miri weak memory emulation: put previous value into initial store buffer
Fixes https://github.com/rust-lang/miri/issues/2164 by doing a read before each atomic write so that we can initialize the store buffer. The read suppresses memory access hooks and UB exceptions, to avoid otherwise influencing the program behavior. If the read fails, we store that as `None` in the store buffer, so that when an atomic read races with the first atomic write to some memory and previously the memory was uninitialized, we can report UB due to reading uninit memory.
``@cbeuw`` this changes a bit the way we initialize the store buffers. Not sure if you still remember all this code, but if you could have a look to make sure this still makes sense, that would be great. :)
r? ``@saethlin``
const checking: properly compute the set of transient locals
For const-checking the MIR of a const/static initializer, we have to know the set of "transient" locals. The reason for this is that creating a mutable (or interior mutable) reference to a transient local is "safe" in the sense that this reference cannot possibly end up in the final value of the const -- even if it is turned into a raw pointer and stored in a union, we will see that pointer during interning and reliably reject it as dangling.
So far, we determined the set of transient locals as "locals that have a `StorageDead` somewhere". But that's not quite right -- if we had MIR like
```rust
StorageLive(_5);
StorageDead(_5);
StorageLive(_5);
// no further storage annotations for _5
```
Then we'd consider `_5` to be "transient", but it is not actually transient.
We do not currently generate such MIR, but I feel uneasy relying on subtle invariants like this. So this PR implements a proper analysis for computing the set of "transient" locals: a local is "transient" if it is guaranteed dead at all `Return` terminators.
Cc `@cjgillot`
make writes_through_immutable_pointer a hard error
This turns the lint added in https://github.com/rust-lang/rust/pull/118324 into a hard error. This has been reported in cargo's future-compat reports since Rust 1.76 (released in February). Given that const_mut_refs is still unstable, it should be impossible to even hit this error on stable: we did accidentally stabilize some functions that can cause this error, but that got reverted in https://github.com/rust-lang/rust/pull/117905. Still, let's do a crater run just to be sure.
Given that this should only affect unstable code, I don't think it needs an FCP, but let's Cc ``@rust-lang/lang`` anyway -- any objection to making this unambiguous UB into a hard error during const-eval? This can be viewed as part of https://github.com/rust-lang/rust/pull/129195 which is already nominated for discussion.
Use `bool` in favor of `Option<()>` for diagnostics
We originally only supported `Option<()>` for optional notes/labels, but we now support `bool`. Let's use that, since it usually leads to more readable code.
I'm not removing the support from the derive macro, though I guess we could error on it... 🤔
Shrink `TyKind::FnPtr`.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and `FnHeader`, which can be packed more efficiently. This reduces the size of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms. This reduces peak memory usage by a few percent on some benchmarks. It also reduces cache misses and page faults similarly, though this doesn't translate to clear cycles or wall-time improvements on CI.
r? `@compiler-errors`
miri: make vtable addresses not globally unique
Miri currently gives vtables a unique global address. That's not actually matching reality though. So this PR enables Miri to generate different addresses for the same type-trait pair.
To avoid generating an unbounded number of `AllocId` (and consuming unbounded amounts of memory), we use the "salt" technique that we also already use for giving constants non-unique addresses: the cache is keyed on a "salt" value n top of the actually relevant key, and Miri picks a random salt (currently in the range `0..16`) each time it needs to choose an `AllocId` for one of these globals -- that means we'll get up to 16 different addresses for each vtable. The salt scheme is integrated into the global allocation deduplication logic in `tcx`, and also used for functions and string literals. (So this also fixes the problem that casting the same function to a fn ptr over and over will consume unbounded memory.)
r? `@saethlin`
Fixes https://github.com/rust-lang/miri/issues/3737
Normalize struct tail properly for `dyn` ptr-to-ptr casting in new solver
Realized that the new solver didn't handle ptr-to-ptr casting correctly.
r? lcnr
Built on #128694
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and
`FnHeader`, which can be packed more efficiently. This reduces the size
of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms.
This reduces peak memory usage by a few percent on some benchmarks. It
also reduces cache misses and page faults similarly, though this doesn't
translate to clear cycles or wall-time improvements on CI.
Pass the right `ParamEnv` to `might_permit_raw_init_strict`
Fixes#119620
`might_permit_raw_init_strict` currently passes an empty `ParamEnv` to the `InterpCx`, instead of the actual `ParamEnv` that was passed in to `check_validity_requirement` at callsite.
This leads to ICEs such as the linked issue where for `UnsafeCell<*mut T>` we initially get the layout with the right `ParamEnv` (which suceeds because it can prove that `T: Sized` and therefore `UnsafeCell<*mut T>` has a known layout) but then do the rest with an empty `ParamEnv` where `T: Sized` is not known to hold so getting the layout for `*mut T` later fails.
This runs into an assertion in other layout code where it's making the (valid) assumption that, when we already have a layout for a struct (`UnsafeCell<*mut T>`), getting the layout of one of its fields (`*mut T`) should also succeed, which wasn't the case here due to using the wrong `ParamEnv`.
So, this PR changes it to just use the same `ParamEnv` all the way throughout.
MIR required_consts, mentioned_items: ensure we do not forget to fill these lists
Bodies initially get created with empty required_consts and mentioned_items, but at some point those should be filled. Make sure we notice when that is forgotten.
raw_eq: using it on bytes with provenance is not UB (outside const-eval)
The current behavior of raw_eq violates provenance monotonicity. See https://github.com/rust-lang/rust/pull/124921 for an explanation of provenance monotonicity. It is violated in raw_eq because comparing bytes without provenance is well-defined, but adding provenance makes the operation UB.
So remove the no-provenance requirement from raw_eq. However, the requirement stays in-place for compile-time invocations of raw_eq, that indeed cannot deal with provenance.
Cc `@rust-lang/opsem`