concept of “mapping expressions” that allow a span's execution count to be computed as a simple arithmetic expression over other counters/expressions, instead of requiring a dedicated physical counter for every control-flow branch.
These expressions have an operator (`+` or `-`) and two operands. Operands are currently represented as `ExpressionOperandId`, which wraps a `u32` with the following semantics:
- 0 represents a special counter that always has a value of zero
- Values ascending from 1 represent counter IDs
- Values descending from `u32::MAX` represent the IDs of other expressions
---
This change replaces that whole `ExpressionOperandId` scheme with a simple enum that explicitly distinguishes between the three cases.
This lets us remove a lot of fiddly code for dealing with the different operand kinds:
- Previously it was only possible to distinguish between counter-ID operands and expression-ID operands by comparing the operand ID with the total number of counters in a function. This is unnecessary now that the enum distinguishes them explicitly.
- There's no need for expression IDs to descend from `u32::MAX` and then get translated into zero-based indices in certain places. Now that they ascend from zero, they can be used as indices directly.
- There's no need to reserve ID number 0 for the special zero operand, since it can just have its own variant in the enum, so counter IDs can count up from 0.
(Making counter IDs ascend from 0 also lets us fix an off-by-one error in the query for counting the total number of counters, which would cause LLVM to emit an extra unused counter for every instrumented function.)
---
This PR may be easiest to review as individual patches, since that breaks it up into clearly distinct parts:
- Replace a `u32` wrapper with an explicit enum, without changing the semantics of the underlying IDs being stored.
- Change the numbering scheme used by `Operand::Expression` to make expression IDs ascend from 0 (instead of descending from `u32::MAX`).
- Change the numbering scheme used by `Operand::Counter` to make counter IDs ascend from 0 (instead of ascending from 1).
Change default panic handler message format.
This changes the default panic hook's message format from:
```
thread '{thread}' panicked at '{message}', {location}
```
to
```
thread '{thread}' panicked at {location}:
{message}
```
This puts the message on its own line without surrounding quotes, making it easiser to read. For example:
Before:
```
thread 'main' panicked at 'env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`', src/main.rs:4:6
```
After:
```
thread 'main' panicked at src/main.rs:4:6:
env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`
```
---
See this PR by `@nyurik,` which does that for only multi-line messages (specifically because of `assert_eq`): https://github.com/rust-lang/rust/pull/111071
This is the change that does that for *all* panic messages.
The test fails on Windows with the diff
- = help: to create the module `unknown`, create file "unknown.rs" or "unknown/mod.rs"
+ = help: to create the module `unknown`, create file "unknown.rs" or "unknown\mod.rs"
There is no need to run this test on Windows, so ignore it.
Operand types are now tracked explicitly, so there is no need to reserve ID 0
for the special always-zero counter.
As part of the renumbering, this change fixes an off-by-one error in the way
counters were counted by the `coverageinfo` query. As a result, functions
should now have exactly the number of counters they actually need, instead of
always having an extra counter that is never used.
Operand types are now tracked explicitly, so there is no need for expression
IDs to avoid counter IDs by descending from `u32::MAX`. Instead they can just
count up from 0, and can be used directly as indices when necessary.
Because the three kinds of operand are now distinguished explicitly, we no
longer need fiddly code to disambiguate counter IDs and expression IDs based on
the total number of counters/expressions in a function.
This does increase the size of operands from 4 bytes to 8 bytes, but that
shouldn't be a big deal since they are mostly stored inside boxed structures,
and the current coverage code is not particularly size-optimized anyway.
Detect trait upcasting through struct tail unsizing in new solver select
Oops, we were able to hide trait upcasting behind a parent unsize goal that evaluated to `Certainty::Yes`. Let's do rematching for `Certainty::Yes` unsize goals with `BuiltinImplSource::Misc` sources (corresponding to all of the other unsize rules) to make sure we end up selecting any nested goals which may be satisfied via `BuiltinImplSource::TraitUpcasting` or `::TupleUnsizing`.
r? ``@lcnr``
Update lexer emoji diagnostics to Unicode 15.0
This replaces the `unic-emoji-char` dep tree (which hasn't been updated for a while) with `unicode-properties` crate which contains Unicode 15.0 data.
