mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-25 08:13:41 +00:00
interpret: refactor function call handling to be better-abstracted
This commit is contained in:
parent
8c7e0e1608
commit
522af10ccc
@ -73,7 +73,9 @@ fn eval_body_using_ecx<'tcx, R: InterpretationResult<'tcx>>(
|
||||
cid.promoted.map_or_else(String::new, |p| format!("::{p:?}"))
|
||||
);
|
||||
|
||||
ecx.push_stack_frame(
|
||||
// This can't use `init_stack_frame` since `body` is not a function,
|
||||
// so computing its ABI would fail. It's also not worth it since there are no arguments to pass.
|
||||
ecx.push_stack_frame_raw(
|
||||
cid.instance,
|
||||
body,
|
||||
&ret.clone().into(),
|
||||
|
@ -24,8 +24,9 @@ use crate::errors::{LongRunning, LongRunningWarn};
|
||||
use crate::fluent_generated as fluent;
|
||||
use crate::interpret::{
|
||||
self, compile_time_machine, err_ub, throw_exhaust, throw_inval, throw_ub_custom, throw_unsup,
|
||||
throw_unsup_format, AllocId, AllocRange, ConstAllocation, CtfeProvenance, FnArg, FnVal, Frame,
|
||||
throw_unsup_format, AllocId, AllocRange, ConstAllocation, CtfeProvenance, FnArg, Frame,
|
||||
GlobalAlloc, ImmTy, InterpCx, InterpResult, MPlaceTy, OpTy, Pointer, PointerArithmetic, Scalar,
|
||||
StackPopCleanup,
|
||||
};
|
||||
|
||||
/// When hitting this many interpreted terminators we emit a deny by default lint
|
||||
@ -306,17 +307,15 @@ impl<'tcx> CompileTimeInterpCx<'tcx> {
|
||||
let align = ImmTy::from_uint(target_align, args[1].layout).into();
|
||||
let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
|
||||
|
||||
// We replace the entire function call with a "tail call".
|
||||
// Note that this happens before the frame of the original function
|
||||
// is pushed on the stack.
|
||||
self.eval_fn_call(
|
||||
FnVal::Instance(instance),
|
||||
(CallAbi::Rust, fn_abi),
|
||||
// Push the stack frame with our own adjusted arguments.
|
||||
self.init_stack_frame(
|
||||
instance,
|
||||
self.load_mir(instance.def, None)?,
|
||||
fn_abi,
|
||||
&[FnArg::Copy(addr), FnArg::Copy(align)],
|
||||
/* with_caller_location = */ false,
|
||||
dest,
|
||||
ret,
|
||||
mir::UnwindAction::Unreachable,
|
||||
StackPopCleanup::Goto { ret, unwind: mir::UnwindAction::Unreachable },
|
||||
)?;
|
||||
Ok(ControlFlow::Break(()))
|
||||
} else {
|
||||
|
@ -1,24 +1,23 @@
|
||||
//! Manages calling a concrete function (with known MIR body) with argument passing,
|
||||
//! and returning the return value to the caller.
|
||||
use std::borrow::Cow;
|
||||
|
||||
use either::Either;
|
||||
use either::{Left, Right};
|
||||
use rustc_middle::ty::layout::{FnAbiOf, IntegerExt, LayoutOf, TyAndLayout};
|
||||
use rustc_middle::ty::{self, AdtDef, Instance, Ty};
|
||||
use rustc_middle::{bug, mir, span_bug};
|
||||
use rustc_span::source_map::Spanned;
|
||||
use rustc_span::sym;
|
||||
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
|
||||
use rustc_target::abi::{self, FieldIdx, Integer};
|
||||
use rustc_target::spec::abi::Abi;
|
||||
use tracing::trace;
|
||||
use tracing::{info, instrument, trace};
|
||||
|
||||
use super::{
|
||||
throw_ub, throw_ub_custom, throw_unsup_format, CtfeProvenance, FnVal, ImmTy, InterpCx,
|
||||
InterpResult, MPlaceTy, Machine, OpTy, PlaceTy, Projectable, Provenance, Scalar,
|
||||
StackPopCleanup,
|
||||
InterpResult, MPlaceTy, Machine, OpTy, PlaceTy, Projectable, Provenance, ReturnAction, Scalar,
|
||||
StackPopCleanup, StackPopInfo,
|
||||
};
|
||||
use crate::fluent_generated as fluent;
|
||||
use crate::interpret::eval_context::StackPopInfo;
|
||||
use crate::interpret::ReturnAction;
|
||||
|
||||
/// An argment passed to a function.
|
||||
#[derive(Clone, Debug)]
|
||||
@ -39,15 +38,6 @@ impl<'tcx, Prov: Provenance> FnArg<'tcx, Prov> {
|
||||
}
|
||||
}
|
||||
|
||||
struct EvaluatedCalleeAndArgs<'tcx, M: Machine<'tcx>> {
|
||||
callee: FnVal<'tcx, M::ExtraFnVal>,
|
||||
args: Vec<FnArg<'tcx, M::Provenance>>,
|
||||
fn_sig: ty::FnSig<'tcx>,
|
||||
fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
|
||||
/// True if the function is marked as `#[track_caller]` ([`ty::InstanceKind::requires_caller_location`])
|
||||
with_caller_location: bool,
|
||||
}
|
||||
|
||||
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
/// Make a copy of the given fn_arg. Any `InPlace` are degenerated to copies, no protection of the
|
||||
/// original memory occurs.
|
||||
@ -67,7 +57,8 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
args.iter().map(|fn_arg| self.copy_fn_arg(fn_arg)).collect()
|
||||
}
|
||||
|
||||
pub fn fn_arg_field(
|
||||
/// Helper function for argument untupling.
|
||||
pub(super) fn fn_arg_field(
|
||||
&self,
|
||||
arg: &FnArg<'tcx, M::Provenance>,
|
||||
field: usize,
|
||||
@ -78,190 +69,6 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
})
|
||||
}
|
||||
|
||||
pub(super) fn eval_terminator(
|
||||
&mut self,
|
||||
terminator: &mir::Terminator<'tcx>,
|
||||
) -> InterpResult<'tcx> {
|
||||
use rustc_middle::mir::TerminatorKind::*;
|
||||
match terminator.kind {
|
||||
Return => {
|
||||
self.return_from_current_stack_frame(/* unwinding */ false)?
|
||||
}
|
||||
|
||||
Goto { target } => self.go_to_block(target),
|
||||
|
||||
SwitchInt { ref discr, ref targets } => {
|
||||
let discr = self.read_immediate(&self.eval_operand(discr, None)?)?;
|
||||
trace!("SwitchInt({:?})", *discr);
|
||||
|
||||
// Branch to the `otherwise` case by default, if no match is found.
|
||||
let mut target_block = targets.otherwise();
|
||||
|
||||
for (const_int, target) in targets.iter() {
|
||||
// Compare using MIR BinOp::Eq, to also support pointer values.
|
||||
// (Avoiding `self.binary_op` as that does some redundant layout computation.)
|
||||
let res = self.binary_op(
|
||||
mir::BinOp::Eq,
|
||||
&discr,
|
||||
&ImmTy::from_uint(const_int, discr.layout),
|
||||
)?;
|
||||
if res.to_scalar().to_bool()? {
|
||||
target_block = target;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
self.go_to_block(target_block);
|
||||
}
|
||||
|
||||
Call {
|
||||
ref func,
|
||||
ref args,
|
||||
destination,
|
||||
target,
|
||||
unwind,
|
||||
call_source: _,
|
||||
fn_span: _,
|
||||
} => {
|
||||
let old_stack = self.frame_idx();
|
||||
let old_loc = self.frame().loc;
|
||||
|
||||
let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
|
||||
self.eval_callee_and_args(terminator, func, args)?;
|
||||
|
||||
let destination = self.force_allocation(&self.eval_place(destination)?)?;
|
||||
self.eval_fn_call(
|
||||
callee,
|
||||
(fn_sig.abi, fn_abi),
|
||||
&args,
|
||||
with_caller_location,
|
||||
&destination,
|
||||
target,
|
||||
if fn_abi.can_unwind { unwind } else { mir::UnwindAction::Unreachable },
|
||||
)?;
|
||||
// Sanity-check that `eval_fn_call` either pushed a new frame or
|
||||
// did a jump to another block.
|
||||
if self.frame_idx() == old_stack && self.frame().loc == old_loc {
|
||||
span_bug!(terminator.source_info.span, "evaluating this call made no progress");
|
||||
}
|
||||
}
|
||||
|
||||
TailCall { ref func, ref args, fn_span: _ } => {
|
||||
let old_frame_idx = self.frame_idx();
|
||||
|
||||
let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
|
||||
self.eval_callee_and_args(terminator, func, args)?;
|
||||
|
||||
self.eval_fn_tail_call(callee, (fn_sig.abi, fn_abi), &args, with_caller_location)?;
|
||||
|
||||
if self.frame_idx() != old_frame_idx {
|
||||
span_bug!(
|
||||
terminator.source_info.span,
|
||||
"evaluating this tail call pushed a new stack frame"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Drop { place, target, unwind, replace: _ } => {
|
||||
let place = self.eval_place(place)?;
|
||||
let instance = Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
|
||||
if let ty::InstanceKind::DropGlue(_, None) = instance.def {
|
||||
// This is the branch we enter if and only if the dropped type has no drop glue
|
||||
// whatsoever. This can happen as a result of monomorphizing a drop of a
|
||||
// generic. In order to make sure that generic and non-generic code behaves
|
||||
// roughly the same (and in keeping with Mir semantics) we do nothing here.
|
||||
self.go_to_block(target);
|
||||
return Ok(());
|
||||
}
|
||||
trace!("TerminatorKind::drop: {:?}, type {}", place, place.layout.ty);
|
||||
self.drop_in_place(&place, instance, target, unwind)?;
|
||||
}
|
||||
|
||||
Assert { ref cond, expected, ref msg, target, unwind } => {
|
||||
let ignored =
|
||||
M::ignore_optional_overflow_checks(self) && msg.is_optional_overflow_check();
|
||||
let cond_val = self.read_scalar(&self.eval_operand(cond, None)?)?.to_bool()?;
|
||||
if ignored || expected == cond_val {
|
||||
self.go_to_block(target);
|
||||
} else {
|
||||
M::assert_panic(self, msg, unwind)?;
|
||||
}
|
||||
}
|
||||
|
||||
UnwindTerminate(reason) => {
|
||||
M::unwind_terminate(self, reason)?;
|
||||
}
|
||||
|
||||
// When we encounter Resume, we've finished unwinding
|
||||
// cleanup for the current stack frame. We pop it in order
|
||||
// to continue unwinding the next frame
|
||||
UnwindResume => {
|
||||
trace!("unwinding: resuming from cleanup");
|
||||
// By definition, a Resume terminator means
|
||||
// that we're unwinding
|
||||
self.return_from_current_stack_frame(/* unwinding */ true)?;
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// It is UB to ever encounter this.
|
||||
Unreachable => throw_ub!(Unreachable),
|
||||
|
||||
// These should never occur for MIR we actually run.
|
||||
FalseEdge { .. } | FalseUnwind { .. } | Yield { .. } | CoroutineDrop => span_bug!(
|
||||
terminator.source_info.span,
|
||||
"{:#?} should have been eliminated by MIR pass",
|
||||
terminator.kind
|
||||
),
|
||||
|
||||
InlineAsm { template, ref operands, options, ref targets, .. } => {
|
||||
M::eval_inline_asm(self, template, operands, options, targets)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Evaluate the arguments of a function call
|
||||
pub(super) fn eval_fn_call_arguments(
|
||||
&self,
|
||||
ops: &[Spanned<mir::Operand<'tcx>>],
|
||||
) -> InterpResult<'tcx, Vec<FnArg<'tcx, M::Provenance>>> {
|
||||
ops.iter()
|
||||
.map(|op| {
|
||||
let arg = match &op.node {
|
||||
mir::Operand::Copy(_) | mir::Operand::Constant(_) => {
|
||||
// Make a regular copy.
|
||||
let op = self.eval_operand(&op.node, None)?;
|
||||
FnArg::Copy(op)
|
||||
}
|
||||
mir::Operand::Move(place) => {
|
||||
// If this place lives in memory, preserve its location.
|
||||
// We call `place_to_op` which will be an `MPlaceTy` whenever there exists
|
||||
// an mplace for this place. (This is in contrast to `PlaceTy::as_mplace_or_local`
|
||||
// which can return a local even if that has an mplace.)
|
||||
let place = self.eval_place(*place)?;
|
||||
let op = self.place_to_op(&place)?;
|
||||
|
||||
match op.as_mplace_or_imm() {
|
||||
Either::Left(mplace) => FnArg::InPlace(mplace),
|
||||
Either::Right(_imm) => {
|
||||
// This argument doesn't live in memory, so there's no place
|
||||
// to make inaccessible during the call.
|
||||
// We rely on there not being any stray `PlaceTy` that would let the
|
||||
// caller directly access this local!
|
||||
// This is also crucial for tail calls, where we want the `FnArg` to
|
||||
// stay valid when the old stack frame gets popped.
|
||||
FnArg::Copy(op)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
Ok(arg)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Find the wrapped inner type of a transparent wrapper.
|
||||
/// Must not be called on 1-ZST (as they don't have a uniquely defined "wrapped field").
|
||||
///
|
||||
@ -503,46 +310,209 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Shared part of `Call` and `TailCall` implementation — finding and evaluating all the
|
||||
/// necessary information about callee and arguments to make a call.
|
||||
fn eval_callee_and_args(
|
||||
&self,
|
||||
terminator: &mir::Terminator<'tcx>,
|
||||
func: &mir::Operand<'tcx>,
|
||||
args: &[Spanned<mir::Operand<'tcx>>],
|
||||
) -> InterpResult<'tcx, EvaluatedCalleeAndArgs<'tcx, M>> {
|
||||
let func = self.eval_operand(func, None)?;
|
||||
let args = self.eval_fn_call_arguments(args)?;
|
||||
|
||||
let fn_sig_binder = func.layout.ty.fn_sig(*self.tcx);
|
||||
let fn_sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, fn_sig_binder);
|
||||
let extra_args = &args[fn_sig.inputs().len()..];
|
||||
let extra_args =
|
||||
self.tcx.mk_type_list_from_iter(extra_args.iter().map(|arg| arg.layout().ty));
|
||||
|
||||
let (callee, fn_abi, with_caller_location) = match *func.layout.ty.kind() {
|
||||
ty::FnPtr(_sig) => {
|
||||
let fn_ptr = self.read_pointer(&func)?;
|
||||
let fn_val = self.get_ptr_fn(fn_ptr)?;
|
||||
(fn_val, self.fn_abi_of_fn_ptr(fn_sig_binder, extra_args)?, false)
|
||||
}
|
||||
ty::FnDef(def_id, args) => {
|
||||
let instance = self.resolve(def_id, args)?;
|
||||
(
|
||||
FnVal::Instance(instance),
|
||||
self.fn_abi_of_instance(instance, extra_args)?,
|
||||
instance.def.requires_caller_location(*self.tcx),
|
||||
)
|
||||
}
|
||||
_ => {
|
||||
span_bug!(terminator.source_info.span, "invalid callee of type {}", func.layout.ty)
|
||||
}
|
||||
};
|
||||
|
||||
Ok(EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location })
|
||||
fn check_fn_target_features(&self, instance: ty::Instance<'tcx>) -> InterpResult<'tcx, ()> {
|
||||
// Calling functions with `#[target_feature]` is not unsafe on WASM, see #84988
|
||||
let attrs = self.tcx.codegen_fn_attrs(instance.def_id());
|
||||
if !self.tcx.sess.target.is_like_wasm
|
||||
&& attrs
|
||||
.target_features
|
||||
.iter()
|
||||
.any(|feature| !self.tcx.sess.target_features.contains(feature))
|
||||
{
|
||||
throw_ub_custom!(
|
||||
fluent::const_eval_unavailable_target_features_for_fn,
|
||||
unavailable_feats = attrs
|
||||
.target_features
|
||||
.iter()
|
||||
.filter(|&feature| !self.tcx.sess.target_features.contains(feature))
|
||||
.fold(String::new(), |mut s, feature| {
|
||||
if !s.is_empty() {
|
||||
s.push_str(", ");
|
||||
}
|
||||
s.push_str(feature.as_str());
|
||||
s
|
||||
}),
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Call this function -- pushing the stack frame and initializing the arguments.
|
||||
/// The main entry point for creating a new stack frame: performs ABI checks and initializes
|
||||
/// arguments.
|
||||
#[instrument(skip(self), level = "trace")]
|
||||
pub fn init_stack_frame(
|
||||
&mut self,
|
||||
instance: Instance<'tcx>,
|
||||
body: &'tcx mir::Body<'tcx>,
|
||||
caller_fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
|
||||
args: &[FnArg<'tcx, M::Provenance>],
|
||||
with_caller_location: bool,
|
||||
destination: &MPlaceTy<'tcx, M::Provenance>,
|
||||
mut stack_pop: StackPopCleanup,
|
||||
) -> InterpResult<'tcx> {
|
||||
// Compute callee information.
|
||||
// FIXME: for variadic support, do we have to somehow determine callee's extra_args?
|
||||
let callee_fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
|
||||
|
||||
if callee_fn_abi.c_variadic || caller_fn_abi.c_variadic {
|
||||
throw_unsup_format!("calling a c-variadic function is not supported");
|
||||
}
|
||||
|
||||
if M::enforce_abi(self) {
|
||||
if caller_fn_abi.conv != callee_fn_abi.conv {
|
||||
throw_ub_custom!(
|
||||
fluent::const_eval_incompatible_calling_conventions,
|
||||
callee_conv = format!("{:?}", callee_fn_abi.conv),
|
||||
caller_conv = format!("{:?}", caller_fn_abi.conv),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// Check that all target features required by the callee (i.e., from
|
||||
// the attribute `#[target_feature(enable = ...)]`) are enabled at
|
||||
// compile time.
|
||||
self.check_fn_target_features(instance)?;
|
||||
|
||||
if !callee_fn_abi.can_unwind {
|
||||
// The callee cannot unwind, so force the `Unreachable` unwind handling.
