Stabilize `const_waker`
Closes: https://github.com/rust-lang/rust/issues/102012.
For `local_waker` and `context_ext` related things, I just ~~moved them to dedicated feature gates and reused their own tracking issue (maybe it's better to open a new one later, but at least they should not be tracked under https://github.com/rust-lang/rust/issues/102012 from the beginning IMO.)~~ reused their own feature gates as suggested by ``@tgross35.``
``@rustbot`` label: +T-libs-api
r? libs-api
Mark format! with must_use hint
Uses unstable feature https://github.com/rust-lang/rust/issues/94745
Part of #126475
First contribution to rust, please let me know if the blessing of tests is correct
Thanks `@bjorn3` for the help
Don't check the capacity every time (and also for `Extend` for tuples, as this is how `unzip()` is implemented).
I did this with an unsafe method on `Extend` that doesn't check for growth (`extend_one_unchecked()`). I've marked it as perma-unstable currently, although we may want to expose it in the future so collections outside of std can benefit from it. Then specialize `Extend for (A, B)` for `TrustedLen` to call it.
It may seem that an alternative way of implementing this is to have a semi-public trait (`#[doc(hidden)]` public, so collections outside of core can implement it) for `extend()` inside tuples, and specialize it from collections. However, it is impossible due to limitations of `min_specialization`.
A concern that may arise with the current approach is that implementing `extend_one_unchecked()` correctly must also incur implementing `extend_reserve()`, otherwise you can have UB. This is a somewhat non-local safety invariant. However, I believe this is fine, since to have actual UB you must have unsafe code inside your `extend_one_unchecked()` that makes incorrect assumption, *and* not implement `extend_reserve()`. I've also documented this requirement.
This is possible now that inline const blocks are stable; the idea was
even mentioned as an alternative when `uninit_array()` was added:
<https://github.com/rust-lang/rust/pull/65580#issuecomment-544200681>
> if it’s stabilized soon enough maybe it’s not worth having a
> standard library method that will be replaceable with
> `let buffer = [MaybeUninit::<T>::uninit(); $N];`
Const array repetition and inline const blocks are now stable (in the
next release), so that circumstance has come to pass, and we no longer
have reason to want `uninit_array()` other than convenience. Therefore,
let’s evaluate the inconvenience by not using `uninit_array()` in
the standard library, before potentially deleting it entirely.
Rollup of 3 pull requests
Successful merges:
- #126140 (Rename `std::fs::try_exists` to `std::fs::exists` and stabilize fs_try_exists)
- #126318 (Add a `x perf` command for integrating bootstrap with `rustc-perf`)
- #126552 (Remove use of const traits (and `feature(effects)`) from stdlib)
r? `@ghost`
`@rustbot` modify labels: rollup
Add the following methods, that work similarly to VecDeque::as_slices:
- alloc::collections::vec_deque::Iter::as_slices
- alloc::collections::vec_deque::IterMut::into_slices
- alloc::collections::vec_deque::IterMut::as_slices
- alloc::collections::vec_deque::IterMut::as_mut_slices
Obtaining slices from a VecDeque iterator was not previously possible.
Do not allocate for ZST ThinBox (attempt 2 using const_allocate)
There's PR https://github.com/rust-lang/rust/pull/123184 which avoids allocation for ZST ThinBox.
That PR has an issue with unsoundness with padding in `MaybeUninit` (see comments in that PR). Also that PR relies on `Freeze` trait.
This PR is much simpler implementation which does not have this problem, but it uses `const_allocate` feature.
`@oli-obk` suggested that `const_allocate` should not be used for that feature. But I like how easy it to do this feature with `const_allocate`. Maybe it's OK to use `const_allocate` while `ThinBox` is unstable? Or, well, we can abandon this PR.
r? `@oli-obk`
There's PR https://github.com/rust-lang/rust/pull/123184
which avoids allocation for ZST ThinBox.
That PR has an issue with unsoundness with misuse of `MaybeUninit`
(see comments in that PR).
This PR is much simpler implementation which does not have this
problem, but it uses `const_allocate` feature.
Stabilize `unchecked_{add,sub,mul}`
Tracking issue: #85122
I think we might as well just stabilize these basic three. They're the ones that have `nuw`/`nsw` flags in LLVM.
Notably, this doesn't include the potentially-more-complex or -more-situational things like `unchecked_neg` or `unchecked_shr` that are under different feature flags.
To quote Ralf https://github.com/rust-lang/rust/issues/85122#issuecomment-1681669646,
> Are there any objections to stabilizing at least `unchecked_{add,sub,mul}`? For those there shouldn't be any surprises about what their safety requirements are.
*Semantially* these are [already available on stable, even in `const`, via](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=bdb1ff889b61950897f1e9f56d0c9a36) `checked_*`+`unreachable_unchecked`. So IMHO we might as well just let people write them directly, rather than try to go through a `let Some(x) = x.checked_add(y) else { unsafe { hint::unreachable_unchecked() }};` dance.
I added additional text to each method to attempt to better describe the behaviour and encourage `wrapping_*` instead.
r? rust-lang/libs-api
Implement `Vec::pop_if`
This PR adds `Vec::pop_if` to the public API, behind the `vec_pop_if` feature.
```rust
impl<T> Vec<T> {
pub fn pop_if<F>(&mut self, f: F) -> Option<T>
where F: FnOnce(&mut T) -> bool;
}
```
Tracking issue: #122741
## Open questions
- [ ] Should the first unit test be split up?
- [ ] I don't see any guidance on ordering of methods in impl blocks, should I move the method elsewhere?
