`weak!` is needed in a test in another module. With macros
1.0, importing `weak!` would require reordering module
declarations in `std/src/lib.rs`, which is a bit too
evil.
Add std::os::unix::fs::DirEntryExt2::file_name_ref(&self) -> &OsStr
Greetings!
This is my first PR here, so please forgive me if I've missed an important step or otherwise done something wrong. I'm very open to suggestions/fixes/corrections.
This PR adds a function that allows `std::fs::DirEntry` to vend a borrow of its filename on Unix platforms, which is especially useful for sorting. (Windows has (as I understand it) encoding differences that require an allocation.) This new function sits alongside the cross-platform [`file_name(&self) -> OsString`](https://doc.rust-lang.org/std/fs/struct.DirEntry.html#method.file_name) function.
I pitched this idea in an [internals thread](https://internals.rust-lang.org/t/allow-std-direntry-to-vend-borrows-of-its-filename/14328/4), and no one objected vehemently, so here we are.
I understand features in general, I believe, but I'm not at all confident that my whole-cloth invention of a new feature string (as required by the compiler) was correct (or that the name is appropriate). Further, there doesn't appear to be a test for the sibling `ino` function, so I didn't add one for this similarly trivial function either. If it's desirable that I should do so, I'd be happy to [figure out how to] do that.
The following is a trivial sample of a use-case for this function, in which directory entries are sorted without any additional allocations:
```rust
use std::os::unix::fs::DirEntryExt;
use std::{fs, io};
fn main() -> io::Result<()> {
let mut entries = fs::read_dir(".")?.collect::<Result<Vec<_>, io::Error>>()?;
entries.sort_unstable_by(|a, b| a.file_name_ref().cmp(b.file_name_ref()));
for p in entries {
println!("{:?}", p);
}
Ok(())
}
```
Fix `vxworks`
Some PRs made the `vxworks` target not build anymore. This PR fixes that:
- #82973: copy `ExitStatusError` implementation from `unix`.
- #84716: no `libc::chroot` available on `vxworks`, so for now don't implement `os::unix::fs::chroot`.
This is a straightforward wrapper that uses the existing helpers for C
string handling and errno handling.
Having this available is convenient for UNIX utility programs written in
Rust, and avoids having to call the unsafe `libc::chroot` directly and
handle errors manually, in a program that may otherwise be entirely safe
code.
specialize io::copy to use copy_file_range, splice or sendfile
Fixes#74426.
Also covers #60689 but only as an optimization instead of an official API.
The specialization only covers std-owned structs so it should avoid the problems with #71091
Currently linux-only but it should be generalizable to other unix systems that have sendfile/sosplice and similar.
There is a bit of optimization potential around the syscall count. Right now it may end up doing more syscalls than the naive copy loop when doing short (<8KiB) copies between file descriptors.
The test case executes the following:
```
[pid 103776] statx(3, "", AT_STATX_SYNC_AS_STAT|AT_EMPTY_PATH, STATX_ALL, {stx_mask=STATX_ALL|STATX_MNT_ID, stx_attributes=0, stx_mode=S_IFREG|0644, stx_size=17, ...}) = 0
[pid 103776] write(4, "wxyz", 4) = 4
[pid 103776] write(4, "iklmn", 5) = 5
[pid 103776] copy_file_range(3, NULL, 4, NULL, 5, 0) = 5
```
0-1 `stat` calls to identify the source file type. 0 if the type can be inferred from the struct from which the FD was extracted
𝖬 `write` to drain the `BufReader`/`BufWriter` wrappers. only happen when buffers are present. 𝖬 ≾ number of wrappers present. If there is a write buffer it may absorb the read buffer contents first so only result in a single write. Vectored writes would also be an option but that would require more invasive changes to `BufWriter`.
𝖭 `copy_file_range`/`splice`/`sendfile` until file size, EOF or the byte limit from `Take` is reached. This should generally be *much* more efficient than the read-write loop and also have other benefits such as DMA offload or extent sharing.
## Benchmarks
```
OLD
test io::tests::bench_file_to_file_copy ... bench: 21,002 ns/iter (+/- 750) = 6240 MB/s [ext4]
test io::tests::bench_file_to_file_copy ... bench: 35,704 ns/iter (+/- 1,108) = 3671 MB/s [btrfs]
test io::tests::bench_file_to_socket_copy ... bench: 57,002 ns/iter (+/- 4,205) = 2299 MB/s
test io::tests::bench_socket_pipe_socket_copy ... bench: 142,640 ns/iter (+/- 77,851) = 918 MB/s
NEW
test io::tests::bench_file_to_file_copy ... bench: 14,745 ns/iter (+/- 519) = 8889 MB/s [ext4]
test io::tests::bench_file_to_file_copy ... bench: 6,128 ns/iter (+/- 227) = 21389 MB/s [btrfs]
test io::tests::bench_file_to_socket_copy ... bench: 13,767 ns/iter (+/- 3,767) = 9520 MB/s
test io::tests::bench_socket_pipe_socket_copy ... bench: 26,471 ns/iter (+/- 6,412) = 4951 MB/s
```
Previously EOVERFLOW handling was only applied for io::copy specialization
but not for fs::copy sharing the same code.
Additionally we lower the chunk size to 1GB since we have a user report
that older kernels may return EINVAL when passing 0x8000_0000
but smaller values succeed.
Define `fs::hard_link` to not follow symlinks.
POSIX leaves it [implementation-defined] whether `link` follows symlinks.
In practice, for example, on Linux it does not and on FreeBSD it does.
So, switch to `linkat`, so that we can pick a behavior rather than
depending on OS defaults.
Pick the option to not follow symlinks. This is somewhat arbitrary, but
seems the less surprising choice because hard linking is a very
low-level feature which requires the source and destination to be on
the same mounted filesystem, and following a symbolic link could end
up in a different mounted filesystem.
[implementation-defined]: https://pubs.opengroup.org/onlinepubs/9699919799/functions/link.html
According to [the bionic status page], `linkat` has only been available
since API level 21. Since Android is based on Linux and Linux's `link`
doesn't follow symlinks, just use `link` on Android.
[the bionic status page]: https://android.googlesource.com/platform/bionic/+/master/docs/status.md
POSIX leaves it implementation-defined whether `link` follows symlinks.
In practice, for example, on Linux it does not and on FreeBSD it does.
So, switch to `linkat`, so that we can pick a behavior rather than
depending on OS defaults.
Pick the option to not follow symlinks. This is somewhat arbitrary, but
seems the less surprising choice because hard linking is a very
low-level feature which requires the source and destination to be on
the same mounted filesystem, and following a symbolic link could end
up in a different mounted filesystem.
`DirEntry` contains a `ReadDir` handle, which used to just be a wrapper
on `Arc<InnerReadDir>`. Commit af75314ecd added `end_of_stream: bool`
which is not needed by `DirEntry`, but adds 8 bytes after padding. We
can let `DirEntry` have an `Arc<InnerReadDir>` directly to avoid that.
Function to convert OpenOptions to c_int
Fixes: #74943
The creation_mode and access_mode function were already available in the OpenOptions struct, but currently private. I've added a new free functions to unix/fs.rs which takes the OpenOptions, and returns the c_int to be used as parameter for the `open` call.
This solves several problems
- race conditions where a file is truncated while copying from it. if we blindly trusted
the file size this would lead to an infinite loop
- proc files appearing empty to copy_file_range but not to read/write
https://github.com/coreutils/coreutils/commit/4b04a0c
- copy_file_range returning 0 for some filesystems (overlay? bind mounts?)
inside docker, again leading to an infinite loop