|
||||
match &mut stack_pop {
|
||||
StackPopCleanup::Root { .. } => {}
|
||||
StackPopCleanup::Goto { unwind, .. } => {
|
||||
*unwind = mir::UnwindAction::Unreachable;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self.push_stack_frame_raw(instance, body, destination, stack_pop)?;
|
||||
|
||||
// If an error is raised here, pop the frame again to get an accurate backtrace.
|
||||
// To this end, we wrap it all in a `try` block.
|
||||
let res: InterpResult<'tcx> = try {
|
||||
trace!(
|
||||
"caller ABI: {:#?}, args: {:#?}",
|
||||
caller_fn_abi,
|
||||
args.iter()
|
||||
.map(|arg| (
|
||||
arg.layout().ty,
|
||||
match arg {
|
||||
FnArg::Copy(op) => format!("copy({op:?})"),
|
||||
FnArg::InPlace(mplace) => format!("in-place({mplace:?})"),
|
||||
}
|
||||
))
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
trace!(
|
||||
"spread_arg: {:?}, locals: {:#?}",
|
||||
body.spread_arg,
|
||||
body.args_iter()
|
||||
.map(|local| (
|
||||
local,
|
||||
self.layout_of_local(self.frame(), local, None).unwrap().ty,
|
||||
))
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
|
||||
// In principle, we have two iterators: Where the arguments come from, and where
|
||||
// they go to.
|
||||
|
||||
// The "where they come from" part is easy, we expect the caller to do any special handling
|
||||
// that might be required here (e.g. for untupling).
|
||||
// If `with_caller_location` is set we pretend there is an extra argument (that
|
||||
// we will not pass).
|
||||
assert_eq!(
|
||||
args.len() + if with_caller_location { 1 } else { 0 },
|
||||
caller_fn_abi.args.len(),
|
||||
"mismatch between caller ABI and caller arguments",
|
||||
);
|
||||
let mut caller_args = args
|
||||
.iter()
|
||||
.zip(caller_fn_abi.args.iter())
|
||||
.filter(|arg_and_abi| !matches!(arg_and_abi.1.mode, PassMode::Ignore));
|
||||
|
||||
// Now we have to spread them out across the callee's locals,
|
||||
// taking into account the `spread_arg`. If we could write
|
||||
// this is a single iterator (that handles `spread_arg`), then
|
||||
// `pass_argument` would be the loop body. It takes care to
|
||||
// not advance `caller_iter` for ignored arguments.
|
||||
let mut callee_args_abis = callee_fn_abi.args.iter();
|
||||
for local in body.args_iter() {
|
||||
// Construct the destination place for this argument. At this point all
|
||||
// locals are still dead, so we cannot construct a `PlaceTy`.
|
||||
let dest = mir::Place::from(local);
|
||||
// `layout_of_local` does more than just the instantiation we need to get the
|
||||
// type, but the result gets cached so this avoids calling the instantiation
|
||||
// query *again* the next time this local is accessed.
|
||||
let ty = self.layout_of_local(self.frame(), local, None)?.ty;
|
||||
if Some(local) == body.spread_arg {
|
||||
// Make the local live once, then fill in the value field by field.
|
||||
self.storage_live(local)?;
|
||||
// Must be a tuple
|
||||
let ty::Tuple(fields) = ty.kind() else {
|
||||
span_bug!(self.cur_span(), "non-tuple type for `spread_arg`: {ty}")
|
||||
};
|
||||
for (i, field_ty) in fields.iter().enumerate() {
|
||||
let dest = dest.project_deeper(
|
||||
&[mir::ProjectionElem::Field(FieldIdx::from_usize(i), field_ty)],
|
||||
*self.tcx,
|
||||
);
|
||||
let callee_abi = callee_args_abis.next().unwrap();
|
||||
self.pass_argument(
|
||||
&mut caller_args,
|
||||
callee_abi,
|
||||
&dest,
|
||||
field_ty,
|
||||
/* already_live */ true,
|
||||
)?;
|
||||
}
|
||||
} else {
|
||||
// Normal argument. Cannot mark it as live yet, it might be unsized!
|
||||
let callee_abi = callee_args_abis.next().unwrap();
|
||||
self.pass_argument(
|
||||
&mut caller_args,
|
||||
callee_abi,
|
||||
&dest,
|
||||
ty,
|
||||
/* already_live */ false,
|
||||
)?;
|
||||
}
|
||||
}
|
||||
// If the callee needs a caller location, pretend we consume one more argument from the ABI.
|
||||
if instance.def.requires_caller_location(*self.tcx) {
|
||||
callee_args_abis.next().unwrap();
|
||||
}
|
||||
// Now we should have no more caller args or callee arg ABIs
|
||||
assert!(
|
||||
callee_args_abis.next().is_none(),
|
||||
"mismatch between callee ABI and callee body arguments"
|
||||
);
|
||||
if caller_args.next().is_some() {
|
||||
throw_ub_custom!(fluent::const_eval_too_many_caller_args);
|
||||
}
|
||||
// Don't forget to check the return type!
|
||||
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret)? {
|
||||
throw_ub!(AbiMismatchReturn {
|
||||
caller_ty: caller_fn_abi.ret.layout.ty,
|
||||
callee_ty: callee_fn_abi.ret.layout.ty
|
||||
});
|
||||
}
|
||||
|
||||
// Protect return place for in-place return value passing.
|
||||
M::protect_in_place_function_argument(self, &destination)?;
|
||||
|
||||
// Don't forget to mark "initially live" locals as live.
|
||||
self.storage_live_for_always_live_locals()?;
|
||||
};
|
||||
match res {
|
||||
Err(err) => {
|
||||
// Don't show the incomplete stack frame in the error stacktrace.
|
||||
self.stack_mut().pop();
|
||||
Err(err)
|
||||
}
|
||||
Ok(()) => Ok(()),
|
||||
}
|
||||
}
|
||||
|
||||
/// Initiate a call to this function -- pushing the stack frame and initializing the arguments.
|
||||
///
|
||||
/// `caller_fn_abi` is used to determine if all the arguments are passed the proper way.
|
||||
/// However, we also need `caller_abi` to determine if we need to do untupling of arguments.
|
||||
@ -550,7 +520,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
/// `with_caller_location` indicates whether the caller passed a caller location. Miri
|
||||
/// implements caller locations without argument passing, but to match `FnAbi` we need to know
|
||||
/// when those arguments are present.
|
||||
pub(crate) fn eval_fn_call(
|
||||
pub(super) fn init_fn_call(
|
||||
&mut self,
|
||||
fn_val: FnVal<'tcx, M::ExtraFnVal>,
|
||||
(caller_abi, caller_fn_abi): (Abi, &FnAbi<'tcx, Ty<'tcx>>),
|
||||
@ -558,9 +528,9 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
with_caller_location: bool,
|
||||
destination: &MPlaceTy<'tcx, M::Provenance>,
|
||||
target: Option<mir::BasicBlock>,
|
||||
mut unwind: mir::UnwindAction,
|
||||
unwind: mir::UnwindAction,
|
||||
) -> InterpResult<'tcx> {
|
||||
trace!("eval_fn_call: {:#?}", fn_val);
|
||||
trace!("init_fn_call: {:#?}", fn_val);
|
||||
|
||||
let instance = match fn_val {
|
||||
FnVal::Instance(instance) => instance,
|
||||
@ -591,7 +561,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
)? {
|
||||
assert!(!self.tcx.intrinsic(fallback.def_id()).unwrap().must_be_overridden);
|
||||
assert!(matches!(fallback.def, ty::InstanceKind::Item(_)));
|
||||
return self.eval_fn_call(
|
||||
return self.init_fn_call(
|
||||
FnVal::Instance(fallback),
|
||||
(caller_abi, caller_fn_abi),
|
||||
args,
|
||||
@ -630,189 +600,35 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
// Compute callee information using the `instance` returned by
|
||||
// `find_mir_or_eval_fn`.
|
||||
// FIXME: for variadic support, do we have to somehow determine callee's extra_args?
|
||||
let callee_fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
|
||||
|
||||
if callee_fn_abi.c_variadic || caller_fn_abi.c_variadic {
|
||||
throw_unsup_format!("calling a c-variadic function is not supported");
|
||||
}
|
||||
|
||||
if M::enforce_abi(self) {
|
||||
if caller_fn_abi.conv != callee_fn_abi.conv {
|
||||
throw_ub_custom!(
|
||||
fluent::const_eval_incompatible_calling_conventions,
|
||||
callee_conv = format!("{:?}", callee_fn_abi.conv),
|
||||
caller_conv = format!("{:?}", caller_fn_abi.conv),
|
||||
// Special handling for the closure ABI: untuple the last argument.
|
||||
let args: Cow<'_, [FnArg<'tcx, M::Provenance>]> =
|
||||
if caller_abi == Abi::RustCall && !args.is_empty() {
|
||||
// Untuple
|
||||
let (untuple_arg, args) = args.split_last().unwrap();
|
||||
trace!("init_fn_call: Will pass last argument by untupling");
|
||||
Cow::from(
|
||||
args.iter()
|
||||
.map(|a| Ok(a.clone()))
|
||||
.chain(
|
||||
(0..untuple_arg.layout().fields.count())
|
||||
.map(|i| self.fn_arg_field(untuple_arg, i)),
|
||||
)
|
||||
.collect::<InterpResult<'_, Vec<_>>>()?,
|
||||
)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Plain arg passing
|
||||
Cow::from(args)
|
||||
};
|
||||
|
||||
// Check that all target features required by the callee (i.e., from
|
||||
// the attribute `#[target_feature(enable = ...)]`) are enabled at
|
||||
// compile time.
|
||||
self.check_fn_target_features(instance)?;
|
||||
|
||||
if !callee_fn_abi.can_unwind {
|
||||
// The callee cannot unwind, so force the `Unreachable` unwind handling.
|
||||
unwind = mir::UnwindAction::Unreachable;
|
||||
}
|
||||
|
||||
self.push_stack_frame(
|
||||
self.init_stack_frame(
|
||||
instance,
|
||||
body,
|
||||
caller_fn_abi,
|
||||
&args,
|
||||
with_caller_location,
|
||||
destination,
|
||||
StackPopCleanup::Goto { ret: target, unwind },
|
||||
)?;
|
||||
|
||||
// If an error is raised here, pop the frame again to get an accurate backtrace.
|
||||
// To this end, we wrap it all in a `try` block.
|
||||
let res: InterpResult<'tcx> = try {
|
||||
trace!(
|
||||
"caller ABI: {:?}, args: {:#?}",
|
||||
caller_abi,
|
||||
args.iter()
|
||||
.map(|arg| (
|
||||
arg.layout().ty,
|
||||
match arg {
|
||||
FnArg::Copy(op) => format!("copy({op:?})"),
|
||||
FnArg::InPlace(mplace) => format!("in-place({mplace:?})"),
|
||||
}
|
||||
))
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
trace!(
|
||||
"spread_arg: {:?}, locals: {:#?}",
|
||||
body.spread_arg,
|
||||
body.args_iter()
|
||||
.map(|local| (
|
||||
local,
|
||||
self.layout_of_local(self.frame(), local, None).unwrap().ty,
|
||||
))
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
|
||||
// In principle, we have two iterators: Where the arguments come from, and where
|
||||
// they go to.
|
||||
|
||||
// For where they come from: If the ABI is RustCall, we untuple the
|
||||
// last incoming argument. These two iterators do not have the same type,
|
||||
// so to keep the code paths uniform we accept an allocation
|
||||
// (for RustCall ABI only).
|
||||
let caller_args: Cow<'_, [FnArg<'tcx, M::Provenance>]> =
|
||||
if caller_abi == Abi::RustCall && !args.is_empty() {
|
||||
// Untuple
|
||||
let (untuple_arg, args) = args.split_last().unwrap();
|
||||
trace!("eval_fn_call: Will pass last argument by untupling");
|
||||
Cow::from(
|
||||
args.iter()
|
||||
.map(|a| Ok(a.clone()))
|
||||
.chain(
|
||||
(0..untuple_arg.layout().fields.count())
|
||||
.map(|i| self.fn_arg_field(untuple_arg, i)),
|
||||
)
|
||||
.collect::<InterpResult<'_, Vec<_>>>()?,
|
||||
)
|
||||
} else {
|
||||
// Plain arg passing
|
||||
Cow::from(args)
|
||||
};
|
||||
// If `with_caller_location` is set we pretend there is an extra argument (that
|
||||
// we will not pass).
|
||||
assert_eq!(
|
||||
caller_args.len() + if with_caller_location { 1 } else { 0 },
|
||||
caller_fn_abi.args.len(),
|
||||
"mismatch between caller ABI and caller arguments",
|
||||
);
|
||||
let mut caller_args = caller_args
|
||||
.iter()
|
||||
.zip(caller_fn_abi.args.iter())
|
||||
.filter(|arg_and_abi| !matches!(arg_and_abi.1.mode, PassMode::Ignore));
|
||||
|
||||
// Now we have to spread them out across the callee's locals,
|
||||
// taking into account the `spread_arg`. If we could write
|
||||
// this is a single iterator (that handles `spread_arg`), then
|
||||
// `pass_argument` would be the loop body. It takes care to
|
||||
// not advance `caller_iter` for ignored arguments.
|
||||
let mut callee_args_abis = callee_fn_abi.args.iter();
|
||||
for local in body.args_iter() {
|
||||
// Construct the destination place for this argument. At this point all
|
||||
// locals are still dead, so we cannot construct a `PlaceTy`.
|
||||
let dest = mir::Place::from(local);
|
||||
// `layout_of_local` does more than just the instantiation we need to get the
|
||||
// type, but the result gets cached so this avoids calling the instantiation
|
||||
// query *again* the next time this local is accessed.
|
||||
let ty = self.layout_of_local(self.frame(), local, None)?.ty;
|
||||
if Some(local) == body.spread_arg {
|
||||
// Make the local live once, then fill in the value field by field.
|
||||
self.storage_live(local)?;
|
||||
// Must be a tuple
|
||||
let ty::Tuple(fields) = ty.kind() else {
|
||||
span_bug!(self.cur_span(), "non-tuple type for `spread_arg`: {ty}")
|
||||
};
|
||||
for (i, field_ty) in fields.iter().enumerate() {
|
||||
let dest = dest.project_deeper(
|
||||
&[mir::ProjectionElem::Field(
|
||||
FieldIdx::from_usize(i),
|
||||
field_ty,
|
||||
)],
|
||||
*self.tcx,
|
||||
);
|
||||
let callee_abi = callee_args_abis.next().unwrap();
|
||||
self.pass_argument(
|
||||
&mut caller_args,
|
||||
callee_abi,
|
||||
&dest,
|
||||
field_ty,
|
||||
/* already_live */ true,
|
||||
)?;
|
||||
}
|
||||
} else {
|
||||
// Normal argument. Cannot mark it as live yet, it might be unsized!
|
||||
let callee_abi = callee_args_abis.next().unwrap();
|
||||
self.pass_argument(
|
||||
&mut caller_args,
|
||||
callee_abi,
|
||||
&dest,
|
||||
ty,
|
||||
/* already_live */ false,
|
||||
)?;
|
||||
}
|
||||
}
|
||||
// If the callee needs a caller location, pretend we consume one more argument from the ABI.
|
||||
if instance.def.requires_caller_location(*self.tcx) {
|
||||
callee_args_abis.next().unwrap();
|
||||
}
|
||||
// Now we should have no more caller args or callee arg ABIs
|
||||
assert!(
|
||||
callee_args_abis.next().is_none(),
|
||||
"mismatch between callee ABI and callee body arguments"
|
||||
);
|
||||
if caller_args.next().is_some() {
|
||||
throw_ub_custom!(fluent::const_eval_too_many_caller_args);
|
||||
}
|
||||
// Don't forget to check the return type!
|
||||
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret)? {
|
||||
throw_ub!(AbiMismatchReturn {
|
||||
caller_ty: caller_fn_abi.ret.layout.ty,
|
||||
callee_ty: callee_fn_abi.ret.layout.ty
|
||||
});
|
||||
}
|
||||
|
||||
// Protect return place for in-place return value passing.
|
||||
M::protect_in_place_function_argument(self, &destination)?;
|
||||
|
||||
// Don't forget to mark "initially live" locals as live.
|
||||
self.storage_live_for_always_live_locals()?;
|
||||
};
|
||||
match res {
|
||||
Err(err) => {
|
||||
self.stack_mut().pop();
|
||||
Err(err)
|
||||
}
|
||||
Ok(()) => Ok(()),
|
||||
}
|
||||
)
|
||||
}
|
||||
// `InstanceKind::Virtual` does not have callable MIR. Calls to `Virtual` instances must be
|
||||
// codegen'd / interpreted as virtual calls through the vtable.
|
||||
@ -935,7 +751,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
caller_fn_abi.args[0].layout.ty = receiver_ty;
|
||||
|
||||
// recurse with concrete function
|
||||
self.eval_fn_call(
|
||||
self.init_fn_call(
|
||||
FnVal::Instance(fn_inst),
|
||||
(caller_abi, &caller_fn_abi),
|
||||
&args,
|
||||
@ -948,30 +764,33 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn eval_fn_tail_call(
|
||||
/// Initiate a tail call to this function -- popping the current stack frame, pushing the new
|
||||
/// stack frame and initializing the arguments.
|
||||
pub(super) fn init_fn_tail_call(
|
||||
&mut self,
|
||||
fn_val: FnVal<'tcx, M::ExtraFnVal>,
|
||||
(caller_abi, caller_fn_abi): (Abi, &FnAbi<'tcx, Ty<'tcx>>),
|
||||
args: &[FnArg<'tcx, M::Provenance>],
|
||||
with_caller_location: bool,
|
||||
) -> InterpResult<'tcx> {
|
||||
trace!("eval_fn_call: {:#?}", fn_val);
|
||||
trace!("init_fn_tail_call: {:#?}", fn_val);
|
||||
|
||||
// This is the "canonical" implementation of tails calls,
|
||||
// a pop of the current stack frame, followed by a normal call
|
||||
// which pushes a new stack frame, with the return address from
|
||||
// the popped stack frame.
|
||||
//
|
||||
// Note that we are using `pop_stack_frame` and not `return_from_current_stack_frame`,
|
||||
// Note that we are using `pop_stack_frame_raw` and not `return_from_current_stack_frame`,
|
||||
// as the latter "executes" the goto to the return block, but we don't want to,
|
||||
// only the tail called function should return to the current return block.