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
Those libraries are build with `-C panic=unwind` and is expected to
be linkable to `-C panic=abort` library. To ensure unsoundness
compiler needs to prevent a `C-unwind` call to exist, as doing so may leak
foreign exceptions into `-C panic=abort`.
stabilise array methods
Closes#76118
Stabilises the remaining array methods
FCP is yet to be carried out for this
There wasn't a clear consensus on the naming, but all the other alternatives had some flaws as discussed in the tracking issue and there was a silence on this issue for a year
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
Add `std:#️⃣:{DefaultHasher, RandomState}` exports (needs FCP)
This implements rust-lang/libs-team#267 to move the libstd hasher types to `std::hash` where they belong, instead of `std::collections::hash_map`.
<details><summary>The below no longer applies, but is kept for clarity.</summary>
This is a small refactor for #27242, which moves the definitions of `RandomState` and `DefaultHasher` into `std::hash`, but in a way that won't be noticed in the public API.
I've opened rust-lang/libs-team#267 as a formal ACP to move these directly into the root of `std::hash`, but for now, they're at least separated out from the collections code in a way that will make moving that around easier.
I decided to simply copy the rustdoc for `std::hash` from `core::hash` since I think it would be ideal for the two to diverge longer-term, especially if the ACP is accepted. However, I would be willing to factor them out into a common markdown document if that's preferred.
</details>
Stabilize `const_maybe_uninit_zeroed` and `const_mem_zeroed`
Make `MaybeUninit::zeroed` and `mem::zeroed` const stable. Newly stable API:
```rust
// core::mem
pub const unsafe fn zeroed<T>() ->;
impl<T> MaybeUninit<T> {
pub const fn zeroed() -> MaybeUninit<T>;
}
```
This relies on features based around `const_mut_refs`. Per `@RalfJung,` this should be OK since we do not leak any `&mut` to the user.
For this to be possible, intrinsics `assert_zero_valid` and `assert_mem_uninitialized_valid` were made const stable.
Tracking issue: #91850
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/.60const_mut_refs.60.20dependents
r? libs-api
`@rustbot` label -T-libs +T-libs-api +A-const-eval
cc `@RalfJung` `@oli-obk` `@rust-lang/wg-const-eval`
Make `MaybeUninit::zeroed` const stable. Newly stable API:
// core::mem
impl<T> MaybeUninit<T> {
pub const fn zeroed() -> MaybeUninit<T>;
}
Use of `const_mut_refs` should be acceptable since we do not leak the
mutability.
Tracking issue: #91850
Also stabilizes saturating_int_assign_impl, gh-92354.
And also make pub fns const where the underlying saturating_*
fns became const in the meantime since the Saturating type was
created.
Add `suggestion` for some `#[deprecated]` items
Consider code:
```rust
fn main() {
let _ = ["a", "b"].connect(" ");
}
```
Currently it shows deprecated warning:
```rust
warning: use of deprecated method `std::slice::<impl [T]>::connect`: renamed to join
--> src/main.rs:2:24
|
2 | let _ = ["a", "b"].connect(" ");
| ^^^^^^^
|
= note: `#[warn(deprecated)]` on by default
```
This PR adds `suggestion` for `connect` and some other deprecated items, so the warning will be changed to this:
```rust
warning: use of deprecated method `std::slice::<impl [T]>::connect`: renamed to join
--> src/main.rs:2:24
|
2 | let _ = ["a", "b"].connect(" ");
| ^^^^^^^
|
= note: `#[warn(deprecated)]` on by default
help: replace the use of the deprecated method
|
2 | let _ = ["a", "b"].join(" ");
| ^^^^
```
* remove `impl Provider for Error`
* rename `Demand` to `Request`
* update docstrings to focus on the conceptual API provided by `Request`
* move `core::any::{request_ref, request_value}` functions into `core::error`
* move `core::any::tag`, `core::any::Request`, an `core::any::TaggedOption` into `core::error`
* replace `provide_any` feature name w/ `error_generic_member_access`
* move `core::error::request_{ref,value} tests into core::tests::error module
* update unit and doc tests
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
Stabilize `nonnull_slice_from_raw_parts`
FCP is done: https://github.com/rust-lang/rust/issues/71941#issuecomment-1100910416
Note that this doesn't const-stabilize `NonNull::slice_from_raw_parts` as `slice_from_raw_parts_mut` isn't const-stabilized yet. Given #67456 and #57349, it's not likely available soon, meanwhile, stabilizing only the feature makes some sense, I think.
Closes#71941
default OOM handler: use non-unwinding panic, to match std handler
The OOM handler in std will by default abort. This adjusts the default in liballoc to do the same, using the `can_unwind` flag on the panic info to indicate a non-unwinding panic.
In practice this probably makes little difference since the liballoc default will only come into play in no-std situations where people write a custom panic handler, which most likely will not implement unwinding. But still, this seems more consistent.
Cc `@rust-lang/wg-allocators,` https://github.com/rust-lang/rust/issues/66741
Revert "Implement allow-by-default `multiple_supertrait_upcastable` lint"
This is a clean revert of #105484.
I confirmed that reverting that PR fixes the regression reported in #106247. ~~I can't say I understand what this code is doing, but maybe it can be re-landed with a different implementation.~~ **Edit:** https://github.com/rust-lang/rust/issues/106247#issuecomment-1367174384 has an explanation of why #105484 ends up surfacing spurious `where_clause_object_safety` errors. The implementation of `where_clause_object_safety` assumes we only check whether a trait is object safe when somebody actually uses that trait with `dyn`. However the implementation of `multiple_supertrait_upcastable` added in the problematic PR involves checking *every* trait for whether it is object-safe.
FYI `@nbdd0121` `@compiler-errors`
Implement allow-by-default `multiple_supertrait_upcastable` lint
The lint detects when an object-safe trait has multiple supertraits.
Enabled in libcore and liballoc as they are low-level enough that many embedded programs will use them.
r? `@nikomatsakis`