Improves diagnostics for added emoji characters in recent years. (See tests).
cc #101840
cc ``@Manishearth``
Fix ice tests when librustc-driver is linked dynamically
Running `dump-ice-to-disk`and `short-ice` tests on Linux targeting `x86_64-fortanix-unknown-sgx` platform results in:
```
jenkins@31cf43196355:~/workspace/rust-sgx-ci/Raoul/rust$ cat /home/jenkins/workspace/rust-sgx-ci/Raoul/rust/build/x86_64-unknown-linux-gnu/test/run-make/dump-ice-to-disk/dump-ice-to-disk/*
/home/jenkins/workspace/rust-sgx-ci/Raoul/rust/build/x86_64-unknown-linux-gnu/stage1/bin/rustc: error while loading shared libraries: librustc_driver-fa98927b935b2881.so: cannot open shared object file: No such file or directory
/home/jenkins/workspace/rust-sgx-ci/Raoul/rust/build/x86_64-unknown-linux-gnu/stage1/bin/rustc: error while loading shared libraries: librustc_driver-fa98927b935b2881.so: cannot open shared object file: No such file or directory
/home/jenkins/workspace/rust-sgx-ci/Raoul/rust/build/x86_64-unknown-linux-gnu/stage1/bin/rustc: error while loading shared libraries: librustc_driver-fa98927b935b2881.so: cannot open shared object file: No such file or directory
/home/jenkins/workspace/rust-sgx-ci/Raoul/rust/build/x86_64-unknown-linux-gnu/stage1/bin/rustc: error while loading shared libraries: librustc_driver-fa98927b935b2881.so: cannot open shared object file: No such file or directory
```
Setting the LD_LIBRARY_PATH explicitly to `$(HOST_RPATH_DIR)` in these tests Makefiles resolves the issue. The `thumb-none-qemu` and `thumb-none-cortex-m` run-make tests do something similar.
cc: ```@jethrogb``` ```@vn971``` ```@mkaynov```
Map RPITIT's opaque type bounds back from projections to opaques
An RPITIT in a program's AST is eventually translated into both a projection GAT and an opaque. The opaque is used for default trait methods, like:
```
trait Foo {
fn bar() -> impl Sized { 0i32 }
}
```
The item bounds for both the projection and opaque are identical, and both have a *projection* self ty. This is mostly okay, since we can normalize this projection within the default trait method body to the opaque, but it does two things:
1. it leads to bugs in places where we don't normalize item bounds, like `deduce_future_output_from_obligations`
2. it leads to extra match arms that are both suspicious looking and also easy to miss
This PR maps the opaque type bounds of the RPITIT's *opaque* back to the opaque's self type to avoid this quirk. Then we can fix the UI test for #108304 (1.) and also remove a bunch of match arms (2.).
Fixes#108304
r? `@spastorino`
Check lazy type aliases for well-formedness
Previously we didn't check if `T: Mul` holds given lazy `type Alias<T> = <T as Mul>::Output;`.
Now we do. It only makes sense.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Only golden arches
A number of tests in the test suite have applied the somewhat comedic practice of ignoring *every* single target architecture that rustc has ever supported. This is silly, when they are clearly tests built around certain assumptions, primarily of the x86-64 architecture, or in one case when they are only relevant for a handful of 32-bit targets. This has even resulted, in one case, in the same architecture being ignored twice!
Document these better, and use a "revision + only-arch" idiom in the test headers to denote the "golden arches" that actually pass these tests.
Don't install default projection bound for return-position `impl Trait` in trait methods with no body
This ensures that we never try to project to an opaque type in a trait method that has no body to infer its hidden type, which means we never later call `type_of` on that opaque. This is because opaque types try to reveal their hidden type when proving auto traits.
I thought about this a lot, and I think this is a fix that's less likely to introduce other strange downstream ICEs than #113461.
Fixes#113434
r? `@spastorino`
Fix invalid suggestion for mismatched types in closure arguments
This PR fixes the invalid suggestion for mismatched types in closure arguments.
The invalid suggestion came from a wrongly created span in the parser for closure arguments that don't have a type specified. Specifically, the span in this case was the last token span, but in the case of tuples, the span represented the last parenthesis instead of the whole tuple, which is fixed by taking the more accurate span of the pattern.
There is one unfortunate downside of this fix, it worsens even more the diagnostic for mismatched types in closure args without an explicit type. This happens because there is no correct span for implied inferred type. I tried also fixing this but it's a rabbit hole.
Fixes https://github.com/rust-lang/rust/issues/114180
`const`-stablilize `NonNull::as_ref`
A bunch of pointer to reference methods have been made unstably const some time ago in #91823 under the feature gate `const_ptr_as_ref`.
Out of these, `NonNull::as_ref` can be implemented as a `const fn` in stable rust today, so i hereby propose to const stabilize this function only.
Tracking issue: #91822
``@rustbot`` label +T-libs-api -T-libs
The invalid suggestion came from a wrongly created span in `rustc_parse'
for closure arguments that didn't have a type specified. Specifically,
the span in this case was the last token span, but in the case of
tuples, the span represented the last parenthesis instead of the whole
tuple, which is fixed by taking the more accurate span of the pattern.
In the basic case, simply do the string substitution.
For one case with many instances, capture the Itanium-
mangled filename and assert its reuse instead.