|
||||
M::before_stack_pop(self, self.frame())?;
|
||||
|
||||
let StackPopInfo { return_action, return_to_block, return_place } =
|
||||
self.pop_stack_frame(false)?;
|
||||
self.pop_stack_frame_raw(false)?;
|
||||
|
||||
assert_eq!(return_action, ReturnAction::Normal);
|
||||
|
||||
// Take the "stack pop cleanup" info, and use that to initiate the next call.
|
||||
let StackPopCleanup::Goto { ret, unwind } = return_to_block else {
|
||||
bug!("can't tailcall as root");
|
||||
};
|
||||
@ -980,7 +799,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
// we should check if both caller&callee can/n't unwind,
|
||||
// see <https://github.com/rust-lang/rust/pull/113128#issuecomment-1614979803>
|
||||
|
||||
self.eval_fn_call(
|
||||
self.init_fn_call(
|
||||
fn_val,
|
||||
(caller_abi, caller_fn_abi),
|
||||
args,
|
||||
@ -991,41 +810,14 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
)
|
||||
}
|
||||
|
||||
fn check_fn_target_features(&self, instance: ty::Instance<'tcx>) -> InterpResult<'tcx, ()> {
|
||||
// Calling functions with `#[target_feature]` is not unsafe on WASM, see #84988
|
||||
let attrs = self.tcx.codegen_fn_attrs(instance.def_id());
|
||||
if !self.tcx.sess.target.is_like_wasm
|
||||
&& attrs
|
||||
.target_features
|
||||
.iter()
|
||||
.any(|feature| !self.tcx.sess.target_features.contains(feature))
|
||||
{
|
||||
throw_ub_custom!(
|
||||
fluent::const_eval_unavailable_target_features_for_fn,
|
||||
unavailable_feats = attrs
|
||||
.target_features
|
||||
.iter()
|
||||
.filter(|&feature| !self.tcx.sess.target_features.contains(feature))
|
||||
.fold(String::new(), |mut s, feature| {
|
||||
if !s.is_empty() {
|
||||
s.push_str(", ");
|
||||
}
|
||||
s.push_str(feature.as_str());
|
||||
s
|
||||
}),
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn drop_in_place(
|
||||
pub(super) fn init_drop_in_place_call(
|
||||
&mut self,
|
||||
place: &PlaceTy<'tcx, M::Provenance>,
|
||||
instance: ty::Instance<'tcx>,
|
||||
target: mir::BasicBlock,
|
||||
unwind: mir::UnwindAction,
|
||||
) -> InterpResult<'tcx> {
|
||||
trace!("drop_in_place: {:?},\n instance={:?}", place, instance);
|
||||
trace!("init_drop_in_place_call: {:?},\n instance={:?}", place, instance);
|
||||
// We take the address of the object. This may well be unaligned, which is fine
|
||||
// for us here. However, unaligned accesses will probably make the actual drop
|
||||
// implementation fail -- a problem shared by rustc.
|
||||
@ -1060,7 +852,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
let arg = self.mplace_to_ref(&place)?;
|
||||
let ret = MPlaceTy::fake_alloc_zst(self.layout_of(self.tcx.types.unit)?);
|
||||
|
||||
self.eval_fn_call(
|
||||
self.init_fn_call(
|
||||
FnVal::Instance(instance),
|
||||
(Abi::Rust, fn_abi),
|
||||
&[FnArg::Copy(arg.into())],
|
||||
@ -1070,4 +862,117 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
unwind,
|
||||
)
|
||||
}
|
||||
|
||||
/// Pops the current frame from the stack, copies the return value to the caller, deallocates
|
||||
/// the memory for allocated locals, and jumps to an appropriate place.
|
||||
///
|
||||
/// If `unwinding` is `false`, then we are performing a normal return
|
||||
/// from a function. In this case, we jump back into the frame of the caller,
|
||||
/// and continue execution as normal.
|
||||
///
|
||||
/// If `unwinding` is `true`, then we are in the middle of a panic,
|
||||
/// and need to unwind this frame. In this case, we jump to the
|
||||
/// `cleanup` block for the function, which is responsible for running
|
||||
/// `Drop` impls for any locals that have been initialized at this point.
|
||||
/// The cleanup block ends with a special `Resume` terminator, which will
|
||||
/// cause us to continue unwinding.
|
||||
#[instrument(skip(self), level = "trace")]
|
||||
pub(super) fn return_from_current_stack_frame(
|
||||
&mut self,
|
||||
unwinding: bool,
|
||||
) -> InterpResult<'tcx> {
|
||||
info!(
|
||||
"popping stack frame ({})",
|
||||
if unwinding { "during unwinding" } else { "returning from function" }
|
||||
);
|
||||
|
||||
// Check `unwinding`.
|
||||
assert_eq!(
|
||||
unwinding,
|
||||
match self.frame().loc {
|
||||
Left(loc) => self.body().basic_blocks[loc.block].is_cleanup,
|
||||
Right(_) => true,
|
||||
}
|
||||
);
|
||||
if unwinding && self.frame_idx() == 0 {
|
||||
throw_ub_custom!(fluent::const_eval_unwind_past_top);
|
||||
}
|
||||
|
||||
M::before_stack_pop(self, self.frame())?;
|
||||
|
||||
// Copy return value. Must of course happen *before* we deallocate the locals.
|
||||
// Must be *after* `before_stack_pop` as otherwise the return place might still be protected.
|
||||
let copy_ret_result = if !unwinding {
|
||||
let op = self
|
||||
.local_to_op(mir::RETURN_PLACE, None)
|
||||
.expect("return place should always be live");
|
||||
let dest = self.frame().return_place.clone();
|
||||
let err = if self.stack().len() == 1 {
|
||||
// The initializer of constants and statics will get validated separately
|
||||
// after the constant has been fully evaluated. While we could fall back to the default
|
||||
// code path, that will cause -Zenforce-validity to cycle on static initializers.
|
||||
// Reading from a static's memory is not allowed during its evaluation, and will always
|
||||
// trigger a cycle error. Validation must read from the memory of the current item.
|
||||
// For Miri this means we do not validate the root frame return value,
|
||||
// but Miri anyway calls `read_target_isize` on that so separate validation
|
||||
// is not needed.
|
||||
self.copy_op_no_dest_validation(&op, &dest)
|
||||
} else {
|
||||
self.copy_op_allow_transmute(&op, &dest)
|
||||
};
|
||||
trace!("return value: {:?}", self.dump_place(&dest.into()));
|
||||
// We delay actually short-circuiting on this error until *after* the stack frame is
|
||||
// popped, since we want this error to be attributed to the caller, whose type defines
|
||||
// this transmute.
|
||||
err
|
||||
} else {
|
||||
Ok(())
|
||||
};
|
||||
|
||||
// All right, now it is time to actually pop the frame.
|
||||
let stack_pop_info = self.pop_stack_frame_raw(unwinding)?;
|
||||
|
||||
// Report error from return value copy, if any.
|
||||
copy_ret_result?;
|
||||
|
||||
match stack_pop_info.return_action {
|
||||
ReturnAction::Normal => {}
|
||||
ReturnAction::NoJump => {
|
||||
// The hook already did everything.
|
||||
return Ok(());
|
||||
}
|
||||
ReturnAction::NoCleanup => {
|
||||
// If we are not doing cleanup, also skip everything else.
|
||||
assert!(self.stack().is_empty(), "only the topmost frame should ever be leaked");
|
||||
assert!(!unwinding, "tried to skip cleanup during unwinding");
|
||||
// Skip machine hook.
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
|
||||
// Normal return, figure out where to jump.
|
||||
if unwinding {
|
||||
// Follow the unwind edge.
|
||||
let unwind = match stack_pop_info.return_to_block {
|
||||
StackPopCleanup::Goto { unwind, .. } => unwind,
|
||||
StackPopCleanup::Root { .. } => {
|
||||
panic!("encountered StackPopCleanup::Root when unwinding!")
|
||||
}
|
||||
};
|
||||
// This must be the very last thing that happens, since it can in fact push a new stack frame.
|
||||
self.unwind_to_block(unwind)
|
||||
} else {
|
||||
// Follow the normal return edge.
|
||||
match stack_pop_info.return_to_block {
|
||||
StackPopCleanup::Goto { ret, .. } => self.return_to_block(ret),
|
||||
StackPopCleanup::Root { .. } => {
|
||||
assert!(
|
||||
self.stack().is_empty(),
|
||||
"only the topmost frame can have StackPopCleanup::Root"
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,40 +1,29 @@
|
||||
use std::cell::Cell;
|
||||
use std::{fmt, mem};
|
||||
|
||||
use either::{Either, Left, Right};
|
||||
use either::{Left, Right};
|
||||
use rustc_errors::DiagCtxtHandle;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_hir::definitions::DefPathData;
|
||||
use rustc_hir::{self as hir};
|
||||
use rustc_index::IndexVec;
|
||||
use rustc_infer::infer::at::ToTrace;
|
||||
use rustc_infer::infer::TyCtxtInferExt;
|
||||
use rustc_infer::traits::ObligationCause;
|
||||
use rustc_middle::mir::interpret::{
|
||||
CtfeProvenance, ErrorHandled, InvalidMetaKind, ReportedErrorInfo,
|
||||
};
|
||||
use rustc_middle::mir::interpret::{ErrorHandled, InvalidMetaKind, ReportedErrorInfo};
|
||||
use rustc_middle::query::TyCtxtAt;
|
||||
use rustc_middle::ty::layout::{
|
||||
self, FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOf, LayoutOfHelpers,
|
||||
TyAndLayout,
|
||||
self, FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOfHelpers, TyAndLayout,
|
||||
};
|
||||
use rustc_middle::ty::{self, GenericArgsRef, ParamEnv, Ty, TyCtxt, TypeFoldable, Variance};
|
||||
use rustc_middle::{bug, mir, span_bug};
|
||||
use rustc_mir_dataflow::storage::always_storage_live_locals;
|
||||
use rustc_middle::{mir, span_bug};
|
||||
use rustc_session::Limit;
|
||||
use rustc_span::Span;
|
||||
use rustc_target::abi::call::FnAbi;
|
||||
use rustc_target::abi::{Align, HasDataLayout, Size, TargetDataLayout};
|
||||
use rustc_trait_selection::traits::ObligationCtxt;
|
||||
use tracing::{debug, info, info_span, instrument, trace};
|
||||
use tracing::{debug, trace};
|
||||
|
||||
use super::{
|
||||
err_inval, throw_inval, throw_ub, throw_ub_custom, throw_unsup, GlobalId, Immediate,
|
||||
InterpErrorInfo, InterpResult, MPlaceTy, Machine, MemPlace, MemPlaceMeta, Memory, MemoryKind,
|
||||
OpTy, Operand, Place, PlaceTy, Pointer, PointerArithmetic, Projectable, Provenance,
|
||||
ReturnAction, Scalar,
|
||||
err_inval, throw_inval, throw_ub, throw_ub_custom, Frame, FrameInfo, GlobalId, InterpErrorInfo,
|
||||
InterpResult, MPlaceTy, Machine, MemPlaceMeta, Memory, OpTy, Place, PlaceTy, PointerArithmetic,
|
||||
Projectable, Provenance,
|
||||
};
|
||||
use crate::{errors, fluent_generated as fluent, util, ReportErrorExt};
|
||||
use crate::{fluent_generated as fluent, util, ReportErrorExt};
|
||||
|
||||
pub struct InterpCx<'tcx, M: Machine<'tcx>> {
|
||||
/// Stores the `Machine` instance.
|
||||
@ -57,314 +46,6 @@ pub struct InterpCx<'tcx, M: Machine<'tcx>> {
|
||||
pub recursion_limit: Limit,
|
||||
}
|
||||
|
||||
// The Phantomdata exists to prevent this type from being `Send`. If it were sent across a thread
|
||||
// boundary and dropped in the other thread, it would exit the span in the other thread.
|
||||
struct SpanGuard(tracing::Span, std::marker::PhantomData<*const u8>);
|
||||
|
||||
impl SpanGuard {
|
||||
/// By default a `SpanGuard` does nothing.
|
||||
fn new() -> Self {
|
||||
Self(tracing::Span::none(), std::marker::PhantomData)
|
||||
}
|
||||
|
||||
/// If a span is entered, we exit the previous span (if any, normally none) and enter the
|
||||
/// new span. This is mainly so we don't have to use `Option` for the `tracing_span` field of
|
||||
/// `Frame` by creating a dummy span to being with and then entering it once the frame has
|
||||
/// been pushed.
|
||||
fn enter(&mut self, span: tracing::Span) {
|
||||
// This executes the destructor on the previous instance of `SpanGuard`, ensuring that
|
||||
// we never enter or exit more spans than vice versa. Unless you `mem::leak`, then we
|
||||
// can't protect the tracing stack, but that'll just lead to weird logging, no actual
|
||||
// problems.
|
||||
*self = Self(span, std::marker::PhantomData);
|
||||
self.0.with_subscriber(|(id, dispatch)| {
|
||||
dispatch.enter(id);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for SpanGuard {
|
||||
fn drop(&mut self) {
|
||||
self.0.with_subscriber(|(id, dispatch)| {
|
||||
dispatch.exit(id);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
/// A stack frame.
|
||||
pub struct Frame<'tcx, Prov: Provenance = CtfeProvenance, Extra = ()> {
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Function and callsite information
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// The MIR for the function called on this frame.
|
||||
pub body: &'tcx mir::Body<'tcx>,
|
||||
|
||||
/// The def_id and args of the current function.
|
||||
pub instance: ty::Instance<'tcx>,
|
||||
|
||||
/// Extra data for the machine.
|
||||
pub extra: Extra,
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Return place and locals
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// Work to perform when returning from this function.
|
||||
pub return_to_block: StackPopCleanup,
|
||||
|
||||
/// The location where the result of the current stack frame should be written to,
|
||||
/// and its layout in the caller.
|
||||
pub return_place: MPlaceTy<'tcx, Prov>,
|
||||
|
||||
/// The list of locals for this stack frame, stored in order as
|
||||
/// `[return_ptr, arguments..., variables..., temporaries...]`.
|
||||
/// The locals are stored as `Option<Value>`s.
|
||||
/// `None` represents a local that is currently dead, while a live local
|
||||
/// can either directly contain `Scalar` or refer to some part of an `Allocation`.
|
||||
///
|
||||
/// Do *not* access this directly; always go through the machine hook!
|
||||
pub locals: IndexVec<mir::Local, LocalState<'tcx, Prov>>,
|
||||
|
||||
/// The span of the `tracing` crate is stored here.
|
||||
/// When the guard is dropped, the span is exited. This gives us
|
||||
/// a full stack trace on all tracing statements.
|
||||
tracing_span: SpanGuard,
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Current position within the function
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// If this is `Right`, we are not currently executing any particular statement in
|
||||
/// this frame (can happen e.g. during frame initialization, and during unwinding on
|
||||
/// frames without cleanup code).
|
||||
///
|
||||
/// Needs to be public because ConstProp does unspeakable things to it.
|
||||
pub loc: Either<mir::Location, Span>,
|
||||
}
|
||||
|
||||
/// What we store about a frame in an interpreter backtrace.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct FrameInfo<'tcx> {
|
||||
pub instance: ty::Instance<'tcx>,
|
||||
pub span: Span,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Eq, PartialEq, Debug)] // Miri debug-prints these
|
||||
pub enum StackPopCleanup {
|
||||
/// Jump to the next block in the caller, or cause UB if None (that's a function
|
||||
/// that may never return). Also store layout of return place so
|
||||
/// we can validate it at that layout.
|
||||
/// `ret` stores the block we jump to on a normal return, while `unwind`
|
||||
/// stores the block used for cleanup during unwinding.
|
||||
Goto { ret: Option<mir::BasicBlock>, unwind: mir::UnwindAction },
|
||||
/// The root frame of the stack: nowhere else to jump to.
|
||||
/// `cleanup` says whether locals are deallocated. Static computation
|
||||
/// wants them leaked to intern what they need (and just throw away
|
||||
/// the entire `ecx` when it is done).
|
||||
Root { cleanup: bool },
|
||||
}
|
||||
|
||||
/// Return type of [`InterpCx::pop_stack_frame`].
|
||||
pub struct StackPopInfo<'tcx, Prov: Provenance> {
|
||||
/// Additional information about the action to be performed when returning from the popped
|
||||
/// stack frame.
|
||||
pub return_action: ReturnAction,
|
||||
|
||||
/// [`return_to_block`](Frame::return_to_block) of the popped stack frame.
|
||||
pub return_to_block: StackPopCleanup,
|
||||
|
||||
/// [`return_place`](Frame::return_place) of the popped stack frame.
|
||||
pub return_place: MPlaceTy<'tcx, Prov>,
|
||||
}
|
||||
|
||||
/// State of a local variable including a memoized layout
|
||||
#[derive(Clone)]
|
||||
pub struct LocalState<'tcx, Prov: Provenance = CtfeProvenance> {
|
||||
value: LocalValue<Prov>,
|
||||
/// Don't modify if `Some`, this is only used to prevent computing the layout twice.
|
||||
/// Avoids computing the layout of locals that are never actually initialized.
|
||||
layout: Cell<Option<TyAndLayout<'tcx>>>,
|
||||
}
|
||||
|
||||
impl<Prov: Provenance> std::fmt::Debug for LocalState<'_, Prov> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("LocalState")
|
||||
.field("value", &self.value)
|
||||
.field("ty", &self.layout.get().map(|l| l.ty))
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
/// Current value of a local variable
|
||||
///
|
||||
/// This does not store the type of the local; the type is given by `body.local_decls` and can never
|
||||
/// change, so by not storing here we avoid having to maintain that as an invariant.
|
||||
#[derive(Copy, Clone, Debug)] // Miri debug-prints these
|
||||
pub(super) enum LocalValue<Prov: Provenance = CtfeProvenance> {
|
||||
/// This local is not currently alive, and cannot be used at all.
|
||||
Dead,
|
||||
/// A normal, live local.
|
||||
/// Mostly for convenience, we re-use the `Operand` type here.
|
||||
/// This is an optimization over just always having a pointer here;
|
||||
/// we can thus avoid doing an allocation when the local just stores
|
||||
/// immediate values *and* never has its address taken.
|
||||
Live(Operand<Prov>),
|
||||
}
|
||||
|
||||
impl<'tcx, Prov: Provenance> LocalState<'tcx, Prov> {
|
||||
pub fn make_live_uninit(&mut self) {
|
||||
self.value = LocalValue::Live(Operand::Immediate(Immediate::Uninit));
|
||||
}
|
||||
|
||||
/// This is a hack because Miri needs a way to visit all the provenance in a `LocalState`
|
||||
/// without having a layout or `TyCtxt` available, and we want to keep the `Operand` type
|
||||
/// private.
|
||||
pub fn as_mplace_or_imm(
|
||||
&self,
|
||||
) -> Option<Either<(Pointer<Option<Prov>>, MemPlaceMeta<Prov>), Immediate<Prov>>> {
|
||||
match self.value {
|
||||
LocalValue::Dead => None,
|
||||
LocalValue::Live(Operand::Indirect(mplace)) => Some(Left((mplace.ptr, mplace.meta))),
|
||||
LocalValue::Live(Operand::Immediate(imm)) => Some(Right(imm)),
|
||||
}
|
||||
}
|
||||
|
||||
/// Read the local's value or error if the local is not yet live or not live anymore.
|
||||
#[inline(always)]
|
||||
pub(super) fn access(&self) -> InterpResult<'tcx, &Operand<Prov>> {
|
||||
match &self.value {
|
||||
LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
|
||||
LocalValue::Live(val) => Ok(val),
|
||||
}
|
||||
}
|
||||
|
||||
/// Overwrite the local. If the local can be overwritten in place, return a reference
|
||||
/// to do so; otherwise return the `MemPlace` to consult instead.
|
||||
#[inline(always)]
|
||||
pub(super) fn access_mut(&mut self) -> InterpResult<'tcx, &mut Operand<Prov>> {
|
||||
match &mut self.value {
|
||||
LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
|
||||
LocalValue::Live(val) => Ok(val),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, Prov: Provenance> Frame<'tcx, Prov> {
|
||||
pub fn with_extra<Extra>(self, extra: Extra) -> Frame<'tcx, Prov, Extra> {
|
||||
Frame {
|
||||
body: self.body,
|
||||
instance: self.instance,
|
||||
return_to_block: self.return_to_block,
|
||||
return_place: self.return_place,
|
||||
locals: self.locals,
|
||||
loc: self.loc,
|
||||
extra,
|
||||
tracing_span: self.tracing_span,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, Prov: Provenance, Extra> Frame<'tcx, Prov, Extra> {
|
||||
/// Get the current location within the Frame.
|
||||
///
|
||||
/// If this is `Right`, we are not currently executing any particular statement in
|
||||
/// this frame (can happen e.g. during frame initialization, and during unwinding on
|
||||
/// frames without cleanup code).
|
||||
///
|
||||
/// Used by priroda.
|
||||
pub fn current_loc(&self) -> Either<mir::Location, Span> {
|
||||
self.loc
|
||||
}
|
||||
|
||||
/// Return the `SourceInfo` of the current instruction.
|
||||
pub fn current_source_info(&self) -> Option<&mir::SourceInfo> {
|
||||
self.loc.left().map(|loc| self.body.source_info(loc))
|
||||
}
|
||||
|
||||
pub fn current_span(&self) -> Span {
|
||||
match self.loc {
|
||||
Left(loc) => self.body.source_info(loc).span,
|
||||
Right(span) => span,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn lint_root(&self, tcx: TyCtxt<'tcx>) -> Option<hir::HirId> {
|
||||
// We first try to get a HirId via the current source scope,
|
||||
// and fall back to `body.source`.
|
||||
self.current_source_info()
|
||||
.and_then(|source_info| match &self.body.source_scopes[source_info.scope].local_data {
|
||||
mir::ClearCrossCrate::Set(data) => Some(data.lint_root),
|
||||
mir::ClearCrossCrate::Clear => None,
|
||||
})
|
||||
.or_else(|| {
|
||||
let def_id = self.body.source.def_id().as_local();
|
||||
def_id.map(|def_id| tcx.local_def_id_to_hir_id(def_id))
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns the address of the buffer where the locals are stored. This is used by `Place` as a
|
||||
/// sanity check to detect bugs where we mix up which stack frame a place refers to.
|
||||
#[inline(always)]
|
||||
pub(super) fn locals_addr(&self) -> usize {
|
||||
self.locals.raw.as_ptr().addr()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn generate_stacktrace_from_stack(stack: &[Self]) -> Vec<FrameInfo<'tcx>> {
|
||||
let mut frames = Vec::new();
|
||||
// This deliberately does *not* honor `requires_caller_location` since it is used for much
|
||||
// more than just panics.
|
||||
for frame in stack.iter().rev() {
|
||||
let span = match frame.loc {
|
||||
Left(loc) => {
|
||||
// If the stacktrace passes through MIR-inlined source scopes, add them.
|
||||
let mir::SourceInfo { mut span, scope } = *frame.body.source_info(loc);
|
||||
let mut scope_data = &frame.body.source_scopes[scope];
|
||||
while let Some((instance, call_span)) = scope_data.inlined {
|
||||
frames.push(FrameInfo { span, instance });
|
||||
span = call_span;
|
||||
scope_data = &frame.body.source_scopes[scope_data.parent_scope.unwrap()];
|
||||
}
|
||||
span
|
||||
}
|
||||
Right(span) => span,
|
||||
};
|
||||
frames.push(FrameInfo { span, instance: frame.instance });
|
||||
}
|
||||
trace!("generate stacktrace: {:#?}", frames);
|
||||
frames
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: only used by miri, should be removed once translatable.
|
||||
impl<'tcx> fmt::Display for FrameInfo<'tcx> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
ty::tls::with(|tcx| {
|
||||
if tcx.def_key(self.instance.def_id()).disambiguated_data.data == DefPathData::Closure {
|
||||
write!(f, "inside closure")
|
||||
} else {
|
||||
// Note: this triggers a `must_produce_diag` state, which means that if we ever
|
||||
// get here we must emit a diagnostic. We should never display a `FrameInfo` unless
|
||||
// we actually want to emit a warning or error to the user.
|
||||
write!(f, "inside `{}`", self.instance)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> FrameInfo<'tcx> {
|
||||
pub fn as_note(&self, tcx: TyCtxt<'tcx>) -> errors::FrameNote {
|
||||
let span = self.span;
|
||||
if tcx.def_key(self.instance.def_id()).disambiguated_data.data == DefPathData::Closure {
|
||||
errors::FrameNote { where_: "closure", span, instance: String::new(), times: 0 }
|
||||
} else {
|
||||
let instance = format!("{}", self.instance);
|
||||
// Note: this triggers a `must_produce_diag` state, which means that if we ever get
|
||||
// here we must emit a diagnostic. We should never display a `FrameInfo` unless we
|
||||
// actually want to emit a warning or error to the user.
|
||||
errors::FrameNote { where_: "instance", span, instance, times: 0 }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, M: Machine<'tcx>> HasDataLayout for InterpCx<'tcx, M> {
|
||||
#[inline]
|
||||
fn data_layout(&self) -> &TargetDataLayout {
|
||||
@ -703,30 +384,6 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
span_bug!(self.cur_span(), "no non-`#[track_caller]` frame found")
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub(super) fn layout_of_local(
|
||||
&self,
|
||||
frame: &Frame<'tcx, M::Provenance, M::FrameExtra>,
|
||||
local: mir::Local,
|
||||
layout: Option<TyAndLayout<'tcx>>,
|
||||
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
|
||||
let state = &frame.locals[local];
|
||||
if let Some(layout) = state.layout.get() {
|
||||
return Ok(layout);
|
||||
}
|
||||
|
||||
let layout = from_known_layout(self.tcx, self.param_env, layout, || {
|
||||
let local_ty = frame.body.local_decls[local].ty;
|
||||
let local_ty =
|
||||
self.instantiate_from_frame_and_normalize_erasing_regions(frame, local_ty)?;
|
||||
self.layout_of(local_ty)
|
||||
})?;
|
||||
|
||||
// Layouts of locals are requested a lot, so we cache them.
|
||||
state.layout.set(Some(layout));
|
||||
Ok(layout)
|
||||
}
|
||||
|
||||
/// Returns the actual dynamic size and alignment of the place at the given type.
|
||||
/// Only the "meta" (metadata) part of the place matters.
|
||||
/// This can fail to provide an answer for extern types.
|
||||
@ -825,132 +482,6 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
self.size_and_align_of(&mplace.meta(), &mplace.layout)
|
||||
}
|
||||
|
||||
#[instrument(skip(self, body, return_place, return_to_block), level = "debug")]
|
||||
pub fn push_stack_frame(
|
||||
&mut self,
|
||||
instance: ty::Instance<'tcx>,
|
||||
body: &'tcx mir::Body<'tcx>,
|
||||
return_place: &MPlaceTy<'tcx, M::Provenance>,
|
||||
return_to_block: StackPopCleanup,
|
||||
) -> InterpResult<'tcx> {
|
||||
trace!("body: {:#?}", body);
|
||||
|
||||
// First push a stack frame so we have access to the local args
|
||||
self.push_new_stack_frame(instance, body, return_to_block, return_place.clone())?;
|
||||
|
||||
self.after_stack_frame_push(instance, body)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Creates a new stack frame, initializes it and pushes it onto the stack.
|
||||
/// A private helper for [`push_stack_frame`](InterpCx::push_stack_frame).
|
||||
fn push_new_stack_frame(
|
||||
&mut self,
|
||||
instance: ty::Instance<'tcx>,
|
||||
body: &'tcx mir::Body<'tcx>,
|
||||
return_to_block: StackPopCleanup,
|
||||
return_place: MPlaceTy<'tcx, M::Provenance>,
|
||||
) -> InterpResult<'tcx> {
|
||||
let dead_local = LocalState { value: LocalValue::Dead, layout: Cell::new(None) };
|
||||
let locals = IndexVec::from_elem(dead_local, &body.local_decls);
|
||||
let pre_frame = Frame {
|
||||
body,
|
||||
loc: Right(body.span), // Span used for errors caused during preamble.
|
||||
return_to_block,
|
||||
return_place,
|
||||
locals,
|
||||
instance,
|
||||
tracing_span: SpanGuard::new(),
|
||||
extra: (),
|
||||
};
|
||||
let frame = M::init_frame(self, pre_frame)?;
|
||||
self.stack_mut().push(frame);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// A private helper for [`push_stack_frame`](InterpCx::push_stack_frame).
|
||||
fn after_stack_frame_push(
|
||||
&mut self,
|
||||
instance: ty::Instance<'tcx>,
|
||||
body: &'tcx mir::Body<'tcx>,
|
||||
) -> InterpResult<'tcx> {
|
||||
// Make sure all the constants required by this frame evaluate successfully (post-monomorphization check).
|
||||
for &const_ in body.required_consts() {
|
||||
let c =
|
||||
self.instantiate_from_current_frame_and_normalize_erasing_regions(const_.const_)?;
|
||||
c.eval(*self.tcx, self.param_env, const_.span).map_err(|err| {
|
||||
err.emit_note(*self.tcx);
|
||||
err
|
||||
})?;
|
||||
}
|
||||
|
||||
// done
|
||||
M::after_stack_push(self)?;
|
||||
self.frame_mut().loc = Left(mir::Location::START);
|
||||
|
||||
let span = info_span!("frame", "{}", instance);
|
||||
self.frame_mut().tracing_span.enter(span);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Pops a stack frame from the stack and returns some information about it.
|
||||
///
|
||||
/// This also deallocates locals, if necessary.
|
||||
///
|
||||
/// [`M::before_stack_pop`] should be called before calling this function.
|
||||
/// [`M::after_stack_pop`] is called by this function automatically.
|
||||
///
|
||||
/// [`M::before_stack_pop`]: Machine::before_stack_pop
|
||||
/// [`M::after_stack_pop`]: Machine::after_stack_pop
|
||||
pub fn pop_stack_frame(
|
||||
&mut self,
|
||||
unwinding: bool,
|
||||
) -> InterpResult<'tcx, StackPopInfo<'tcx, M::Provenance>> {
|
||||
let cleanup = self.cleanup_current_frame_locals()?;
|
||||
|
||||
let frame =
|
||||
self.stack_mut().pop().expect("tried to pop a stack frame, but there were none");
|
||||
|
||||
let return_to_block = frame.return_to_block;
|
||||
let return_place = frame.return_place.clone();
|
||||
|
||||
let return_action;
|
||||
if cleanup {
|
||||
return_action = M::after_stack_pop(self, frame, unwinding)?;
|
||||
assert_ne!(return_action, ReturnAction::NoCleanup);
|
||||
} else {
|
||||
return_action = ReturnAction::NoCleanup;
|
||||
};
|
||||
|
||||
Ok(StackPopInfo { return_action, return_to_block, return_place })
|
||||
}
|
||||
|
||||
/// A private helper for [`pop_stack_frame`](InterpCx::pop_stack_frame).
|
||||
/// Returns `true` if cleanup has been done, `false` otherwise.
|
||||
fn cleanup_current_frame_locals(&mut self) -> InterpResult<'tcx, bool> {
|
||||
// Cleanup: deallocate locals.
|
||||
// Usually we want to clean up (deallocate locals), but in a few rare cases we don't.
|
||||
// We do this while the frame is still on the stack, so errors point to the callee.
|
||||
let return_to_block = self.frame().return_to_block;
|
||||
let cleanup = match return_to_block {
|
||||
StackPopCleanup::Goto { .. } => true,
|
||||
StackPopCleanup::Root { cleanup, .. } => cleanup,
|
||||
};
|
||||
|
||||
if cleanup {
|
||||
// We need to take the locals out, since we need to mutate while iterating.
|
||||
let locals = mem::take(&mut self.frame_mut().locals);
|
||||
for local in &locals {
|
||||
self.deallocate_local(local.value)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(cleanup)
|
||||
}
|
||||
|
||||
/// Jump to the given block.
|
||||
#[inline]
|
||||
pub fn go_to_block(&mut self, target: mir::BasicBlock) {
|
||||
@ -997,248 +528,6 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Pops the current frame from the stack, deallocating the
|
||||
/// memory for allocated locals, and jumps to an appropriate place.
|
||||
///
|
||||
/// If `unwinding` is `false`, then we are performing a normal return
|
||||
/// from a function. In this case, we jump back into the frame of the caller,
|
||||
/// and continue execution as normal.
|
||||
///
|
||||
/// If `unwinding` is `true`, then we are in the middle of a panic,
|
||||
/// and need to unwind this frame. In this case, we jump to the
|
||||
/// `cleanup` block for the function, which is responsible for running
|
||||
/// `Drop` impls for any locals that have been initialized at this point.
|
||||
/// The cleanup block ends with a special `Resume` terminator, which will
|
||||
/// cause us to continue unwinding.
|
||||
#[instrument(skip(self), level = "debug")]
|
||||
pub(super) fn return_from_current_stack_frame(
|
||||
&mut self,
|
||||
unwinding: bool,
|
||||
) -> InterpResult<'tcx> {
|
||||
info!(
|
||||
"popping stack frame ({})",
|
||||
if unwinding { "during unwinding" } else { "returning from function" }
|
||||
);
|
||||
|
||||
// Check `unwinding`.
|
||||
assert_eq!(
|
||||
unwinding,
|
||||
match self.frame().loc {
|
||||
Left(loc) => self.body().basic_blocks[loc.block].is_cleanup,
|
||||
Right(_) => true,
|
||||
}
|
||||
);
|
||||
if unwinding && self.frame_idx() == 0 {
|
||||
throw_ub_custom!(fluent::const_eval_unwind_past_top);
|
||||
}
|
||||
|
||||
M::before_stack_pop(self, self.frame())?;
|
||||
|
||||
// Copy return value. Must of course happen *before* we deallocate the locals.
|
||||
let copy_ret_result = if !unwinding {
|
||||
let op = self
|
||||
.local_to_op(mir::RETURN_PLACE, None)
|
||||
.expect("return place should always be live");
|
||||
let dest = self.frame().return_place.clone();
|
||||
let err = if self.stack().len() == 1 {
|
||||
// The initializer of constants and statics will get validated separately
|
||||
// after the constant has been fully evaluated. While we could fall back to the default
|
||||
// code path, that will cause -Zenforce-validity to cycle on static initializers.
|
||||
// Reading from a static's memory is not allowed during its evaluation, and will always
|
||||
// trigger a cycle error. Validation must read from the memory of the current item.
|
||||
// For Miri this means we do not validate the root frame return value,
|
||||
// but Miri anyway calls `read_target_isize` on that so separate validation
|
||||
// is not needed.
|
||||
self.copy_op_no_dest_validation(&op, &dest)
|
||||
} else {
|
||||
self.copy_op_allow_transmute(&op, &dest)
|
||||
};
|
||||
trace!("return value: {:?}", self.dump_place(&dest.into()));
|
||||
// We delay actually short-circuiting on this error until *after* the stack frame is
|
||||
// popped, since we want this error to be attributed to the caller, whose type defines
|
||||
// this transmute.
|
||||
err
|
||||
} else {
|
||||
Ok(())
|
||||
};
|
||||
|
||||
// All right, now it is time to actually pop the frame.
|
||||
let stack_pop_info = self.pop_stack_frame(unwinding)?;
|
||||
|
||||
// Report error from return value copy, if any.
|
||||
copy_ret_result?;
|
||||
|
||||
match stack_pop_info.return_action {
|
||||
ReturnAction::Normal => {}
|
||||
ReturnAction::NoJump => {
|
||||
// The hook already did everything.
|
||||
return Ok(());
|
||||
}
|
||||
ReturnAction::NoCleanup => {
|
||||
// If we are not doing cleanup, also skip everything else.
|
||||
assert!(self.stack().is_empty(), "only the topmost frame should ever be leaked");
|
||||
assert!(!unwinding, "tried to skip cleanup during unwinding");
|
||||
// Skip machine hook.
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
|
||||
// Normal return, figure out where to jump.
|
||||
if unwinding {
|
||||
// Follow the unwind edge.
|
||||
let unwind = match stack_pop_info.return_to_block {
|
||||
StackPopCleanup::Goto { unwind, .. } => unwind,
|
||||
StackPopCleanup::Root { .. } => {
|
||||
panic!("encountered StackPopCleanup::Root when unwinding!")
|
||||
}
|
||||
};
|
||||
// This must be the very last thing that happens, since it can in fact push a new stack frame.
|
||||
self.unwind_to_block(unwind)
|
||||
} else {
|
||||
// Follow the normal return edge.
|
||||
match stack_pop_info.return_to_block {
|
||||
StackPopCleanup::Goto { ret, .. } => self.return_to_block(ret),
|
||||
StackPopCleanup::Root { .. } => {
|
||||
assert!(
|
||||
self.stack().is_empty(),
|
||||
"only the topmost frame can have StackPopCleanup::Root"
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// In the current stack frame, mark all locals as live that are not arguments and don't have
|
||||
/// `Storage*` annotations (this includes the return place).
|
||||
pub fn storage_live_for_always_live_locals(&mut self) -> InterpResult<'tcx> {
|
||||
self.storage_live(mir::RETURN_PLACE)?;
|
||||
|
||||
let body = self.body();
|
||||
let always_live = always_storage_live_locals(body);
|
||||
for local in body.vars_and_temps_iter() {
|
||||
if always_live.contains(local) {
|
||||
self.storage_live(local)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn storage_live_dyn(
|
||||
&mut self,
|
||||
local: mir::Local,
|
||||
meta: MemPlaceMeta<M::Provenance>,
|
||||
) -> InterpResult<'tcx> {
|
||||
trace!("{:?} is now live", local);
|
||||
|
||||
// We avoid `ty.is_trivially_sized` since that does something expensive for ADTs.
|
||||
fn is_very_trivially_sized(ty: Ty<'_>) -> bool {
|
||||
match ty.kind() {
|
||||
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
|
||||
| ty::Uint(_)
|
||||
| ty::Int(_)
|
||||
| ty::Bool
|
||||
| ty::Float(_)
|
||||
| ty::FnDef(..)
|
||||
| ty::FnPtr(_)
|
||||
| ty::RawPtr(..)
|
||||
| ty::Char
|
||||
| ty::Ref(..)
|
||||
| ty::Coroutine(..)
|
||||
| ty::CoroutineWitness(..)
|
||||
| ty::Array(..)
|
||||
| ty::Closure(..)
|
||||
| ty::CoroutineClosure(..)
|
||||
| ty::Never
|
||||
| ty::Error(_)
|
||||
| ty::Dynamic(_, _, ty::DynStar) => true,
|
||||
|
||||
ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => false,
|
||||
|
||||
ty::Tuple(tys) => tys.last().is_none_or(|ty| is_very_trivially_sized(*ty)),
|
||||
|
||||
ty::Pat(ty, ..) => is_very_trivially_sized(*ty),
|
||||
|
||||
// We don't want to do any queries, so there is not much we can do with ADTs.
|
||||
ty::Adt(..) => false,
|
||||
|
||||
ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => false,
|
||||
|
||||
ty::Infer(ty::TyVar(_)) => false,
|
||||
|
||||
ty::Bound(..)
|
||||
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
|
||||
bug!("`is_very_trivially_sized` applied to unexpected type: {}", ty)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This is a hot function, we avoid computing the layout when possible.
|
||||
// `unsized_` will be `None` for sized types and `Some(layout)` for unsized types.
|
||||
let unsized_ = if is_very_trivially_sized(self.body().local_decls[local].ty) {
|
||||
None
|
||||
} else {
|
||||
// We need the layout.
|
||||
let layout = self.layout_of_local(self.frame(), local, None)?;
|
||||
if layout.is_sized() { None } else { Some(layout) }
|
||||
};
|
||||
|
||||
let local_val = LocalValue::Live(if let Some(layout) = unsized_ {
|
||||
if !meta.has_meta() {
|
||||
throw_unsup!(UnsizedLocal);
|
||||
}
|
||||
// Need to allocate some memory, since `Immediate::Uninit` cannot be unsized.
|
||||
let dest_place = self.allocate_dyn(layout, MemoryKind::Stack, meta)?;
|
||||
Operand::Indirect(*dest_place.mplace())
|
||||
} else {
|
||||
assert!(!meta.has_meta()); // we're dropping the metadata
|
||||
// Just make this an efficient immediate.
|
||||
// Note that not calling `layout_of` here does have one real consequence:
|
||||
// if the type is too big, we'll only notice this when the local is actually initialized,
|
||||
// which is a bit too late -- we should ideally notice this already here, when the memory
|
||||
// is conceptually allocated. But given how rare that error is and that this is a hot function,
|
||||
// we accept this downside for now.
|
||||
Operand::Immediate(Immediate::Uninit)
|
||||
});
|
||||
|
||||
// If the local is already live, deallocate its old memory.
|
||||
let old = mem::replace(&mut self.frame_mut().locals[local].value, local_val);
|
||||
self.deallocate_local(old)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Mark a storage as live, killing the previous content.
|
||||
#[inline(always)]
|
||||
pub fn storage_live(&mut self, local: mir::Local) -> InterpResult<'tcx> {
|
||||
self.storage_live_dyn(local, MemPlaceMeta::None)
|
||||
}
|
||||
|
||||
pub fn storage_dead(&mut self, local: mir::Local) -> InterpResult<'tcx> {
|
||||
assert!(local != mir::RETURN_PLACE, "Cannot make return place dead");
|
||||
trace!("{:?} is now dead", local);
|
||||
|
||||
// If the local is already dead, this is a NOP.
|
||||
let old = mem::replace(&mut self.frame_mut().locals[local].value, LocalValue::Dead);
|
||||
self.deallocate_local(old)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[instrument(skip(self), level = "debug")]
|
||||
fn deallocate_local(&mut self, local: LocalValue<M::Provenance>) -> InterpResult<'tcx> {
|
||||
if let LocalValue::Live(Operand::Indirect(MemPlace { ptr, .. })) = local {
|
||||
// All locals have a backing allocation, even if the allocation is empty
|
||||
// due to the local having ZST type. Hence we can `unwrap`.
|
||||
trace!(
|
||||
"deallocating local {:?}: {:?}",
|
||||
local,
|
||||
// Locals always have a `alloc_id` (they are never the result of a int2ptr).
|
||||
self.dump_alloc(ptr.provenance.unwrap().get_alloc_id().unwrap())
|
||||
);
|
||||
self.deallocate_ptr(ptr, None, MemoryKind::Stack)?;
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Call a query that can return `ErrorHandled`. Should be used for statics and other globals.
|
||||
/// (`mir::Const`/`ty::Const` have `eval` methods that can be used directly instead.)
|
||||
pub fn ctfe_query<T>(
|
||||
@ -1328,39 +617,7 @@ impl<'a, 'tcx, M: Machine<'tcx>> std::fmt::Debug for PlacePrinter<'a, 'tcx, M> {
|
||||
}
|
||||
write!(fmt, ":")?;
|
||||
|
||||
match self.ecx.frame().locals[local].value {
|
||||
LocalValue::Dead => write!(fmt, " is dead")?,
|
||||
LocalValue::Live(Operand::Immediate(Immediate::Uninit)) => {
|
||||
write!(fmt, " is uninitialized")?
|
||||
}
|
||||
LocalValue::Live(Operand::Indirect(mplace)) => {
|
||||
write!(
|
||||
fmt,
|
||||
" by {} ref {:?}:",
|
||||
match mplace.meta {
|
||||
MemPlaceMeta::Meta(meta) => format!(" meta({meta:?})"),
|
||||
MemPlaceMeta::None => String::new(),
|
||||
},
|
||||
mplace.ptr,
|
||||
)?;
|
||||
allocs.extend(mplace.ptr.provenance.map(Provenance::get_alloc_id));
|
||||
}
|
||||
LocalValue::Live(Operand::Immediate(Immediate::Scalar(val))) => {
|
||||
write!(fmt, " {val:?}")?;
|
||||
if let Scalar::Ptr(ptr, _size) = val {
|
||||
allocs.push(ptr.provenance.get_alloc_id());
|
||||
}
|
||||
}
|
||||
LocalValue::Live(Operand::Immediate(Immediate::ScalarPair(val1, val2))) => {
|
||||
write!(fmt, " ({val1:?}, {val2:?})")?;
|
||||
if let Scalar::Ptr(ptr, _size) = val1 {
|
||||
allocs.push(ptr.provenance.get_alloc_id());
|
||||
}
|
||||
if let Scalar::Ptr(ptr, _size) = val2 {
|
||||
allocs.push(ptr.provenance.get_alloc_id());
|
||||
}
|
||||
}
|
||||
}
|
||||
self.ecx.frame().locals[local].print(&mut allocs, fmt)?;
|
||||
|
||||
write!(fmt, ": {:?}", self.ecx.dump_allocs(allocs.into_iter().flatten().collect()))
|
||||
}
|
||||
|
@ -37,7 +37,7 @@ pub enum ReturnAction {
|
||||
/// took care of everything.
|
||||
NoJump,
|
||||
|
||||
/// Returned by [`InterpCx::pop_stack_frame`] when no cleanup should be done.
|
||||
/// Returned by [`InterpCx::pop_stack_frame_raw`] when no cleanup should be done.
|
||||
NoCleanup,
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
//! An interpreter for MIR used in CTFE and by miri
|
||||
|
||||
mod call;
|
||||
mod cast;
|
||||
mod discriminant;
|
||||
mod eval_context;
|
||||
@ -11,8 +12,8 @@ mod operand;
|
||||
mod operator;
|
||||
mod place;
|
||||
mod projection;
|
||||
mod stack;
|
||||
mod step;
|
||||
mod terminator;
|
||||
mod traits;
|
||||
mod util;
|
||||
mod validity;
|
||||
@ -22,7 +23,8 @@ use eval_context::{from_known_layout, mir_assign_valid_types};
|
||||
#[doc(no_inline)]
|
||||
pub use rustc_middle::mir::interpret::*; // have all the `interpret` symbols in one place: here
|
||||
|
||||
pub use self::eval_context::{format_interp_error, Frame, FrameInfo, InterpCx, StackPopCleanup};
|
||||
pub use self::call::FnArg;
|
||||
pub use self::eval_context::{format_interp_error, InterpCx};
|
||||
pub use self::intern::{
|
||||
intern_const_alloc_for_constprop, intern_const_alloc_recursive, HasStaticRootDefId, InternKind,
|
||||
InternResult,
|
||||
@ -35,7 +37,7 @@ pub use self::operand::{ImmTy, Immediate, OpTy, Readable};
|
||||
pub use self::place::{MPlaceTy, MemPlaceMeta, PlaceTy, Writeable};
|
||||
use self::place::{MemPlace, Place};
|
||||
pub use self::projection::{OffsetMode, Projectable};
|
||||
pub use self::terminator::FnArg;
|
||||
pub use self::stack::{Frame, FrameInfo, LocalState, StackPopCleanup, StackPopInfo};
|
||||
pub(crate) use self::util::create_static_alloc;
|
||||
pub use self::validity::{CtfeValidationMode, RefTracking};
|
||||
pub use self::visitor::ValueVisitor;
|
||||
|
@ -184,6 +184,7 @@ impl<'tcx, Prov: Provenance> ImmTy<'tcx, Prov> {
|
||||
#[inline]
|
||||
pub fn from_scalar(val: Scalar<Prov>, layout: TyAndLayout<'tcx>) -> Self {
|
||||
debug_assert!(layout.abi.is_scalar(), "`ImmTy::from_scalar` on non-scalar layout");
|
||||
debug_assert_eq!(val.size(), layout.size);
|
||||
ImmTy { imm: val.into(), layout }
|
||||
}
|
||||
|
||||
|
638
compiler/rustc_const_eval/src/interpret/stack.rs
Normal file
638
compiler/rustc_const_eval/src/interpret/stack.rs
Normal file
@ -0,0 +1,638 @@
|
||||
//! Manages the low-level pushing and popping of stack frames and the (de)allocation of local variables.
|
||||
//! For hadling of argument passing and return values, see the `call` module.
|
||||
use std::cell::Cell;
|
||||
use std::{fmt, mem};
|
||||
|
||||
use either::{Either, Left, Right};
|
||||
use rustc_hir as hir;
|
||||
use rustc_hir::definitions::DefPathData;
|
||||
use rustc_index::IndexVec;
|
||||
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
use rustc_middle::{bug, mir};
|
||||
use rustc_mir_dataflow::storage::always_storage_live_locals;
|
||||
use rustc_span::Span;
|
||||
use tracing::{info_span, instrument, trace};
|
||||
|
||||
use super::{
|
||||
from_known_layout, throw_ub, throw_unsup, AllocId, CtfeProvenance, Immediate, InterpCx,
|
||||
InterpResult, MPlaceTy, Machine, MemPlace, MemPlaceMeta, MemoryKind, Operand, Pointer,
|
||||
Provenance, ReturnAction, Scalar,
|
||||
};
|
||||
use crate::errors;
|
||||
|
||||
// The Phantomdata exists to prevent this type from being `Send`. If it were sent across a thread
|
||||
// boundary and dropped in the other thread, it would exit the span in the other thread.
|
||||
struct SpanGuard(tracing::Span, std::marker::PhantomData<*const u8>);
|
||||
|
||||
impl SpanGuard {
|
||||
/// By default a `SpanGuard` does nothing.
|
||||
fn new() -> Self {
|
||||
Self(tracing::Span::none(), std::marker::PhantomData)
|
||||
}
|
||||
|
||||
/// If a span is entered, we exit the previous span (if any, normally none) and enter the
|
||||
/// new span. This is mainly so we don't have to use `Option` for the `tracing_span` field of
|
||||
/// `Frame` by creating a dummy span to being with and then entering it once the frame has
|
||||
/// been pushed.
|
||||
fn enter(&mut self, span: tracing::Span) {
|
||||
// This executes the destructor on the previous instance of `SpanGuard`, ensuring that
|
||||
// we never enter or exit more spans than vice versa. Unless you `mem::leak`, then we
|
||||
// can't protect the tracing stack, but that'll just lead to weird logging, no actual
|
||||
// problems.
|
||||
*self = Self(span, std::marker::PhantomData);
|
||||
self.0.with_subscriber(|(id, dispatch)| {
|
||||
dispatch.enter(id);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for SpanGuard {
|
||||
fn drop(&mut self) {
|
||||
self.0.with_subscriber(|(id, dispatch)| {
|
||||
dispatch.exit(id);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
/// A stack frame.
|
||||
pub struct Frame<'tcx, Prov: Provenance = CtfeProvenance, Extra = ()> {
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Function and callsite information
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// The MIR for the function called on this frame.
|
||||
pub body: &'tcx mir::Body<'tcx>,
|
||||
|
||||
/// The def_id and args of the current function.
|
||||
pub instance: ty::Instance<'tcx>,
|
||||
|
||||
/// Extra data for the machine.
|
||||
pub extra: Extra,
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Return place and locals
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// Work to perform when returning from this function.
|
||||
pub return_to_block: StackPopCleanup,
|
||||
|
||||
/// The location where the result of the current stack frame should be written to,
|
||||
/// and its layout in the caller.
|
||||
pub return_place: MPlaceTy<'tcx, Prov>,
|
||||
|
||||
/// The list of locals for this stack frame, stored in order as
|
||||
/// `[return_ptr, arguments..., variables..., temporaries...]`.
|
||||
/// The locals are stored as `Option<Value>`s.
|
||||
/// `None` represents a local that is currently dead, while a live local
|
||||
/// can either directly contain `Scalar` or refer to some part of an `Allocation`.
|
||||
///
|
||||
/// Do *not* access this directly; always go through the machine hook!
|
||||
pub locals: IndexVec<mir::Local, LocalState<'tcx, Prov>>,
|
||||
|
||||
/// The span of the `tracing` crate is stored here.
|
||||
/// When the guard is dropped, the span is exited. This gives us
|
||||
/// a full stack trace on all tracing statements.
|
||||
tracing_span: SpanGuard,
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Current position within the function
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// If this is `Right`, we are not currently executing any particular statement in
|
||||
/// this frame (can happen e.g. during frame initialization, and during unwinding on
|
||||
/// frames without cleanup code).
|
||||
///
|
||||
/// Needs to be public because ConstProp does unspeakable things to it.
|
||||
pub loc: Either<mir::Location, Span>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Eq, PartialEq, Debug)] // Miri debug-prints these
|
||||
pub enum StackPopCleanup {
|
||||
/// Jump to the next block in the caller, or cause UB if None (that's a function
|
||||
/// that may never return). Also store layout of return place so
|
||||
/// we can validate it at that layout.
|
||||
/// `ret` stores the block we jump to on a normal return, while `unwind`
|
||||
/// stores the block used for cleanup during unwinding.
|
||||
Goto { ret: Option<mir::BasicBlock>, unwind: mir::UnwindAction },
|
||||
/// The root frame of the stack: nowhere else to jump to.
|
||||
/// `cleanup` says whether locals are deallocated. Static computation
|
||||
/// wants them leaked to intern what they need (and just throw away
|
||||
/// the entire `ecx` when it is done).
|
||||
Root { cleanup: bool },
|
||||
}
|
||||
|
||||
/// Return type of [`InterpCx::pop_stack_frame_raw`].
|
||||
pub struct StackPopInfo<'tcx, Prov: Provenance> {
|
||||
/// Additional information about the action to be performed when returning from the popped
|
||||
/// stack frame.
|
||||
pub return_action: ReturnAction,
|
||||
|
||||
/// [`return_to_block`](Frame::return_to_block) of the popped stack frame.
|
||||
pub return_to_block: StackPopCleanup,
|
||||
|
||||
/// [`return_place`](Frame::return_place) of the popped stack frame.
|
||||
pub return_place: MPlaceTy<'tcx, Prov>,
|
||||
}
|
||||
|
||||
/// State of a local variable including a memoized layout
|
||||
#[derive(Clone)]
|
||||
pub struct LocalState<'tcx, Prov: Provenance = CtfeProvenance> {
|
||||
value: LocalValue<Prov>,
|
||||
/// Don't modify if `Some`, this is only used to prevent computing the layout twice.
|
||||
/// Avoids computing the layout of locals that are never actually initialized.
|
||||
layout: Cell<Option<TyAndLayout<'tcx>>>,
|
||||
}
|
||||
|
||||
impl<Prov: Provenance> std::fmt::Debug for LocalState<'_, Prov> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("LocalState")
|
||||
.field("value", &self.value)
|
||||
.field("ty", &self.layout.get().map(|l| l.ty))
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
/// Current value of a local variable
|
||||
///
|
||||
/// This does not store the type of the local; the type is given by `body.local_decls` and can never
|
||||
/// change, so by not storing here we avoid having to maintain that as an invariant.
|
||||
#[derive(Copy, Clone, Debug)] // Miri debug-prints these
|
||||
pub(super) enum LocalValue<Prov: Provenance = CtfeProvenance> {
|
||||
/// This local is not currently alive, and cannot be used at all.
|
||||
Dead,
|
||||
/// A normal, live local.
|
||||
/// Mostly for convenience, we re-use the `Operand` type here.
|
||||
/// This is an optimization over just always having a pointer here;
|
||||
/// we can thus avoid doing an allocation when the local just stores
|
||||
/// immediate values *and* never has its address taken.
|
||||
Live(Operand<Prov>),
|
||||
}
|
||||
|
||||
impl<'tcx, Prov: Provenance> LocalState<'tcx, Prov> {
|
||||
pub fn make_live_uninit(&mut self) {
|
||||
self.value = LocalValue::Live(Operand::Immediate(Immediate::Uninit));
|
||||
}
|
||||
|
||||
/// This is a hack because Miri needs a way to visit all the provenance in a `LocalState`
|
||||
/// without having a layout or `TyCtxt` available, and we want to keep the `Operand` type
|
||||
/// private.
|
||||
pub fn as_mplace_or_imm(
|
||||
&self,
|
||||
) -> Option<Either<(Pointer<Option<Prov>>, MemPlaceMeta<Prov>), Immediate<Prov>>> {
|
||||
match self.value {
|
||||
LocalValue::Dead => None,
|
||||
LocalValue::Live(Operand::Indirect(mplace)) => Some(Left((mplace.ptr, mplace.meta))),
|
||||
LocalValue::Live(Operand::Immediate(imm)) => Some(Right(imm)),
|
||||
}
|
||||
}
|
||||
|
||||
/// Read the local's value or error if the local is not yet live or not live anymore.
|
||||
#[inline(always)]
|
||||
pub(super) fn access(&self) -> InterpResult<'tcx, &Operand<Prov>> {
|
||||
match &self.value {
|
||||
LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
|
||||
LocalValue::Live(val) => Ok(val),
|
||||
}
|
||||
}
|
||||
|
||||
/// Overwrite the local. If the local can be overwritten in place, return a reference
|
||||
/// to do so; otherwise return the `MemPlace` to consult instead.
|
||||
#[inline(always)]
|
||||
pub(super) fn access_mut(&mut self) -> InterpResult<'tcx, &mut Operand<Prov>> {
|
||||
match &mut self.value {
|
||||
LocalValue::Dead => throw_ub!(DeadLocal), // could even be "invalid program"?
|
||||
LocalValue::Live(val) => Ok(val),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// What we store about a frame in an interpreter backtrace.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct FrameInfo<'tcx> {
|
||||
pub instance: ty::Instance<'tcx>,
|
||||
pub span: Span,
|
||||
}
|
||||
|
||||
// FIXME: only used by miri, should be removed once translatable.
|
||||
impl<'tcx> fmt::Display for FrameInfo<'tcx> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
ty::tls::with(|tcx| {
|
||||
if tcx.def_key(self.instance.def_id()).disambiguated_data.data == DefPathData::Closure {
|
||||
write!(f, "inside closure")
|
||||
} else {
|
||||
// Note: this triggers a `must_produce_diag` state, which means that if we ever
|
||||
// get here we must emit a diagnostic. We should never display a `FrameInfo` unless
|
||||
// we actually want to emit a warning or error to the user.
|
||||
write!(f, "inside `{}`", self.instance)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> FrameInfo<'tcx> {
|
||||
pub fn as_note(&self, tcx: TyCtxt<'tcx>) -> errors::FrameNote {
|
||||
let span = self.span;
|
||||
if tcx.def_key(self.instance.def_id()).disambiguated_data.data == DefPathData::Closure {
|
||||
errors::FrameNote { where_: "closure", span, instance: String::new(), times: 0 }
|
||||
} else {
|
||||
let instance = format!("{}", self.instance);
|
||||
// Note: this triggers a `must_produce_diag` state, which means that if we ever get
|
||||
// here we must emit a diagnostic. We should never display a `FrameInfo` unless we
|
||||
// actually want to emit a warning or error to the user.
|
||||
errors::FrameNote { where_: "instance", span, instance, times: 0 }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, Prov: Provenance> Frame<'tcx, Prov> {
|
||||
pub fn with_extra<Extra>(self, extra: Extra) -> Frame<'tcx, Prov, Extra> {
|
||||
Frame {
|
||||
body: self.body,
|
||||
instance: self.instance,
|
||||
return_to_block: self.return_to_block,
|
||||
return_place: self.return_place,
|
||||
locals: self.locals,
|
||||
loc: self.loc,
|
||||
extra,
|
||||
tracing_span: self.tracing_span,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, Prov: Provenance, Extra> Frame<'tcx, Prov, Extra> {
|
||||
/// Get the current location within the Frame.
|
||||
///
|
||||
/// If this is `Right`, we are not currently executing any particular statement in
|
||||
/// this frame (can happen e.g. during frame initialization, and during unwinding on
|
||||
/// frames without cleanup code).
|
||||
///
|
||||
/// Used by priroda.
|
||||
pub fn current_loc(&self) -> Either<mir::Location, Span> {
|
||||
self.loc
|
||||
}
|
||||
|
||||
/// Return the `SourceInfo` of the current instruction.
|
||||
pub fn current_source_info(&self) -> Option<&mir::SourceInfo> {
|
||||
self.loc.left().map(|loc| self.body.source_info(loc))
|
||||
}
|
||||
|
||||
pub fn current_span(&self) -> Span {
|
||||
match self.loc {
|
||||
Left(loc) => self.body.source_info(loc).span,
|
||||
Right(span) => span,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn lint_root(&self, tcx: TyCtxt<'tcx>) -> Option<hir::HirId> {
|
||||
// We first try to get a HirId via the current source scope,
|
||||
// and fall back to `body.source`.
|
||||
self.current_source_info()
|
||||
.and_then(|source_info| match &self.body.source_scopes[source_info.scope].local_data {
|
||||
mir::ClearCrossCrate::Set(data) => Some(data.lint_root),
|
||||
mir::ClearCrossCrate::Clear => None,
|
||||
})
|
||||
.or_else(|| {
|
||||
let def_id = self.body.source.def_id().as_local();
|
||||
def_id.map(|def_id| tcx.local_def_id_to_hir_id(def_id))
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns the address of the buffer where the locals are stored. This is used by `Place` as a
|
||||
/// sanity check to detect bugs where we mix up which stack frame a place refers to.
|
||||
#[inline(always)]
|
||||
pub(super) fn locals_addr(&self) -> usize {
|
||||
self.locals.raw.as_ptr().addr()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn generate_stacktrace_from_stack(stack: &[Self]) -> Vec<FrameInfo<'tcx>> {
|
||||
let mut frames = Vec::new();
|
||||
// This deliberately does *not* honor `requires_caller_location` since it is used for much
|
||||
// more than just panics.
|
||||
for frame in stack.iter().rev() {
|
||||
let span = match frame.loc {
|
||||
Left(loc) => {
|
||||
// If the stacktrace passes through MIR-inlined source scopes, add them.
|
||||
let mir::SourceInfo { mut span, scope } = *frame.body.source_info(loc);
|
||||
let mut scope_data = &frame.body.source_scopes[scope];
|
||||
while let Some((instance, call_span)) = scope_data.inlined {
|
||||
frames.push(FrameInfo { span, instance });
|
||||
span = call_span;
|
||||
scope_data = &frame.body.source_scopes[scope_data.parent_scope.unwrap()];
|
||||
}
|
||||
span
|
||||
}
|
||||
Right(span) => span,
|
||||
};
|
||||
frames.push(FrameInfo { span, instance: frame.instance });
|
||||
}
|
||||
trace!("generate stacktrace: {:#?}", frames);
|
||||
frames
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
/// Very low-level helper that pushes a stack frame without initializing
|
||||
/// the arguments or local variables.
|
||||
#[instrument(skip(self, body, return_place, return_to_block), level = "debug")]
|
||||
pub(crate) fn push_stack_frame_raw(
|
||||
&mut self,
|
||||
instance: ty::Instance<'tcx>,
|
||||
body: &'tcx mir::Body<'tcx>,
|
||||
return_place: &MPlaceTy<'tcx, M::Provenance>,
|
||||
return_to_block: StackPopCleanup,
|
||||
) -> InterpResult<'tcx> {
|
||||
trace!("body: {:#?}", body);
|
||||
|
||||
// We can push a `Root` frame if and only if the stack is empty.
|
||||
debug_assert_eq!(
|
||||
self.stack().is_empty(),
|
||||
matches!(return_to_block, StackPopCleanup::Root { .. })
|
||||
);
|
||||
|
||||
// First push a stack frame so we have access to `instantiate_from_current_frame` and other
|
||||
// `self.frame()`-based functions.
|
||||
let dead_local = LocalState { value: LocalValue::Dead, layout: Cell::new(None) };
|
||||
let locals = IndexVec::from_elem(dead_local, &body.local_decls);
|
||||
let pre_frame = Frame {
|
||||
body,
|
||||
loc: Right(body.span), // Span used for errors caused during preamble.
|
||||
return_to_block,
|
||||
return_place: return_place.clone(),
|
||||
locals,
|
||||
instance,
|
||||
tracing_span: SpanGuard::new(),
|
||||
extra: (),
|
||||
};
|
||||
let frame = M::init_frame(self, pre_frame)?;
|
||||
self.stack_mut().push(frame);
|
||||
|
||||
// Make sure all the constants required by this frame evaluate successfully (post-monomorphization check).
|
||||
for &const_ in body.required_consts() {
|
||||
let c =
|
||||
self.instantiate_from_current_frame_and_normalize_erasing_regions(const_.const_)?;
|
||||
c.eval(*self.tcx, self.param_env, const_.span).map_err(|err| {
|
||||
err.emit_note(*self.tcx);
|
||||
err
|
||||
})?;
|
||||
}
|
||||
|
||||
// Finish things up.
|
||||
M::after_stack_push(self)?;
|
||||
self.frame_mut().loc = Left(mir::Location::START);
|
||||
let span = info_span!("frame", "{}", instance);
|
||||
self.frame_mut().tracing_span.enter(span);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Pops a stack frame from the stack and returns some information about it.
|
||||
///
|
||||
/// This also deallocates locals, if necessary.
|
||||
///
|
||||
/// [`M::before_stack_pop`] should be called before calling this function.
|
||||
/// [`M::after_stack_pop`] is called by this function automatically.
|
||||
///
|
||||
/// [`M::before_stack_pop`]: Machine::before_stack_pop
|
||||
/// [`M::after_stack_pop`]: Machine::after_stack_pop
|
||||
pub(super) fn pop_stack_frame_raw(
|
||||
&mut self,
|
||||
unwinding: bool,
|
||||
) -> InterpResult<'tcx, StackPopInfo<'tcx, M::Provenance>> {
|
||||
let cleanup = self.cleanup_current_frame_locals()?;
|
||||
|
||||
let frame =
|
||||
self.stack_mut().pop().expect("tried to pop a stack frame, but there were none");
|
||||
|
||||
let return_to_block = frame.return_to_block;
|
||||
let return_place = frame.return_place.clone();
|
||||
|
||||
let return_action;
|
||||
if cleanup {
|
||||
return_action = M::after_stack_pop(self, frame, unwinding)?;
|
||||
assert_ne!(return_action, ReturnAction::NoCleanup);
|
||||
} else {
|
||||
return_action = ReturnAction::NoCleanup;
|
||||
};
|
||||
|
||||
Ok(StackPopInfo { return_action, return_to_block, return_place })
|
||||
}
|
||||
|
||||
/// A private helper for [`pop_stack_frame_raw`](InterpCx::pop_stack_frame_raw).
|
||||
/// Returns `true` if cleanup has been done, `false` otherwise.
|
||||
fn cleanup_current_frame_locals(&mut self) -> InterpResult<'tcx, bool> {
|
||||
// Cleanup: deallocate locals.
|
||||
// Usually we want to clean up (deallocate locals), but in a few rare cases we don't.
|
||||
// We do this while the frame is still on the stack, so errors point to the callee.
|
||||
let return_to_block = self.frame().return_to_block;
|
||||
let cleanup = match return_to_block {
|
||||
StackPopCleanup::Goto { .. } => true,
|
||||
StackPopCleanup::Root { cleanup, .. } => cleanup,
|
||||
};
|
||||
|
||||
if cleanup {
|
||||
// We need to take the locals out, since we need to mutate while iterating.
|
||||
let locals = mem::take(&mut self.frame_mut().locals);
|
||||
for local in &locals {
|
||||
self.deallocate_local(local.value)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(cleanup)
|
||||
}
|
||||
|
||||
/// In the current stack frame, mark all locals as live that are not arguments and don't have
|
||||
/// `Storage*` annotations (this includes the return place).
|
||||
pub(crate) fn storage_live_for_always_live_locals(&mut self) -> InterpResult<'tcx> {
|
||||
self.storage_live(mir::RETURN_PLACE)?;
|
||||
|
||||
let body = self.body();
|
||||
let always_live = always_storage_live_locals(body);
|
||||
for local in body.vars_and_temps_iter() {
|
||||
if always_live.contains(local) {
|
||||
self.storage_live(local)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn storage_live_dyn(
|
||||
&mut self,
|
||||
local: mir::Local,
|
||||
meta: MemPlaceMeta<M::Provenance>,
|
||||
) -> InterpResult<'tcx> {
|
||||
trace!("{:?} is now live", local);
|
||||
|
||||
// We avoid `ty.is_trivially_sized` since that does something expensive for ADTs.
|
||||
fn is_very_trivially_sized(ty: Ty<'_>) -> bool {
|
||||
match ty.kind() {
|
||||
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
|
||||
| ty::Uint(_)
|
||||
| ty::Int(_)
|
||||
| ty::Bool
|
||||
| ty::Float(_)
|
||||
| ty::FnDef(..)
|
||||
| ty::FnPtr(_)
|
||||
| ty::RawPtr(..)
|
||||
| ty::Char
|
||||
| ty::Ref(..)
|
||||
| ty::Coroutine(..)
|
||||
| ty::CoroutineWitness(..)
|
||||
| ty::Array(..)
|
||||
| ty::Closure(..)
|
||||
| ty::CoroutineClosure(..)
|
||||
| ty::Never
|
||||
| ty::Error(_)
|
||||
| ty::Dynamic(_, _, ty::DynStar) => true,
|
||||
|
||||
ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => false,
|
||||
|
||||
ty::Tuple(tys) => tys.last().is_none_or(|ty| is_very_trivially_sized(*ty)),
|
||||
|
||||
ty::Pat(ty, ..) => is_very_trivially_sized(*ty),
|
||||
|
||||
// We don't want to do any queries, so there is not much we can do with ADTs.
|
||||
ty::Adt(..) => false,
|
||||
|
||||
ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => false,
|
||||
|
||||
ty::Infer(ty::TyVar(_)) => false,
|
||||
|
||||
ty::Bound(..)
|
||||
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
|
||||
bug!("`is_very_trivially_sized` applied to unexpected type: {}", ty)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This is a hot function, we avoid computing the layout when possible.
|
||||
// `unsized_` will be `None` for sized types and `Some(layout)` for unsized types.
|
||||
let unsized_ = if is_very_trivially_sized(self.body().local_decls[local].ty) {
|
||||
None
|
||||
} else {
|
||||
// We need the layout.
|
||||
let layout = self.layout_of_local(self.frame(), local, None)?;
|
||||
if layout.is_sized() { None } else { Some(layout) }
|
||||
};
|
||||
|
||||
let local_val = LocalValue::Live(if let Some(layout) = unsized_ {
|
||||
if !meta.has_meta() {
|
||||
throw_unsup!(UnsizedLocal);
|
||||
}
|
||||
// Need to allocate some memory, since `Immediate::Uninit` cannot be unsized.
|
||||
let dest_place = self.allocate_dyn(layout, MemoryKind::Stack, meta)?;
|
||||
Operand::Indirect(*dest_place.mplace())
|
||||
} else {
|
||||
assert!(!meta.has_meta()); // we're dropping the metadata
|
||||
// Just make this an efficient immediate.
|
||||
// Note that not calling `layout_of` here does have one real consequence:
|
||||
// if the type is too big, we'll only notice this when the local is actually initialized,
|
||||
// which is a bit too late -- we should ideally notice this already here, when the memory
|
||||
// is conceptually allocated. But given how rare that error is and that this is a hot function,
|
||||
// we accept this downside for now.
|
||||
Operand::Immediate(Immediate::Uninit)
|
||||
});
|
||||
|
||||
// If the local is already live, deallocate its old memory.
|
||||
let old = mem::replace(&mut self.frame_mut().locals[local].value, local_val);
|
||||
self.deallocate_local(old)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Mark a storage as live, killing the previous content.
|
||||
#[inline(always)]
|
||||
pub fn storage_live(&mut self, local: mir::Local) -> InterpResult<'tcx> {
|
||||
self.storage_live_dyn(local, MemPlaceMeta::None)
|
||||
}
|
||||
|
||||
pub fn storage_dead(&mut self, local: mir::Local) -> InterpResult<'tcx> {
|
||||
assert!(local != mir::RETURN_PLACE, "Cannot make return place dead");
|
||||
trace!("{:?} is now dead", local);
|
||||
|
||||
// If the local is already dead, this is a NOP.
|
||||
let old = mem::replace(&mut self.frame_mut().locals[local].value, LocalValue::Dead);
|
||||
self.deallocate_local(old)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deallocate_local(&mut self, local: LocalValue<M::Provenance>) -> InterpResult<'tcx> {
|
||||
if let LocalValue::Live(Operand::Indirect(MemPlace { ptr, .. })) = local {
|
||||
// All locals have a backing allocation, even if the allocation is empty
|
||||
// due to the local having ZST type. Hence we can `unwrap`.
|
||||
trace!(
|
||||
"deallocating local {:?}: {:?}",
|
||||
local,
|
||||
// Locals always have a `alloc_id` (they are never the result of a int2ptr).
|
||||
self.dump_alloc(ptr.provenance.unwrap().get_alloc_id().unwrap())
|
||||
);
|
||||
self.deallocate_ptr(ptr, None, MemoryKind::Stack)?;
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub(super) fn layout_of_local(
|
||||
&self,
|
||||
frame: &Frame<'tcx, M::Provenance, M::FrameExtra>,
|
||||
local: mir::Local,
|
||||
layout: Option<TyAndLayout<'tcx>>,
|
||||
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
|
||||
let state = &frame.locals[local];
|
||||
if let Some(layout) = state.layout.get() {
|
||||
return Ok(layout);
|
||||
}
|
||||
|
||||
let layout = from_known_layout(self.tcx, self.param_env, layout, || {
|
||||
let local_ty = frame.body.local_decls[local].ty;
|
||||
let local_ty =
|
||||
self.instantiate_from_frame_and_normalize_erasing_regions(frame, local_ty)?;
|
||||
self.layout_of(local_ty)
|
||||
})?;
|
||||
|
||||
// Layouts of locals are requested a lot, so we cache them.
|
||||
state.layout.set(Some(layout));
|
||||
Ok(layout)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, Prov: Provenance> LocalState<'tcx, Prov> {
|
||||
pub(super) fn print(
|
||||
&self,
|
||||
allocs: &mut Vec<Option<AllocId>>,
|
||||
fmt: &mut std::fmt::Formatter<'_>,
|
||||
) -> std::fmt::Result {
|
||||
match self.value {
|
||||
LocalValue::Dead => write!(fmt, " is dead")?,
|
||||
LocalValue::Live(Operand::Immediate(Immediate::Uninit)) => {
|
||||
write!(fmt, " is uninitialized")?
|
||||
}
|
||||
LocalValue::Live(Operand::Indirect(mplace)) => {
|
||||
write!(
|
||||
fmt,
|
||||
" by {} ref {:?}:",
|
||||
match mplace.meta {
|
||||
MemPlaceMeta::Meta(meta) => format!(" meta({meta:?})"),
|
||||
MemPlaceMeta::None => String::new(),
|
||||
},
|
||||
mplace.ptr,
|
||||
)?;
|
||||
allocs.extend(mplace.ptr.provenance.map(Provenance::get_alloc_id));
|
||||
}
|
||||
LocalValue::Live(Operand::Immediate(Immediate::Scalar(val))) => {
|
||||
write!(fmt, " {val:?}")?;
|
||||
if let Scalar::Ptr(ptr, _size) = val {
|
||||
allocs.push(ptr.provenance.get_alloc_id());
|
||||
}
|
||||
}
|
||||
LocalValue::Live(Operand::Immediate(Immediate::ScalarPair(val1, val2))) => {
|
||||
write!(fmt, " ({val1:?}, {val2:?})")?;
|
||||
if let Scalar::Ptr(ptr, _size) = val1 {
|
||||
allocs.push(ptr.provenance.get_alloc_id());
|
||||
}
|
||||
if let Scalar::Ptr(ptr, _size) = val2 {
|
||||
allocs.push(ptr.provenance.get_alloc_id());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -4,15 +4,29 @@
|
||||
|
||||
use either::Either;
|
||||
use rustc_index::IndexSlice;
|
||||
use rustc_middle::{bug, mir};
|
||||
use rustc_middle::ty::layout::FnAbiOf;
|
||||
use rustc_middle::ty::{self, Instance, Ty};
|
||||
use rustc_middle::{bug, mir, span_bug};
|
||||
use rustc_span::source_map::Spanned;
|
||||
use rustc_target::abi::call::FnAbi;
|
||||
use rustc_target::abi::{FieldIdx, FIRST_VARIANT};
|
||||
use tracing::{info, instrument, trace};
|
||||
|
||||
use super::{
|
||||
ImmTy, Immediate, InterpCx, InterpResult, Machine, MemPlaceMeta, PlaceTy, Projectable, Scalar,
|
||||
throw_ub, FnArg, FnVal, ImmTy, Immediate, InterpCx, InterpResult, Machine, MemPlaceMeta,
|
||||
PlaceTy, Projectable, Scalar,
|
||||
};
|
||||
use crate::util;
|
||||
|
||||
struct EvaluatedCalleeAndArgs<'tcx, M: Machine<'tcx>> {
|
||||
callee: FnVal<'tcx, M::ExtraFnVal>,
|
||||
args: Vec<FnArg<'tcx, M::Provenance>>,
|
||||
fn_sig: ty::FnSig<'tcx>,
|
||||
fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
|
||||
/// True if the function is marked as `#[track_caller]` ([`ty::InstanceKind::requires_caller_location`])
|
||||
with_caller_location: bool,
|
||||
}
|
||||
|
||||
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
/// Returns `true` as long as there are more things to do.
|
||||
///
|
||||
@ -36,7 +50,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
|
||||
if let Some(stmt) = basic_block.statements.get(loc.statement_index) {
|
||||
let old_frames = self.frame_idx();
|
||||
self.statement(stmt)?;
|
||||
self.eval_statement(stmt)?;
|
||||
// Make sure we are not updating `statement_index` of the wrong frame.
|
||||
assert_eq!(old_frames, self.frame_idx());
|
||||
// Advance the program counter.
|
||||
@ -47,7 +61,12 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
M::before_terminator(self)?;
|
||||
|
||||
let terminator = basic_block.terminator();
|
||||
self.terminator(terminator)?;
|
||||
self.eval_terminator(terminator)?;
|
||||
if !self.stack().is_empty() {
|
||||
if let Either::Left(loc) = self.frame().loc {
|
||||
info!("// executing {:?}", loc.block);
|
||||
}
|
||||
}
|
||||
Ok(true)
|
||||
}
|
||||
|
||||
@ -55,7 +74,7 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
/// statement counter.
|
||||
///
|
||||
/// This does NOT move the statement counter forward, the caller has to do that!
|
||||
pub fn statement(&mut self, stmt: &mir::Statement<'tcx>) -> InterpResult<'tcx> {
|
||||
pub fn eval_statement(&mut self, stmt: &mir::Statement<'tcx>) -> InterpResult<'tcx> {
|
||||
info!("{:?}", stmt);
|
||||
|
||||
use rustc_middle::mir::StatementKind::*;
|
||||
@ -349,16 +368,225 @@ impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Evaluate the given terminator. Will also adjust the stack frame and statement position accordingly.
|
||||
fn terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> InterpResult<'tcx> {
|
||||
/// Evaluate the arguments of a function call
|
||||
fn eval_fn_call_arguments(
|
||||
&self,
|
||||
ops: &[Spanned<mir::Operand<'tcx>>],
|
||||
) -> InterpResult<'tcx, Vec<FnArg<'tcx, M::Provenance>>> {
|
||||
ops.iter()
|
||||
.map(|op| {
|
||||
let arg = match &op.node {
|
||||
mir::Operand::Copy(_) | mir::Operand::Constant(_) => {
|
||||
// Make a regular copy.
|
||||
let op = self.eval_operand(&op.node, None)?;
|
||||
FnArg::Copy(op)
|
||||
}
|
||||
mir::Operand::Move(place) => {
|
||||
// If this place lives in memory, preserve its location.
|
||||
// We call `place_to_op` which will be an `MPlaceTy` whenever there exists
|
||||
// an mplace for this place. (This is in contrast to `PlaceTy::as_mplace_or_local`
|
||||
// which can return a local even if that has an mplace.)
|
||||
let place = self.eval_place(*place)?;
|
||||
let op = self.place_to_op(&place)?;
|
||||
|
||||
match op.as_mplace_or_imm() {
|
||||
Either::Left(mplace) => FnArg::InPlace(mplace),
|
||||
Either::Right(_imm) => {
|
||||
// This argument doesn't live in memory, so there's no place
|
||||
// to make inaccessible during the call.
|
||||
// We rely on there not being any stray `PlaceTy` that would let the
|
||||
// caller directly access this local!
|
||||
// This is also crucial for tail calls, where we want the `FnArg` to
|
||||
// stay valid when the old stack frame gets popped.
|
||||
FnArg::Copy(op)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
Ok(arg)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Shared part of `Call` and `TailCall` implementation — finding and evaluating all the
|
||||
/// necessary information about callee and arguments to make a call.
|
||||
fn eval_callee_and_args(
|
||||
&self,
|
||||
terminator: &mir::Terminator<'tcx>,
|
||||
func: &mir::Operand<'tcx>,
|
||||
args: &[Spanned<mir::Operand<'tcx>>],
|
||||
) -> InterpResult<'tcx, EvaluatedCalleeAndArgs<'tcx, M>> {
|
||||
let func = self.eval_operand(func, None)?;
|
||||
let args = self.eval_fn_call_arguments(args)?;
|
||||
|
||||
let fn_sig_binder = func.layout.ty.fn_sig(*self.tcx);
|
||||
let fn_sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, fn_sig_binder);
|
||||
let extra_args = &args[fn_sig.inputs().len()..];
|
||||
let extra_args =
|
||||
self.tcx.mk_type_list_from_iter(extra_args.iter().map(|arg| arg.layout().ty));
|
||||
|
||||
let (callee, fn_abi, with_caller_location) = match *func.layout.ty.kind() {
|
||||
ty::FnPtr(_sig) => {
|
||||
let fn_ptr = self.read_pointer(&func)?;
|
||||
let fn_val = self.get_ptr_fn(fn_ptr)?;
|
||||
(fn_val, self.fn_abi_of_fn_ptr(fn_sig_binder, extra_args)?, false)
|
||||
}
|
||||
ty::FnDef(def_id, args) => {
|
||||
let instance = self.resolve(def_id, args)?;
|
||||
(
|
||||
FnVal::Instance(instance),
|
||||
self.fn_abi_of_instance(instance, extra_args)?,
|
||||
instance.def.requires_caller_location(*self.tcx),
|
||||
)
|
||||
}
|
||||
_ => {
|
||||
span_bug!(terminator.source_info.span, "invalid callee of type {}", func.layout.ty)
|
||||
}
|
||||
};
|
||||
|
||||
Ok(EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location })
|
||||
}
|
||||
|
||||
fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> InterpResult<'tcx> {
|
||||
info!("{:?}", terminator.kind);
|
||||
|
||||
self.eval_terminator(terminator)?;
|
||||
if !self.stack().is_empty() {
|
||||
if let Either::Left(loc) = self.frame().loc {
|
||||
info!("// executing {:?}", loc.block);
|
||||
use rustc_middle::mir::TerminatorKind::*;
|
||||
match terminator.kind {
|
||||
Return => {
|
||||
self.return_from_current_stack_frame(/* unwinding */ false)?
|
||||
}
|
||||
|
||||
Goto { target } => self.go_to_block(target),
|
||||
|
||||
SwitchInt { ref discr, ref targets } => {
|
||||
let discr = self.read_immediate(&self.eval_operand(discr, None)?)?;
|
||||
trace!("SwitchInt({:?})", *discr);
|
||||
|
||||
// Branch to the `otherwise` case by default, if no match is found.
|
||||
let mut target_block = targets.otherwise();
|
||||
|
||||
for (const_int, target) in targets.iter() {
|
||||
// Compare using MIR BinOp::Eq, to also support pointer values.
|
||||
// (Avoiding `self.binary_op` as that does some redundant layout computation.)
|
||||
let res = self.binary_op(
|
||||
mir::BinOp::Eq,
|
||||
&discr,
|
||||
&ImmTy::from_uint(const_int, discr.layout),
|
||||
)?;
|
||||
if res.to_scalar().to_bool()? {
|
||||
target_block = target;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
self.go_to_block(target_block);
|
||||
}
|
||||
|
||||
Call {
|
||||
ref func,
|
||||
ref args,
|
||||
destination,
|
||||
target,
|
||||
unwind,
|
||||
call_source: _,
|
||||
fn_span: _,
|
||||
} => {
|
||||
let old_stack = self.frame_idx();
|
||||
let old_loc = self.frame().loc;
|
||||
|
||||
let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
|
||||
self.eval_callee_and_args(terminator, func, args)?;
|
||||
|
||||
let destination = self.force_allocation(&self.eval_place(destination)?)?;
|
||||
self.init_fn_call(
|
||||
callee,
|
||||
(fn_sig.abi, fn_abi),
|
||||
&args,
|
||||
with_caller_location,
|
||||
&destination,
|
||||
target,
|
||||
if fn_abi.can_unwind { unwind } else { mir::UnwindAction::Unreachable },
|
||||
)?;
|
||||
// Sanity-check that `eval_fn_call` either pushed a new frame or
|
||||
// did a jump to another block.
|
||||
if self.frame_idx() == old_stack && self.frame().loc == old_loc {
|
||||
span_bug!(terminator.source_info.span, "evaluating this call made no progress");
|
||||
}
|
||||
}
|
||||
|
||||
TailCall { ref func, ref args, fn_span: _ } => {
|
||||
let old_frame_idx = self.frame_idx();
|
||||
|
||||
let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
|
||||
self.eval_callee_and_args(terminator, func, args)?;
|
||||
|
||||
self.init_fn_tail_call(callee, (fn_sig.abi, fn_abi), &args, with_caller_location)?;
|
||||
|
||||
if self.frame_idx() != old_frame_idx {
|
||||
span_bug!(
|
||||
terminator.source_info.span,
|
||||
"evaluating this tail call pushed a new stack frame"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Drop { place, target, unwind, replace: _ } => {
|
||||
let place = self.eval_place(place)?;
|
||||
let instance = Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
|
||||
if let ty::InstanceKind::DropGlue(_, None) = instance.def {
|
||||
// This is the branch we enter if and only if the dropped type has no drop glue
|
||||
// whatsoever. This can happen as a result of monomorphizing a drop of a
|
||||
// generic. In order to make sure that generic and non-generic code behaves
|
||||
// roughly the same (and in keeping with Mir semantics) we do nothing here.
|
||||
self.go_to_block(target);
|
||||
return Ok(());
|
||||
}
|
||||
trace!("TerminatorKind::drop: {:?}, type {}", place, place.layout.ty);
|
||||
self.init_drop_in_place_call(&place, instance, target, unwind)?;
|
||||
}
|
||||
|
||||
Assert { ref cond, expected, ref msg, target, unwind } => {
|
||||
let ignored =
|
||||
M::ignore_optional_overflow_checks(self) && msg.is_optional_overflow_check();
|
||||
let cond_val = self.read_scalar(&self.eval_operand(cond, None)?)?.to_bool()?;
|
||||
if ignored || expected == cond_val {
|
||||
self.go_to_block(target);
|
||||
} else {
|
||||
M::assert_panic(self, msg, unwind)?;
|
||||
}
|
||||
}
|
||||
|
||||
UnwindTerminate(reason) => {
|
||||
M::unwind_terminate(self, reason)?;
|
||||
}
|
||||
|
||||
// When we encounter Resume, we've finished unwinding
|
||||
// cleanup for the current stack frame. We pop it in order
|
||||
// to continue unwinding the next frame
|
||||
UnwindResume => {
|
||||
trace!("unwinding: resuming from cleanup");
|
||||
// By definition, a Resume terminator means
|
||||
// that we're unwinding
|
||||
self.return_from_current_stack_frame(/* unwinding */ true)?;
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// It is UB to ever encounter this.
|
||||
Unreachable => throw_ub!(Unreachable),
|
||||
|
||||
// These should never occur for MIR we actually run.
|
||||
FalseEdge { .. } | FalseUnwind { .. } | Yield { .. } | CoroutineDrop => span_bug!(
|
||||
terminator.source_info.span,
|
||||
"{:#?} should have been eliminated by MIR pass",
|
||||
terminator.kind
|
||||
),
|
||||
|
||||
InlineAsm { template, ref operands, options, ref targets, .. } => {
|
||||
M::eval_inline_asm(self, template, operands, options, targets)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
@ -256,7 +256,7 @@ pub struct Thread<'tcx> {
|
||||
/// which then forwards it to 'Resume'. However this argument is implicit in MIR,
|
||||
/// so we have to store it out-of-band. When there are multiple active unwinds,
|
||||
/// the innermost one is always caught first, so we can store them as a stack.
|
||||
pub(crate) panic_payloads: Vec<Scalar>,
|
||||
pub(crate) panic_payloads: Vec<ImmTy<'tcx>>,
|
||||
|
||||
/// Last OS error location in memory. It is a 32-bit integer.
|
||||
pub(crate) last_error: Option<MPlaceTy<'tcx>>,
|
||||
@ -952,7 +952,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
instance,
|
||||
start_abi,
|
||||
&[*func_arg],
|
||||
&[func_arg],
|
||||
Some(&ret_place),
|
||||
StackPopCleanup::Root { cleanup: true },
|
||||
)?;
|
||||
|
@ -307,7 +307,8 @@ pub fn create_ecx<'tcx>(
|
||||
// First argument is constructed later, because it's skipped if the entry function uses #[start].
|
||||
|
||||
// Second argument (argc): length of `config.args`.
|
||||
let argc = Scalar::from_target_usize(u64::try_from(config.args.len()).unwrap(), &ecx);
|
||||
let argc =
|
||||
ImmTy::from_int(i64::try_from(config.args.len()).unwrap(), ecx.machine.layouts.isize);
|
||||
// Third argument (`argv`): created from `config.args`.
|
||||
let argv = {
|
||||
// Put each argument in memory, collect pointers.
|
||||
@ -334,13 +335,11 @@ pub fn create_ecx<'tcx>(
|
||||
ecx.write_immediate(arg, &place)?;
|
||||
}
|
||||
ecx.mark_immutable(&argvs_place);
|
||||
// A pointer to that place is the 3rd argument for main.
|
||||
let argv = argvs_place.to_ref(&ecx);
|
||||
// Store `argc` and `argv` for macOS `_NSGetArg{c,v}`.
|
||||
{
|
||||
let argc_place =
|
||||
ecx.allocate(ecx.machine.layouts.isize, MiriMemoryKind::Machine.into())?;
|
||||
ecx.write_scalar(argc, &argc_place)?;
|
||||
ecx.write_immediate(*argc, &argc_place)?;
|
||||
ecx.mark_immutable(&argc_place);
|
||||
ecx.machine.argc = Some(argc_place.ptr());
|
||||
|
||||
@ -348,7 +347,7 @@ pub fn create_ecx<'tcx>(
|
||||
ecx.layout_of(Ty::new_imm_ptr(tcx, tcx.types.unit))?,
|
||||
MiriMemoryKind::Machine.into(),
|
||||
)?;
|
||||
ecx.write_immediate(argv, &argv_place)?;
|
||||
ecx.write_pointer(argvs_place.ptr(), &argv_place)?;
|
||||
ecx.mark_immutable(&argv_place);
|
||||
ecx.machine.argv = Some(argv_place.ptr());
|
||||
}
|
||||
@ -369,7 +368,7 @@ pub fn create_ecx<'tcx>(
|
||||
}
|
||||
ecx.mark_immutable(&cmd_place);
|
||||
}
|
||||
argv
|
||||
ecx.mplace_to_ref(&argvs_place)?
|
||||
};
|
||||
|
||||
// Return place (in static memory so that it does not count as leak).
|
||||
@ -405,10 +404,14 @@ pub fn create_ecx<'tcx>(
|
||||
start_instance,
|
||||
Abi::Rust,
|
||||
&[
|
||||
Scalar::from_pointer(main_ptr, &ecx).into(),
|
||||
argc.into(),
|
||||
ImmTy::from_scalar(
|
||||
Scalar::from_pointer(main_ptr, &ecx),
|
||||
// FIXME use a proper fn ptr type
|
||||
ecx.machine.layouts.const_raw_ptr,
|
||||
),
|
||||
argc,
|
||||
argv,
|
||||
Scalar::from_u8(sigpipe).into(),
|
||||
ImmTy::from_uint(sigpipe, ecx.machine.layouts.u8),
|
||||
],
|
||||
Some(&ret_place),
|
||||
StackPopCleanup::Root { cleanup: true },
|
||||
@ -418,7 +421,7 @@ pub fn create_ecx<'tcx>(
|
||||
ecx.call_function(
|
||||
entry_instance,
|
||||
Abi::Rust,
|
||||
&[argc.into(), argv],
|
||||
&[argc, argv],
|
||||
Some(&ret_place),
|
||||
StackPopCleanup::Root { cleanup: true },
|
||||
)?;
|
||||
|
@ -12,13 +12,14 @@ use rustc_apfloat::Float;
|
||||
use rustc_hir::{
|
||||
def::{DefKind, Namespace},
|
||||
def_id::{CrateNum, DefId, CRATE_DEF_INDEX, LOCAL_CRATE},
|
||||
Safety,
|
||||
};
|
||||
use rustc_index::IndexVec;
|
||||
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
|
||||
use rustc_middle::middle::dependency_format::Linkage;
|
||||
use rustc_middle::middle::exported_symbols::ExportedSymbol;
|
||||
use rustc_middle::mir;
|
||||
use rustc_middle::ty::layout::MaybeResult;
|
||||
use rustc_middle::ty::layout::{FnAbiOf, MaybeResult};
|
||||
use rustc_middle::ty::{
|
||||
self,
|
||||
layout::{LayoutOf, TyAndLayout},
|
||||
@ -492,48 +493,38 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
&mut self,
|
||||
f: ty::Instance<'tcx>,
|
||||
caller_abi: Abi,
|
||||
args: &[Immediate<Provenance>],
|
||||
args: &[ImmTy<'tcx>],
|
||||
dest: Option<&MPlaceTy<'tcx>>,
|
||||
stack_pop: StackPopCleanup,
|
||||
) -> InterpResult<'tcx> {
|
||||
let this = self.eval_context_mut();
|
||||
let param_env = ty::ParamEnv::reveal_all(); // in Miri this is always the param_env we use... and this.param_env is private.
|
||||
let callee_abi = f.ty(*this.tcx, param_env).fn_sig(*this.tcx).abi();
|
||||
if callee_abi != caller_abi {
|
||||
throw_ub_format!(
|
||||
"calling a function with ABI {} using caller ABI {}",
|
||||
callee_abi.name(),
|
||||
caller_abi.name()
|
||||
)
|
||||
}
|
||||
|
||||
// Push frame.
|
||||
// Get MIR.
|
||||
let mir = this.load_mir(f.def, None)?;
|
||||
let dest = match dest {
|
||||
Some(dest) => dest.clone(),
|
||||
None => MPlaceTy::fake_alloc_zst(this.layout_of(mir.return_ty())?),
|
||||
};
|
||||
this.push_stack_frame(f, mir, &dest, stack_pop)?;
|
||||
|
||||
// Initialize arguments.
|
||||
let mut callee_args = this.frame().body.args_iter();
|
||||
for arg in args {
|
||||
let local = callee_args
|
||||
.next()
|
||||
.ok_or_else(|| err_ub_format!("callee has fewer arguments than expected"))?;
|
||||
// Make the local live, and insert the initial value.
|
||||
this.storage_live(local)?;
|
||||
let callee_arg = this.local_to_place(local)?;
|
||||
this.write_immediate(*arg, &callee_arg)?;
|
||||
}
|
||||
if callee_args.next().is_some() {
|
||||
throw_ub_format!("callee has more arguments than expected");
|
||||
}
|
||||
// Construct a function pointer type representing the caller perspective.
|
||||
let sig = this.tcx.mk_fn_sig(
|
||||
args.iter().map(|a| a.layout.ty),
|
||||
dest.layout.ty,
|
||||
/*c_variadic*/ false,
|
||||
Safety::Safe,
|
||||
caller_abi,
|
||||
);
|
||||
let caller_fn_abi = this.fn_abi_of_fn_ptr(ty::Binder::dummy(sig), ty::List::empty())?;
|
||||
|
||||
// Initialize remaining locals.
|
||||
this.storage_live_for_always_live_locals()?;
|
||||
|
||||
Ok(())
|
||||
this.init_stack_frame(
|
||||
f,
|
||||
mir,
|
||||
caller_fn_abi,
|
||||
&args.iter().map(|a| FnArg::Copy(a.clone().into())).collect::<Vec<_>>(),
|
||||
/*with_caller_location*/ false,
|
||||
&dest,
|
||||
stack_pop,
|
||||
)
|
||||
}
|
||||
|
||||
/// Visits the memory covered by `place`, sensitive to freezing: the 2nd parameter
|
||||
|
@ -25,7 +25,7 @@ pub struct CatchUnwindData<'tcx> {
|
||||
/// The `catch_fn` callback to call in case of a panic.
|
||||
catch_fn: Pointer,
|
||||
/// The `data` argument for that callback.
|
||||
data: Scalar,
|
||||
data: ImmTy<'tcx>,
|
||||
/// The return place from the original call to `try`.
|
||||
dest: MPlaceTy<'tcx>,
|
||||
/// The return block from the original call to `try`.
|
||||
@ -50,7 +50,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
|
||||
trace!("miri_start_unwind: {:?}", this.frame().instance);
|
||||
|
||||
let payload = this.read_scalar(payload)?;
|
||||
let payload = this.read_immediate(payload)?;
|
||||
let thread = this.active_thread_mut();
|
||||
thread.panic_payloads.push(payload);
|
||||
|
||||
@ -80,7 +80,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
// Get all the arguments.
|
||||
let [try_fn, data, catch_fn] = check_arg_count(args)?;
|
||||
let try_fn = this.read_pointer(try_fn)?;
|
||||
let data = this.read_scalar(data)?;
|
||||
let data = this.read_immediate(data)?;
|
||||
let catch_fn = this.read_pointer(catch_fn)?;
|
||||
|
||||
// Now we make a function call, and pass `data` as first and only argument.
|
||||
@ -89,7 +89,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
f_instance,
|
||||
Abi::Rust,
|
||||
&[data.into()],
|
||||
&[data.clone()],
|
||||
None,
|
||||
// Directly return to caller.
|
||||
StackPopCleanup::Goto { ret, unwind: mir::UnwindAction::Continue },
|
||||
@ -140,7 +140,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
f_instance,
|
||||
Abi::Rust,
|
||||
&[catch_unwind.data.into(), payload.into()],
|
||||
&[catch_unwind.data, payload],
|
||||
None,
|
||||
// Directly return to caller of `try`.
|
||||
StackPopCleanup::Goto {
|
||||
@ -169,7 +169,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
panic,
|
||||
Abi::Rust,
|
||||
&[msg.to_ref(this)],
|
||||
&[this.mplace_to_ref(&msg)?],
|
||||
None,
|
||||
StackPopCleanup::Goto { ret: None, unwind },
|
||||
)
|
||||
@ -188,7 +188,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
panic,
|
||||
Abi::Rust,
|
||||
&[msg.to_ref(this)],
|
||||
&[this.mplace_to_ref(&msg)?],
|
||||
None,
|
||||
StackPopCleanup::Goto { ret: None, unwind: mir::UnwindAction::Unreachable },
|
||||
)
|
||||
@ -207,9 +207,9 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
// Forward to `panic_bounds_check` lang item.
|
||||
|
||||
// First arg: index.
|
||||
let index = this.read_scalar(&this.eval_operand(index, None)?)?;
|
||||
let index = this.read_immediate(&this.eval_operand(index, None)?)?;
|
||||
// Second arg: len.
|
||||
let len = this.read_scalar(&this.eval_operand(len, None)?)?;
|
||||
let len = this.read_immediate(&this.eval_operand(len, None)?)?;
|
||||
|
||||
// Call the lang item.
|
||||
let panic_bounds_check = this.tcx.lang_items().panic_bounds_check_fn().unwrap();
|
||||
@ -217,7 +217,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
panic_bounds_check,
|
||||
Abi::Rust,
|
||||
&[index.into(), len.into()],
|
||||
&[index, len],
|
||||
None,
|
||||
StackPopCleanup::Goto { ret: None, unwind },
|
||||
)?;
|
||||
@ -226,9 +226,9 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
// Forward to `panic_misaligned_pointer_dereference` lang item.
|
||||
|
||||
// First arg: required.
|
||||
let required = this.read_scalar(&this.eval_operand(required, None)?)?;
|
||||
let required = this.read_immediate(&this.eval_operand(required, None)?)?;
|
||||
// Second arg: found.
|
||||
let found = this.read_scalar(&this.eval_operand(found, None)?)?;
|
||||
let found = this.read_immediate(&this.eval_operand(found, None)?)?;
|
||||
|
||||
// Call the lang item.
|
||||
let panic_misaligned_pointer_dereference =
|
||||
@ -238,7 +238,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
panic_misaligned_pointer_dereference,
|
||||
Abi::Rust,
|
||||
&[required.into(), found.into()],
|
||||
&[required, found],
|
||||
None,
|
||||
StackPopCleanup::Goto { ret: None, unwind },
|
||||
)?;
|
||||
|
@ -315,6 +315,8 @@ trait EvalContextPrivExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
// FIXME: Technically, the reason should be `DLL_PROCESS_DETACH` when the main thread exits
|
||||
// but std treats both the same.
|
||||
let reason = this.eval_windows("c", "DLL_THREAD_DETACH");
|
||||
let null_ptr =
|
||||
ImmTy::from_scalar(Scalar::null_ptr(this), this.machine.layouts.const_raw_ptr);
|
||||
|
||||
// The signature of this function is `unsafe extern "system" fn(h: c::LPVOID, dwReason: c::DWORD, pv: c::LPVOID)`.
|
||||
// FIXME: `h` should be a handle to the current module and what `pv` should be is unknown
|
||||
@ -322,7 +324,7 @@ trait EvalContextPrivExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
thread_callback,
|
||||
Abi::System { unwind: false },
|
||||
&[Scalar::null_ptr(this).into(), reason.into(), Scalar::null_ptr(this).into()],
|
||||
&[null_ptr.clone(), ImmTy::from_scalar(reason, this.machine.layouts.u32), null_ptr],
|
||||
None,
|
||||
StackPopCleanup::Root { cleanup: true },
|
||||
)?;
|
||||
@ -343,7 +345,7 @@ trait EvalContextPrivExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
instance,
|
||||
Abi::C { unwind: false },
|
||||
&[data.into()],
|
||||
&[ImmTy::from_scalar(data, this.machine.layouts.mut_raw_ptr)],
|
||||
None,
|
||||
StackPopCleanup::Root { cleanup: true },
|
||||
)?;
|
||||
@ -380,7 +382,7 @@ trait EvalContextPrivExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
this.call_function(
|
||||
instance,
|
||||
Abi::C { unwind: false },
|
||||
&[ptr.into()],
|
||||
&[ImmTy::from_scalar(ptr, this.machine.layouts.mut_raw_ptr)],
|
||||
None,
|
||||
StackPopCleanup::Root { cleanup: true },
|
||||
)?;
|
||||
|
@ -1,5 +1,4 @@
|
||||
use crate::*;
|
||||
use rustc_middle::ty::layout::LayoutOf;
|
||||
use rustc_target::spec::abi::Abi;
|
||||
|
||||
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
|
||||
@ -24,7 +23,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
start_routine,
|
||||
Abi::C { unwind: false },
|
||||
func_arg,
|
||||
this.layout_of(this.tcx.types.usize)?,
|
||||
this.machine.layouts.mut_raw_ptr,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
|
@ -1,11 +1,12 @@
|
||||
//@ignore-target-windows: No pthreads on Windows
|
||||
//~^ERROR: calling a function with more arguments than it expected
|
||||
|
||||
//! The thread function must have exactly one argument.
|
||||
|
||||
use std::{mem, ptr};
|
||||
|
||||
extern "C" fn thread_start() -> *mut libc::c_void {
|
||||
panic!() //~ ERROR: callee has fewer arguments than expected
|
||||
panic!()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
@ -1,14 +1,10 @@
|
||||
error: Undefined Behavior: callee has fewer arguments than expected
|
||||
--> $DIR/libc_pthread_create_too_few_args.rs:LL:CC
|
||||
|
|
||||
LL | panic!()
|
||||
| ^^^^^^^^ callee has fewer arguments than expected
|
||||
error: Undefined Behavior: calling a function with more arguments than it expected
|
||||
|
|
||||
= note: calling a function with more arguments than it expected
|
||||
= note: (no span available)
|
||||
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
|
||||
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
|
||||
= note: BACKTRACE on thread `unnamed-ID`:
|
||||
= note: inside `thread_start` at RUSTLIB/core/src/panic.rs:LL:CC
|
||||
= note: this error originates in the macro `$crate::panic::panic_2021` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
|
||||
|
||||
error: aborting due to 1 previous error
|
||||
|
||||
|
@ -1,11 +1,12 @@
|
||||
//@ignore-target-windows: No pthreads on Windows
|
||||
//~^ERROR: calling a function with fewer arguments than it requires
|
||||
|
||||
//! The thread function must have exactly one argument.
|
||||
|
||||
use std::{mem, ptr};
|
||||
|
||||
extern "C" fn thread_start(_null: *mut libc::c_void, _x: i32) -> *mut libc::c_void {
|
||||
panic!() //~ ERROR: callee has more arguments than expected
|
||||
panic!()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
@ -1,14 +1,10 @@
|
||||
error: Undefined Behavior: callee has more arguments than expected
|
||||
--> $DIR/libc_pthread_create_too_many_args.rs:LL:CC
|
||||
|
|
||||
LL | panic!()
|
||||
| ^^^^^^^^ callee has more arguments than expected
|
||||
error: Undefined Behavior: calling a function with fewer arguments than it requires
|
||||
|
|
||||
= note: calling a function with fewer arguments than it requires
|
||||
= note: (no span available)
|
||||
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
|
||||
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
|
||||
= note: BACKTRACE on thread `unnamed-ID`:
|
||||
= note: inside `thread_start` at RUSTLIB/core/src/panic.rs:LL:CC
|
||||
= note: this error originates in the macro `$crate::panic::panic_2021` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
|
||||
|
||||
error: aborting due to 1 previous error
|
||||
|
||||
|
@ -9,7 +9,7 @@ fn main() {
|
||||
// Make sure we check the ABI when Miri itself invokes a function
|
||||
// as part of a shim implementation.
|
||||
std::intrinsics::catch_unwind(
|
||||
//~^ ERROR: calling a function with ABI C using caller ABI Rust
|
||||
//~^ ERROR: calling a function with calling convention C using calling convention Rust
|
||||
std::mem::transmute::<extern "C" fn(*mut u8), _>(try_fn),
|
||||
std::ptr::null_mut(),
|
||||
|_, _| unreachable!(),
|
||||
|
@ -1,4 +1,4 @@
|
||||
error: Undefined Behavior: calling a function with ABI C using caller ABI Rust
|
||||
error: Undefined Behavior: calling a function with calling convention C using calling convention Rust
|
||||
--> $DIR/check_callback_abi.rs:LL:CC
|
||||
|
|
||||
LL | / std::intrinsics::catch_unwind(
|
||||
@ -7,7 +7,7 @@ LL | | std::mem::transmute::<extern "C" fn(*mut u8), _>(try_fn),
|
||||
LL | | std::ptr::null_mut(),
|
||||
LL | | |_, _| unreachable!(),
|
||||
LL | | );
|
||||
| |_________^ calling a function with ABI C using caller ABI Rust
|
||||
| |_________^ calling a function with calling convention C using calling convention Rust
|
||||
|
|
||||
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
|
||||
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
|
||||
|
@ -1,7 +1,7 @@
|
||||
#![feature(start)]
|
||||
#![no_std]
|
||||
//@compile-flags: -Zmiri-track-alloc-id=20 -Zmiri-track-alloc-accesses -Cpanic=abort
|
||||
//@normalize-stderr-test: "id 20" -> "id $$ALLOC"
|
||||
//@compile-flags: -Zmiri-track-alloc-id=21 -Zmiri-track-alloc-accesses -Cpanic=abort
|
||||
//@normalize-stderr-test: "id 21" -> "id $$ALLOC"
|
||||
//@only-target-linux: alloc IDs differ between OSes (due to extern static allocations)
|
||||
|
||||
extern "Rust" {
|
||||
|
Loading…
Reference in New Issue
Block a user